1
|
Hill M, Jörgensen S, Engström G, Persson M, Platonov PG, Hamrefors V, Lexell J. Cardiovascular autonomic function in middle-aged people with long-term cervical and upper thoracic spinal cord injuries. J Spinal Cord Med 2025; 48:447-460. [PMID: 39392470 PMCID: PMC12035942 DOI: 10.1080/10790268.2024.2403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVES To examine cardiovascular autonomic function in middle-aged people with long-term cervical and upper thoracic spinal cord injury (SCI) compared with the general population, and explore if the neurological level of injury (NLI) is related to cardiovascular autonomic function. DESIGN Population-based cross-sectional study with matched controls. SETTING Outpatient SCI unit in Southern Sweden. PARTICIPANTS Twenty-five individuals (20% women, mean age 58 years and mean time since injury 28 years, NLI C2-T6, American Spinal Injury Association Impairment Scale A-C) from the Swedish SPinal Cord Injury Study on Cardiopulmonary and Autonomic Impairment (SPICA). Matched controls were obtained from the population-based Swedish CArdioPulmonary bioImage Study (SCAPIS) at a ratio of 5:1. INTERVENTIONS Not applicable. OUTCOME MEASURES 24 h electrocardiography and deep breathing tests. 24 h ambulatory blood pressure (BP) monitoring and orthostatic BP tests. RESULTS In individuals with SCI compared with controls, heart rate variability (24h mean SD of the normal-to-normal interval 112 ms vs 145 ms, P < 0.001) and diastolic orthostatic BP increase (2.0 and 9.4 mmHg, P < 0.001), were significantly lower, whereas BP variability was significantly higher (24h mean systolic SDBP 17.8 mmHg vs 15.7 mmHg, P = 0.029). Circadian patterns of heart rate variability and BP (lack of nocturnal dip) were significantly different among the individuals with SCI than controls. Higher NLI was significantly (P < 0.05) correlated with impairments to various cardiovascular autonomic function variables. CONCLUSIONS This exploratory study indicates that cardiovascular autonomic function is impaired in middle-aged people with long-term cervical and upper thoracic SCI compared with the general non-SCI population, and more pronounced with a higher NLI. Future research is needed to understand the pathophysiological mechanisms underlying these impairments, and the prognostic significance for individuals with SCI. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03515122.
Collapse
Affiliation(s)
- Mattias Hill
- Department of Health Sciences, Lund University, Lund, Sweden
- Department of Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Sophie Jörgensen
- Department of Health Sciences, Lund University, Lund, Sweden
- Department of Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Margaretha Persson
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Pyotr G. Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Viktor Hamrefors
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Jan Lexell
- Department of Health Sciences, Lund University, Lund, Sweden
- Department of Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Williams EL, Lando J, Lucci VEM, Hockin BCD, Elabd K, Robinovitch SN, Parsons IT, Claydon VE. Orthostatic cardiovascular responses to postural sway and discreet counterpressure maneuvers. Auton Neurosci 2025; 260:103271. [PMID: 40187276 DOI: 10.1016/j.autneu.2025.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/06/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Counterpressure maneuvers (CPM) are movements used to delay or abort syncope, but may have practical barriers to use. We recently showed exaggerated postural sway produces protective responses against syncope. Accordingly, we aimed to evaluate a series of discreet, accessible movements as novel preventative CPM. We tested 26 healthy adults (12 female) aged 28.9 ± 1.2 years. Participants performed a baseline stand (BL), followed by three randomized CPM trials (exaggerated anteroposterior sway, AP; toe clenching, TC; gluteal muscle clenching, GC). Non-invasive beat-to-beat systolic arterial pressure (SAP), heart rate, stroke volume (SV), cardiac output (CO), total peripheral resistance (TPR), mean middle cerebral artery blood velocity (mMCAv), and total path length moved (TPL) were measured. Muscularity was assessed using bioelectrical impedance. All discreet CPM augmented orthostatic SV (p < 0.001) and CO (p < 0.001), while reducing TPR (p < 0.001). SAP increased during AP (p < 0.001) and GC (p < 0.001), but not TC. GC responses were unstable, with increased standard deviation of SAP (p = 0.002) and SV (p = 0.022) that may predispose syncope. Only AP improved mMCAv (p = 0.005) and sympathovagal balance (p < 0.001). Responses were largest in those with greater initial cardiovascular instability (p < 0.003), larger leg muscle mass (p < 0.02), and where TPL was greater (p < 0.002). These novel CPM hold clinical potential for the prevention of orthostatic syncope and presyncope, while addressing real-world patient-reported barriers to CPM. Exaggerated AP sway was most robust and stable at improving orthostatic hemodynamics in healthy controls, with reduced reliance on sympathetic baroreflex-mediated vasoconstriction during enhanced muscle pumping activity. Accordingly, AP shows the most promise as a simple and discrete CPM.
Collapse
Affiliation(s)
- E L Williams
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - J Lando
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - V-E M Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - B C D Hockin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - K Elabd
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - S N Robinovitch
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - I T Parsons
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK; School of Cardiovascular Medicine and Sciences, King's College London, UK
| | - V E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
3
|
Wecht JM, Maher MT, Kirshblum SC, Escalon MX, Weir JP. Sit-up test to assess orthostatic hypotension in individuals with spinal cord injury. Clin Auton Res 2025:10.1007/s10286-024-01102-8. [PMID: 40032720 DOI: 10.1007/s10286-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/07/2024] [Indexed: 03/05/2025]
Abstract
AIM Individuals with spinal cord injury (SCI) have an increased prevalence of orthostatic hypotension (OH). Diagnosis of OH is made with active standing or tilt table testing, with limited the use in individuals with SCI. METHODS An alternative approach to assess OH is the sit-up test, which involves passive repositioning from the supine to the seated position. The purpose of this study was to document the reliability and validity of the sit-up test, and determine whether the level or severity of injury related to orthostatic blood pressure (BP) responses in a large, diverse group of individuals with SCI. RESULTS A total of 166 participants-119 individuals with SCI and 47 uninjured control-completed two sit-up tests, and 36 individuals who completed the sit-up tests also underwent a head-up tilt test. Change in BP from sit-up test 1 to sit-up test 2 was not significantly different for either systolic BP or diastolic BP. Neither level nor severity of injury contributed to the reliability assessments, which showed disappointing results with generally low interclass correlation coefficients (ICC), with values ranging from 0 to 0.63, and large standard error of measurements (SEM), ranging from 5.2 to 13.7 mmHg. Comparison between BP responses to the sit-up test and the head-up tilt showed good sensitivity and specificity, with positive predictive values > 75%. CONCLUSION Prevalent BP instability likely contributed to the poor reliability of the sit-up test, but the test is easy to perform with a high likelihood ratio for the valid assessment of OH in individuals with SCI. CLINICAL TRIAL REGISTRATION NCT01758692.
Collapse
Affiliation(s)
- Jill M Wecht
- James J Peters VA Medical Center, Room 7A-13, 130 W Kingsbridge Road, Bronx, NY, 10468, USA.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew T Maher
- James J Peters VA Medical Center, Room 7A-13, 130 W Kingsbridge Road, Bronx, NY, 10468, USA
- Kessler Foundation at the Kessler Institute for Rehabilitation, West Orange, NJ, USA
| | - Steven C Kirshblum
- Kessler Foundation at the Kessler Institute for Rehabilitation, West Orange, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Joseph P Weir
- James J Peters VA Medical Center, Room 7A-13, 130 W Kingsbridge Road, Bronx, NY, 10468, USA
- University of Kansas, Lawrence, KS, USA
| |
Collapse
|
4
|
Hodgkiss DD, Balthazaar SJT, Welch JF, Wadley AJ, Cox PA, Lucas RAI, Veldhuijzen van Zanten JJCS, Chiou SY, Lucas SJE, Nightingale TE. Short- and long-term effects of transcutaneous spinal cord stimulation on autonomic cardiovascular control and arm-crank exercise capacity in individuals with a spinal cord injury (STIMEX-SCI): study protocol. BMJ Open 2025; 15:e089756. [PMID: 39819908 PMCID: PMC11751795 DOI: 10.1136/bmjopen-2024-089756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Individuals with higher neurological levels of spinal cord injury (SCI) at or above the sixth thoracic segment (≥T6), exhibit impaired resting cardiovascular control and responses during upper-body exercise. Over time, impaired cardiovascular control predisposes individuals to lower cardiorespiratory fitness and thus a greater risk for cardiovascular disease and mortality. Non-invasive transcutaneous spinal cord stimulation (TSCS) has been shown to modulate cardiovascular responses at rest in individuals with SCI, yet its effectiveness to enhance exercise performance acutely, or promote superior physiological adaptations to exercise following an intervention, in an adequately powered cohort is unknown. Therefore, this study aims to explore the efficacy of acute TSCS for restoring autonomic function at rest and during arm-crank exercise to exhaustion (AIM 1) and investigate its longer-term impact on cardiorespiratory fitness and its concomitant benefits on cardiometabolic health and health-related quality of life (HRQoL) outcomes following an 8-week exercise intervention (AIM 2). METHODS AND ANALYSIS Sixteen individuals aged ≥16 years with a chronic, motor-complete SCI between the fifth cervical and sixth thoracic segments will undergo a baseline TSCS mapping session followed by an autonomic nervous system (ANS) stress test battery, with and without cardiovascular-optimised TSCS (CV-TSCS). Participants will then perform acute, single-session arm-crank exercise (ACE) trials to exhaustion with CV-TSCS or sham TSCS (SHAM-TSCS) in a randomised order. Twelve healthy, age- and sex-matched non-injured control participants will be recruited and will undergo the same ANS tests and exercise trials but without TSCS. Thereafter, the SCI cohort will be randomly assigned to an experimental (CV-TSCS+ACE) or control (SHAM-TSCS+ACE) group. All participants will perform 48 min of ACE twice per week (at workloads corresponding to 73-79% peak oxygen uptake), over a period of 8 weeks, either with (CV-TSCS) or without (SHAM-TSCS) cardiovascular-optimised stimulation. The primary outcomes are time to exhaustion (AIM 1) and cardiorespiratory fitness (AIM 2). Secondary outcomes for AIM 1 include arterial blood pressure, respiratory function, cerebral blood velocity, skeletal muscle tissue oxygenation, along with concentrations of catecholamines, brain-derived neurotrophic factor and immune cell dynamics via venous blood sampling pre, post and 90 min post-exercise. Secondary outcomes for AIM 2 include cardiometabolic health biomarkers, cardiac function, arterial stiffness, 24-hour blood pressure lability, energy expenditure, respiratory function, neural drive to respiratory muscles, seated balance and HRQoL (eg, bowel, bladder and sexual function). Outcome measures will be assessed at baseline, pre-intervention, post-intervention and after a 6-week follow-up period (HRQoL questionnaires only). ETHICS AND DISSEMINATION Ethical approval has been obtained from the Wales Research Ethics Committee 7 (23/WA/0284; 03/11/2024). The recruitment process began in February 2024, with the first enrolment in July 2024. Recruitment is expected to be completed by January 2026. The results will be presented at international SCI and sport-medicine conferences and will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN17856698.
Collapse
Affiliation(s)
- Daniel D Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Shane J T Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jet J C S Veldhuijzen van Zanten
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Ji W, Nightingale TE, Zhao F, Fritz NE, Phillips AA, Sisto SA, Nash MS, Badr MS, Wecht JM, Mateika JH, Panza GS. The Clinical Relevance of Autonomic Dysfunction, Cerebral Hemodynamics, and Sleep Interactions in Individuals Living With SCI. Arch Phys Med Rehabil 2024; 105:166-176. [PMID: 37625532 DOI: 10.1016/j.apmr.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
A myriad of physiological impairments is seen in individuals after a spinal cord injury (SCI). These include altered autonomic function, cerebral hemodynamics, and sleep. These physiological systems are interconnected and likely insidiously interact leading to secondary complications. These impairments negatively influence quality of life. A comprehensive review of these systems, and their interplay, may improve clinical treatment and the rehabilitation plan of individuals living with SCI. Thus, these physiological measures should receive more clinical consideration. This special communication introduces the under investigated autonomic dysfunction, cerebral hemodynamics, and sleep disorders in people with SCI to stakeholders involved in SCI rehabilitation. We also discuss the linkage between autonomic dysfunction, cerebral hemodynamics, and sleep disorders and some secondary outcomes are discussed. Recent evidence is synthesized to make clinical recommendations on the assessment and potential management of important autonomic, cerebral hemodynamics, and sleep-related dysfunction in people with SCI. Finally, a few recommendations for clinicians and researchers are provided.
Collapse
Affiliation(s)
- Wenjie Ji
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Trauma Science Research, University of Birmingham, Birmingham, UK; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI
| | - Nora E Fritz
- Department of Health Care Sciences, Program of Physical Therapy, Detroit, MI; Department of Neurology, Wayne State University, Detroit, MI
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular institute, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada; RESTORE.network, University of Calgary, Calgary, AB, Canad
| | - Sue Ann Sisto
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Mark S Nash
- Department of Neurological Surgery, Physical Medicine & Rehabilitation Physical Therapy, Miami, FL; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Jill M Wecht
- James J Peters VA Medical Center, Department of Spinal Cord Injury Research, Bronx, NY; Icahn School of Medicine Mount Sinai, Departments of Rehabilitation and Human Performance, and Medicine Performance, and Medicine, New York, NY
| | - Jason H Mateika
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI.
| |
Collapse
|
6
|
Wecht JM, Weir JP, Noonavath M, Vaccaro DH, Escalon MX, Huang V, Bryce TN. Evaluation of Cardiovascular Autonomic Function during Inpatient Rehabilitation following Traumatic Spinal Cord Injury. J Neurotrauma 2022; 39:1636-1644. [PMID: 35579968 PMCID: PMC9734019 DOI: 10.1089/neu.2021.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Assessment of the degree of impaired autonomic nervous system (ANS) function is not part of routine clinical practice during inpatient rehabilitation following traumatic spinal cord injury (SCI). The goal of this investigation was to determine the utility of the International Standards for Neurologic Classification of SCI (ISNCSCI) and the recently revised International Standards to document remaining Autonomic Function after SCI (ISAFSCI) in documenting cardiovascular ANS impairment during inpatient rehabilitation following traumatic SCI. Beat-to-beat recording of supine heart rate (HR) and blood pressure (BP) were collected at the bedside for estimation of total cardiovascular ISAFSCI score, cardio-vagal modulation (i.e., high frequency HR variability [HFHRV]) and sympathetic vasomotor regulation (i.e., Mayer wave component of systolic BP [SBPmayer]). A total of 41 participants completed baseline testing, which was conducted 11 ± 5 days from the admission ISNCSCI examination. There were no differences in supine HR or BP based on the ISNCSCI or ISAFSCI assessments. The HFHRV was generally lower with more distal lesions (r2 = 0.15; p = 0.01), and SBPmayer was significantly lower in those with American Spinal Injury Association Impairment Scale (AIS) A compared with AIS B, C, D (Cohen's d = -1.4; p < 0.001). There were no significant differences in HFHRV or SBPmayer in patients with or without ISAFSCI evidence of cardiovascular ANS impairment. These preliminary data suggest that neither the ISNCSCI nor the ISAFSCI are sensitive to changes in ANS cardiovascular function following traumatic SCI. Bedside assessment of HR and BP variabilities may provide insight, but are not readily available in the clinical setting. Further research is required to evaluate methods that accurately assess the degree of ANS impairment following traumatic SCI.
Collapse
Affiliation(s)
- Jill M. Wecht
- James J. Peters VA Medical Center, Bronx, New York, USA
- Bronx Veterans Medical Research Foundation, Bronx, New York, USA
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Joseph P. Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Meghana Noonavath
- James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation and Human Performance, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Daniel H. Vaccaro
- James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation and Human Performance, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Miguel X. Escalon
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Vincent Huang
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Thomas N. Bryce
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, The Icahn School of Medicine, Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Sahota IS, Lucci VEM, McGrath MS, Ravensbergen HJC(R, Claydon VE. Cardiovascular and cerebrovascular responses to urodynamics testing after spinal cord injury: The influence of autonomic injury. Front Physiol 2022; 13:977772. [PMID: 36187786 PMCID: PMC9525190 DOI: 10.3389/fphys.2022.977772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Autonomic dysfunction is a prominent concern following spinal cord injury (SCI). In particular, autonomic dysreflexia (AD; paroxysmal hypertension and concurrent bradycardia in response to sensory stimuli below the level of injury) is common in autonomically-complete injuries at or above T6. AD is currently defined as a >20 mmHg increase in systolic arterial pressure (SAP) from baseline, without heart rate (HR) criteria. Urodynamics testing (UDS) is performed routinely after SCI to monitor urological sequelae, often provoking AD. We, therefore, aimed to assess the cardiovascular and cerebrovascular responses to UDS and their association with autonomic injury in individuals with chronic (>1 year) SCI. Following blood draw (plasma norepinephrine [NE]), continuous SAP, HR, and middle cerebral artery blood flow velocity (MCAv) were recorded at baseline (10-minute supine), during standard clinical UDS, and recovery (10-minute supine) (n = 22, age 41.1 ± 2 years, 15 male). Low frequency variability in systolic arterial pressure (LF SAP; a marker of sympathetic modulation of blood pressure) and cerebral resistance were determined. High-level injury (≥T6) with blunted/absent LF SAP (<1.0 mmHg2) and/or low plasma NE (<0.56 nmol•L−1) indicated autonomically-complete injury. Known electrocardiographic markers of atrial (p-wave duration variability) and ventricular arrhythmia (T-peak–T-end variability) were evaluated at baseline and during UDS. Nine participants were determined as autonomically-complete, yet 20 participants had increased SAP >20 mmHg during UDS. Qualitative autonomic assessment did not discriminate autonomic injury. Maximum SAP was higher in autonomically-complete injuries (207.1 ± 2.3 mmHg) than autonomically-incomplete injuries (165.9 ± 5.3 mmHg) during UDS (p < 0.001). HR during UDS was reduced compared to baseline (p = 0.056) and recovery (p = 0.048) only in autonomically-complete lesions. MCAv was not different between groups or phases (all p > 0.05). Cerebrovascular resistance index was increased during UDS in autonomically-complete injuries compared to baseline (p < 0.001) and recovery (p < 0.001) reflecting intact cerebral autoregulation. Risk for both atrial and ventricular arrhythmia increased during UDS compared to baseline (p < 0.05), particularly in autonomically-complete injuries (p < 0.05). UDS is recommended yearly in chronic SCI but is associated with profound AD and an increased risk of arrhythmia, highlighting the need for continued monitoring during UDS. Our data also highlight the need for HR criteria in the definition of AD and the need for quantitative consideration of autonomic function after SCI.
Collapse
Affiliation(s)
- Inderjeet S. Sahota
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Vera-Ellen M. Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Maureen S. McGrath
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - H. J. C. (Rianne) Ravensbergen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Victoria E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Victoria E. Claydon,
| |
Collapse
|
8
|
Parsons IT, Hockin BCD, Taha OM, Heeney ND, Williams EL, Lucci VEM, Lee RHY, Stacey MJ, Gall N, Chowienczyk P, Woods DR, Claydon VE. The effect of water temperature on orthostatic tolerance: a randomised crossover trial. Clin Auton Res 2022; 32:131-141. [PMID: 35461434 PMCID: PMC9064858 DOI: 10.1007/s10286-022-00860-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Purpose Bolus water drinking, at room temperature, has been shown to improve orthostatic tolerance (OT), probably via sympathetic activation; however, it is not clear whether the temperature of the water bolus modifies the effect on OT or the cardiovascular responses to orthostatic stress. The aim of this study was to assess whether differing water temperature of the water bolus would alter time to presyncope and/or cardiovascular parameters during incremental orthostatic stress. Methods Fourteen participants underwent three head-up tilt (HUT) tests with graded lower body negative pressure (LBNP) continued until presyncope. Fifteen minutes prior to each HUT, participants drank a 500 mL bolus of water which was randomised, in single-blind crossover fashion, to either room temperature water (20 °C) (ROOM), ice-cold water (0–3 °C) (COLD) or warm water (45 °C) (WARM). Cardiovascular parameters were monitored continuously. Results There was no significant difference in OT in the COLD (33 ± 3 min; p = 0.3321) and WARM (32 ± 3 min; p = 0.6764) conditions in comparison to the ROOM condition (31 ± 3 min). During the HUT tests, heart rate and cardiac output were significantly reduced (p < 0.0073), with significantly increased systolic blood pressure, stroke volume, cerebral blood flow velocity and total peripheral resistance (p < 0.0054), in the COLD compared to ROOM conditions. Conclusions In healthy controls, bolus cold water drinking results in favourable orthostatic cardiovascular responses during HUT/LBNP without significantly altering OT. Using a cold water bolus may result in additional benefits in patients with orthostatic intolerance above those conferred by bolus water at room temperature (by ameliorating orthostatic tachycardia and enhancing vascular resistance responses). Further research in patients with orthostatic intolerance is warranted.
Collapse
|
9
|
Orthostatic systemic and cerebral hemodynamics in newly injured patients with spinal cord injury. Auton Neurosci 2022; 240:102973. [DOI: 10.1016/j.autneu.2022.102973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022]
|
10
|
Comparison of cardiac autonomic modulation of athletes and non-athletes individuals with spinal cord injury at rest and during a non-immersive virtual reality task. Spinal Cord 2021; 59:1294-1300. [PMID: 34728783 DOI: 10.1038/s41393-021-00722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVES To compare cardiac autonomic modulation of individuals with spinal cord injury (SCI) that practice different amounts of moderate to vigorous physical activity (PA) and able-bodied controls at rest and during a non-immersive Virtual Reality task. SETTING Athletes with SCI of wheelchair basketball, wheelchair tennis, wheelchair handball, WCMX (wheelchair motocross), and para-swimming were assessed at the Faca na Cadeira Institute, ICEL and Clube Espéria in São Paulo, Brazil; non-athletes with SCI and able-bodied controls were assessed at the Acreditando Centro de Recuperação Neuromotora, São Paulo, Brazil. METHODS One-hundred forty-five individuals were assessed: 36 athletes with traumatic SCI (41.1 ± 16.8 years old), 52 non-athletes with traumatic SCI (40.2 ± 14.1 years old), and 57 able-bodied individuals (39.4 ± 12.5 years old). Cardiac autonomic modulation was assessed through heart rate variability (HRV) measured in the sitting position at rest and during a VR game activity. RESULTS We found significantly more favourable HRV for athletes with SCI when compared to non-athletes with SCI, but no differences between athletes with SCI and able-bodied controls. In addition, athletes and able-bodied controls showed adequate autonomic nervous system (ANS) adaptation (rest versus physical activity in VR), i.e., they experienced parasympathetic withdrawal during VR physical activity, which was not found in non-athletes with SCI. CONCLUSION The practice of moderate to vigorous physical activity is associated with healthier cardiac autonomic modulation in adults with SCI, which may lead to more favourable health outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04618003, retrospectively registered.
Collapse
|
11
|
Hayes BD, Fossey MPM, Poormasjedi-Meibod MS, Erskine E, Soriano JE, Scott B, Rosentreter R, Granville DJ, Phillips AA, West CR. Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats. Am J Physiol Heart Circ Physiol 2021; 321:H716-H727. [PMID: 34448635 DOI: 10.1152/ajpheart.00239.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) impairs the cardiovascular responses to postural challenge, leading to the development of orthostatic hypotension (OH). Here, we apply lower body negative pressure (LBNP) to rodents with high-level SCI to demonstrate the usefulness of LBNP as a model for experimental OH studies, and to explore the effect of simulated OH on cardiovascular and cerebrovascular function following SCI. Male Wistar rats (n = 34) were subjected to a sham or T3-SCI surgery and survived into the chronic period postinjury (i.e., 8 wk). Cardiac function was tracked via ultrasound pre- to post-SCI to demonstrate the clinical utility of our model. At study termination, we conducted left-ventricular (LV) catheterization and insonated the middle cerebral artery to investigate the hemodynamic, cardiac, and cerebrovascular response to a mild dose of LBNP that is sufficient to mimic clinically defined OH in rats with T3-SCI but not sham animals. In response to mimicked OH, there was a greater decline in stroke volume, cardiac output, maximal LV pressure, and blood pressure in SCI compared with sham (P < 0.034), whereas heart rate was increased in sham but decreased in SCI (P < 0.029). SCI animals also had an exaggerated reduction in peak, minimum and mean middle cerebral artery flow, for a given change in blood pressure, in response to LBNP (P < 0.033), implying impaired dynamic cerebral autoregulation. Using a preclinical SCI model of OH, we demonstrate that complete high thoracic SCI impairs the cardiac response to OH and disrupts dynamic cerebral autoregulation.NEW & NOTEWORTHY This is the first use of LBNP to interrogate the cardiac and cerebrovascular responses to simulated OH in a preclinical study of SCI. Here, we demonstrate the utility of our simulated OH model and use it to demonstrate that SCI impairs the cardiac response to simulated OH and disrupts dynamic cerebrovascular autoregulation.
Collapse
Affiliation(s)
- Brian D Hayes
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary Pauline Mona Fossey
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Erin Erskine
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan Elaine Soriano
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Berkeley Scott
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Rosentreter
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Cai H, Wang S, Zou R, Liu P, Li F, Wang Y, Wang C. Comparison of the Active Sitting Test and Head-Up Tilt Test for Diagnosis of Postural Tachycardia Syndrome in Children and Adolescents. Front Pediatr 2021; 9:691390. [PMID: 34604136 PMCID: PMC8485704 DOI: 10.3389/fped.2021.691390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: We aimed to compare the hemodynamic responses to the active sitting test with the passive head-up tilt test (HUTT) in children and adolescents with postural tachycardia syndrome (POTS). We hypothesized that sitting tachycardia was also present in POTS patients during sitting. Materials and methods: We tested 30 POTS patients and 31 control subjects (mean age = 12 years, range = 9-16 years) who underwent both active sitting test and HUTT successively. We measured the heart rate (HR) and blood pressure (BP) during each test. Results: For both POTS patients and control subjects, the HUTT produced significantly larger HR and BP increases from 3 to 10 min of postural change than did the sitting test. Moreover, POTS patients with excessive orthostatic tachycardia during the HUTT also had significantly larger increases in HR at all test intervals during the sitting test than did the control subjects. A maximum increase in HR ≥ 22 bpm within 10 min of the sitting test was likely suggested to predict orthostatic tachycardia, yielding a sensitivity and specificity of 83.3 and 83.9%, respectively. Only six of 30 POTS patients (20%) reached the 40-bpm criterion during the sitting test, and no one complained of sitting intolerance symptoms. Conclusions: We have shown that POTS patients also have sitting tachycardia when changing from a supine position to a sitting position. We believe that the active sitting test is a reasonable alternative maneuver in assessing POTS in population groups that cannot tolerate the standing test or HUTT.
Collapse
Affiliation(s)
- Hong Cai
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Runmei Zou
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Li
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Kjaerup DH, Hagen EM, Vibjerg J, Hansen RM. Autonomic cardiovascular dysfunction during simple arithmetic test in a patient with cervical spinal cord injury-a case report. Spinal Cord Ser Cases 2021; 7:78. [PMID: 34446698 DOI: 10.1038/s41394-021-00439-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) disrupts autonomic control of the cardiovascular system, which may lead to autonomic dysfunction. Growing amounts of evidence support the possibility that systemic and cerebral hemodynamic dysfunctions may contribute to cognitive deficits in patients with SCI. CASE PRESENTATION We present a case of autonomic cardiovascular dysfunction in a 55-year old female patient following non-traumatic cervical SCI. This case illustrates how a simple arithmetic test may elicit fluctuations in blood pressure causing cognitive disturbances. DISCUSSION Clinical awareness of autonomic dysfunction and cognitive deficits is relevant in neurorehabilitation of patients with SCI. Assessment of autonomic function should be evaluated according to recommendation from International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI) [1].
Collapse
Affiliation(s)
- Dan Hoeffner Kjaerup
- Spinal Cord Injury Centre of Western Denmark, Department of Neurology, Regional Hospital of Viborg, Viborg, Denmark.
| | - Ellen Merete Hagen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Autonomic Unit, National Hospital of Neurology and Neurosurgery, Queen Square, UCLH, London, UK.,Institute of Neurology, Department of Brain Repair & Rehabilitation, University College London, London, UK
| | - Jørgen Vibjerg
- Spinal Cord Injury Centre of Western Denmark, Department of Neurology, Regional Hospital of Viborg, Viborg, Denmark
| | - Rikke Middelhede Hansen
- Spinal Cord Injury Centre of Western Denmark, Department of Neurology, Regional Hospital of Viborg, Viborg, Denmark
| |
Collapse
|
14
|
Cerebral Autoregulation during Postural Change in Patients with Cervical Spinal Cord Injury-A Carotid Duplex Ultrasonography Study. Diagnostics (Basel) 2021; 11:diagnostics11081321. [PMID: 34441256 PMCID: PMC8393722 DOI: 10.3390/diagnostics11081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with a spinal cord injury (SCI) frequently experience sudden falls in blood pressure during postural change. Few studies have investigated whether the measurement of blood flow velocity within vessels can reflect brain perfusion during postural change. By performing carotid duplex ultrasonography (CDU), we investigated changes in cerebral blood flow (CBF) during postural changes in patients with a cervical SCI, determined the correlation of CBF change with presyncopal symptoms, and investigated factors affecting cerebral autoregulation. We reviewed the medical records of 100 patients with a cervical SCI who underwent CDU. The differences between the systolic blood pressure, diastolic blood pressure, and CBF volume in the supine posture and after 5 min at 50° tilt were evaluated. Presyncopal symptoms occurred when the blood flow volume of the internal carotid artery decreased by ≥21% after tilt. In the group that had orthostatic hypotension and severe CBF decrease during tilt, the body mass index and physical and functional scores were lower than in other groups, and the proportion of patients with a severe SCI was high. The higher the SCI severity and the lower the functional score, the higher the possibility of cerebral autoregulation failure. CBF should be assessed by conducting CDU in patients with a high-level SCI.
Collapse
|
15
|
Ozturk ED, Lapointe MS, Kim DI, Hamner JW, Tan CO. Effect of 6-Month Exercise Training on Neurovascular Function in Spinal Cord Injury. Med Sci Sports Exerc 2021; 53:38-46. [PMID: 32826631 DOI: 10.1249/mss.0000000000002452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Although previous data show exacerbated incidence of cognitive impairment after spinal cord injury (SCI), the physiology that underlies this postinjury cognitive decline is unknown. One potential culprit is impairment in the ability of cerebral vasculature to alter regional flow to sustain neural metabolism (i.e., "neurovascular coupling"). We hypothesized that cerebrovascular responses to a working memory task are impaired in individuals with SCI and can be improved by aerobic exercise training. METHODS We assessed the effect of injury and 6-month full-body aerobic exercise training on the cerebral blood flow response to cognitive demand (i.e., neurovascular coupling) in 24 individuals with SCI and 16 controls. Cognitive demand was introduced in a graded fashion using a working memory task. RESULTS Reaction time tended to be higher in individuals with SCI, especially those with high-level (≥T4) injuries, possibly due to upper motor impairments. Neurovascular coupling was graded across task difficulty (P < 0.01) and followed cognitive demand, and injury itself did not have a significant effect (group effect P = 0.99, interaction P = 0.70). Individuals with low-level injuries ( CONCLUSION Previously reported cognitive impairment after SCI may reflect a decline in neurovascular coupling primarily due to physical deconditioning rather than injury itself. The latter can be mitigated by aerobic exercise training.
Collapse
|
16
|
Lucci VEM, Inskip JA, McGrath MS, Ruiz I, Lee R, Kwon BK, Claydon VE. Longitudinal Assessment of Autonomic Function during the Acute Phase of Spinal Cord Injury: Use of Low-Frequency Blood Pressure Variability as a Quantitative Measure of Autonomic Function. J Neurotrauma 2020; 38:309-321. [PMID: 32940126 DOI: 10.1089/neu.2020.7286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High-level spinal cord injury (SCI) can disrupt cardiovascular autonomic function. However, the evolution of cardiovascular autonomic function in the acute phase following injury is unknown. We evaluated the timing, severity, progression, and implications of cardiovascular autonomic injury following acute SCI. We tested 63 individuals with acute traumatic SCI (aged 48 ± 2 years) at five time-points: <2 weeks, and 1, 3, 6-12, and >12 months post-injury. Supine beat-to-beat systolic arterial pressure (SAP) and R-R interval (RRI) were recorded and low-frequency variability (LF SAP and LF RRI) determined. Cross-spectral analyses were used to determine baroreflex function (low frequency) and cardiorespiratory interactions (high frequency). Known electrocardiographic (ECG) markers for arrhythmia and self-reported symptoms of cardiovascular dysfunction were determined. Comparisons were made with historical data from individuals with chronic SCI and able-bodied controls. Most individuals had high-level (74%) motor/sensory incomplete (63%) lesions. All participants had decreased LF SAP at <2 weeks (2.22 ± 0.65 mm Hg2). Autonomic injury was defined as high-level SCI with LF SAP <2 mm Hg2. Two distinct groups emerged by 1 month: autonomically complete SCI with sustained low LF SAP (0.76 ± 0.17 mm Hg2) and autonomically incomplete SCI with increased LF SAP (5.46 ± 1.0 mm Hg2, p < 0.05). Autonomically complete injuries did not recover over time. Cardiovascular symptoms were prevalent and worsened with time, especially in those with autonomically complete lesions, and chronic SCI. Baroreflex function and cardiorespiratory interactions were impaired after SCI. Risk of arrhythmia increased immediately after SCI, and remained elevated throughout the acute phase. Acute SCI is associated with severe cardiovascular dysfunction. LF SAP provides a simple, non-invasive, translatable, quantitative assessment of autonomic function, and is most informative 1 month after injury.
Collapse
Affiliation(s)
- Vera-Ellen M Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Inskip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Maureen S McGrath
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Ruiz
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rebekah Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Wang S, Wecht JM, Legg Ditterline B, Ugiliweneza B, Maher MT, Lombard AT, Aslan SC, Ovechkin AV, Bethke B, Gunter JTH, Harkema SJ. Heart rate and blood pressure response improve the prediction of orthostatic cardiovascular dysregulation in persons with chronic spinal cord injury. Physiol Rep 2020; 8:e14617. [PMID: 33080121 PMCID: PMC7575221 DOI: 10.14814/phy2.14617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Unstable blood pressure after spinal cord injury (SCI) is not routinely examined but rather predicted by level and completeness of injury (i.e., American Spinal Injury Association Impairment Scale AIS classification). Our aim was to investigate hemodynamic response to a sit-up test in a large cohort of individuals with chronic SCI to better understand cardiovascular function in this population. Continuous blood pressure and ECG were recorded from individuals with SCI (n = 159) and non-injured individuals (n = 48). We found orthostatic hypotension occurred within each level and AIS classification (n = 36). Moreover, 45 individuals with chronic SCI experienced a drop in blood pressure that did not meet the criteria for orthostatic hypotension, but was accompanied by dramatic increases in heart rate, reflecting orthostatic intolerance. A cluster analysis of hemodynamic response to a seated position identified eight distinct patterns of interaction between blood pressure and heart rate during orthostatic stress indicating varied autonomic responses. Algorithmic cluster analysis of heart rate and blood pressure is more sensitive to diagnosing orthostatic cardiovascular dysregulation. This indicates blood pressure instability cannot be predicted by level and completeness of SCI, and the consensus statement definition of orthostatic hypotension is insufficient to characterize the variability of blood pressure and heart rate responses during orthostatic stress. Both blood pressure and heart rate responses are needed to characterize autonomic function after SCI.
Collapse
Affiliation(s)
- Siqi Wang
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Jill M. Wecht
- James J Peters VA Medical CenterBronxNYUSA
- Departments of Medicine and Rehabilitation Medicinethe Icahn School of MedicineMount SinaiNew YorkNYUSA
| | - Bonnie Legg Ditterline
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Matthew T. Maher
- James J Peters VA Medical CenterBronxNYUSA
- Kessler Institute for RehabilitationWest OrangeNJUSA
| | - Alexander T. Lombard
- James J Peters VA Medical CenterBronxNYUSA
- Kessler Institute for RehabilitationWest OrangeNJUSA
| | - Sevda C. Aslan
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Alexander V. Ovechkin
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | | | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleKYUSA
- Frazier Rehab InstituteLouisvilleKYUSA
| |
Collapse
|
18
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
19
|
Katzelnick CG, Weir JP, Jones A, Galea M, Dyson-Hudson TA, Kirshblum SC, Wecht JM. Blood Pressure Instability in Persons With SCI: Evidence From a 30-Day Home Monitoring Observation. Am J Hypertens 2019; 32:938-944. [PMID: 31125393 DOI: 10.1093/ajh/hpz089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To determine the degree of blood pressure instability over a 30-day home observation in participants with spinal cord injury grouped by level of injury pertaining to cardiovascular autonomic regulation. METHODS This is an observational study completed at the Kessler Foundation and James J. Peters Veterans Medical Center. Seventy-two participants with tetraplegia (C1-T1), 13 with high thoracic (T2-T4), and 28 with low thoracic (T5-T12) injury participated in this study. Participants were asked to record their blood pressure using an ambulatory blood pressure monitor three times a day for 30 days. RESULTS The number of blood pressure fluctuations was significantly increased in the tetraplegia group compared with the paraplegia groups. Age and duration of injury contributed to an increase in the observation of 30-day blood pressure instability; however, completeness of injury did not. CONCLUSION The data indicate significant blood pressure instability that may not be exclusive to persons with tetraplegia; in fact, individuals with low thoracic injuries demonstrated severe blood pressure fluctuations. The use of a monitor at home for an extended period may help document dangerous and extreme fluctuations in blood pressure and should be considered an important adjunctive clinical practice for tracking of the secondary consequences in the spinal cord injury population.
Collapse
Affiliation(s)
- Caitlyn G Katzelnick
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
- Kessler Foundation, West Orange, New Jersey, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Science, University of Kansas, Lawrence, Kansas, USA
| | - April Jones
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
| | - Marinella Galea
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Trevor A Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven C Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Spinal Cord Injury Rehabilitation, Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
| | - Jill M Wecht
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Shaw BH, Borrel D, Sabbaghan K, Kum C, Yang Y, Robinovitch SN, Claydon VE. Relationships between orthostatic hypotension, frailty, falling and mortality in elderly care home residents. BMC Geriatr 2019; 19:80. [PMID: 30866845 PMCID: PMC6415493 DOI: 10.1186/s12877-019-1082-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Orthostatic hypotension (OH; profound falls in blood pressure when upright) is a common deficit that increases in incidence with age, and may be associated with falling risk. Deficit accumulation results in frailty, regarded as enhanced vulnerability to adverse outcomes. We aimed to evaluate the relationships between OH, frailty, falling and mortality in elderly care home residents. METHODS From the Minimum Data Set (MDS) document, a frailty index (FI-MDS) was generated from a list of 58 deficits, ranging from 0 (no deficits) to 1.0 (58 deficits). OH was evaluated from beat-to-beat blood pressure and heart rate (finger plethysmography) collected during a 15-min supine-seated orthostatic stress test. Retrospective and prospective falling rates (falls/year) were extracted from facility falls incident reports. All-cause 3-year mortality was determined. Data are reported as mean ± standard error. RESULTS Data were obtained from 116 older adults (aged 84.2 ± 0.9 years; 44% males) living in two long term care facilities. The mean FI-MDS was 0.36 ± 0.01; FI-MDS was correlated with age (r = 0.277; p = 0.003). Those who were frail (FI ≥ 0.27) had larger Initial (- 17.8 ± 4.2 vs - 6.1 ± 3.3 mmHg, p = 0.03) and Consensus (- 22.7 ± 4.3 vs - 11.5 ± 3.3 mmHg, p = 0.04) orthostatic reductions in systolic arterial pressure. Frail individuals had higher prospective and retrospective falling rates and higher 3-year mortality. Receiver operating characteristic curves evaluated the ability of FI-MDS alone to predict prospective falls (sensitivity 72%, specificity 36%), Consensus OH (sensitivity 68%, specificity 60%) and 3-year mortality (sensitivity 77%, specificity 49%). Kaplan Meier survival analyses showed significantly higher 3-year mortality in those who were frail compared to the non-frail (p = 0.005). CONCLUSIONS Frailty can be captured using a frailty index based on MDS data in elderly individuals living in long term care, and is related to susceptibility to orthostatic hypotension, falling risk and 3-year mortality. Use of the MDS to generate a frailty index may represent a simple and convenient risk assessment tool for older adults living in long term care. Older adults who are both frail and have impaired orthostatic blood pressure control have a particularly high risk of falling and should receive tailored management to mitigate this risk.
Collapse
Affiliation(s)
- Brett H Shaw
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Dave Borrel
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kimiya Sabbaghan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Colton Kum
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yijian Yang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Stephen N Robinovitch
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
21
|
Wecht JM, Weir JP, Katzelnick CG, Wylie G, Eraifej M, Nguyen N, Dyson-Hudson T, Bauman WA, Chiaravalloti N. Systemic and Cerebral Hemodynamic Contribution to Cognitive Performance in Spinal Cord Injury. J Neurotrauma 2018; 35:2957-2964. [DOI: 10.1089/neu.2018.5760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jill M. Wecht
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
- Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
| | - Joseph P. Weir
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas
| | - Caitlyn G. Katzelnick
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
- Kessler Foundation, West Orange, New Jersey
| | - Glenn Wylie
- Kessler Foundation, West Orange, New Jersey
- Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, New Jersey
- VA War Related Illness and Injury Study Center, East Orange, New Jersey
| | - Mastanna Eraifej
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
| | - Nhuquynh Nguyen
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey
- Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, New Jersey
| | - William A. Bauman
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
- Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
| | - Nancy Chiaravalloti
- Kessler Foundation, West Orange, New Jersey
- Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, New Jersey
| |
Collapse
|
22
|
Inskip JA, Lucci VEM, McGrath MS, Willms R, Claydon VE. A Community Perspective on Bowel Management and Quality of Life after Spinal Cord Injury: The Influence of Autonomic Dysreflexia. J Neurotrauma 2018; 35:1091-1105. [PMID: 29239268 PMCID: PMC5908418 DOI: 10.1089/neu.2017.5343] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autonomic dysfunction is common in individuals with spinal cord injury (SCI) and leads to numerous abnormalities, including profound cardiovascular and bowel dysfunction. In those with high-level lesions, bowel management is a common trigger for autonomic dysreflexia (AD; hypertension provoked by sensory stimuli below the injury level). Improving bowel care is integral for enhancing quality of life (QoL). We aimed to describe the relationships between bowel care, AD, and QoL in individuals with SCI. We performed an online community survey of individuals with SCI. Those with injury at or above T7 were considered at risk for AD. Responses were received from 287 individuals with SCI (injury levels C1-sacral and average duration of injury 17.1 ± 12.9 [standard deviation] years). Survey completion rate was 73% (n = 210). Bowel management was a problem for 78%: it interfered with personal relationships (60%) and prevented staying (62%) and working (41%) away from home. The normal bowel care duration was >60 min in 24% and most used digital rectal stimulation (59%); 33% reported bowel incontinence at least monthly. Of those at risk for AD (n = 163), 74% had AD symptoms during bowel care; 32% described palpitations. AD interfered with activities of daily living in 51%. Longer durations of bowel care (p < 0.001) and more severe AD (p = 0.04) were associated with lower QoL. Bowel management is a key concern for individuals with SCI and is commonly associated with symptoms of AD. Further studies should explore ways to manage bowel dysfunction, increase self-efficacy, and ameliorate the impact of AD to improve QoL.
Collapse
Affiliation(s)
- Jessica A. Inskip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Vera-Ellen M. Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maureen S. McGrath
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rhonda Willms
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Center, Spinal Cord Injury Program, Vancouver Coastal Health, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Victoria E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
El-Kotob R, Craven BC, Mathur S, Ditor DS, Oh P, Miyatani M, Verrier MC. Assessing Heart Rate Variability As a Surrogate Measure of Cardiac Autonomic Function in Chronic Traumatic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 24:28-36. [PMID: 29434458 DOI: 10.1310/sci17-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Although cardiac autonomic dysfunction is a contributing factor for cardiovascular disease development in individuals with a spinal cord injury (SCI), it remains poorly understood. Heart rate variability (HRV) analysis has the potential to non-invasively assess the cardiac autonomic nervous system. The study objectives are (a) to determine if there are differences in HRV measures across neurological level of impairment (NLI) and American Spinal Cord Injury Association Impairment Scale (AIS) subgroups, and (b) to determine if there is a relationship between HRV frequency measures (low frequency [LF] and high frequency [HF]) at rest. Methods: We conducted a secondary data analysis of a primary data set from a published cross-sectional study of electrocardiogram recordings of 56 subjects (44 men and 12 women, mean age ± SD = 46.75 ± 12.44 years) with a chronic traumatic SCI (C1-T12, AIS A-D, ≥2 years post injury). HRV was analyzed using time and frequency domain measures. Results: There were no significant HRV differences across NLI and AIS subgroups. The LF and HF indices were positively correlated in the entire sample (r = 0.708, p < .0001) and among impairment subgroups. Conclusion: No differences were observed in the HRV time and frequency measures when compared across NLI and AIS subgroups. The results were considered inconclusive, since possible explanations include inadequate sample size as well as other physiological considerations. A positive correlation was found between LF and HF when assessed at rest. The relationship between LF and HF may not necessarily represent a rebalanced autonomic nervous system, but it does question the utility of solely measuring LF:HF at rest in persons with chronic SCI.
Collapse
Affiliation(s)
- Rasha El-Kotob
- University Health Network, Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, Ontario, Canada.,Graduate Department of Rehabilitation Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - B Catharine Craven
- University Health Network, Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, Ontario, Canada.,Department of Medicine, Division of Physical Medicine & Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Sunita Mathur
- University Health Network, Toronto Rehabilitation Institute, University Centre, Toronto, Ontario, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David S Ditor
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Paul Oh
- University Health Network, Toronto Rehabilitation Institute, Rumsey Centre, Toronto, Ontario, Canada.,Department of Medicine, Clinical Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Masae Miyatani
- University Health Network, Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, Ontario, Canada
| | - Mary C Verrier
- University Health Network, Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, Ontario, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
A comparison of static and dynamic cerebral autoregulation during mild whole-body cold stress in individuals with and without cervical spinal cord injury: a pilot study. Spinal Cord 2018; 56:469-477. [PMID: 29330514 DOI: 10.1038/s41393-017-0021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Experimental study. OBJECTIVES To characterize static and dynamic cerebral autoregulation (CA) of individuals with cervical spinal cord injury (SCI) compared to able-bodied controls in response to moderate increases in mean arterial pressure (MAP) caused by mild whole-body cold stress. SETTING Japan METHODS: Five men with complete autonomic cervical SCI (sustained > 5 y) and six age-matched able-bodied men participated in hemodynamic, temperature, catecholamine and respiratory measurements for 60 min during three consecutive stages: baseline (10 min; 33 °C water through a thin-tubed whole-body suit), mild cold stress (20 min; 25 °C water), and post-cold recovery (30 min; 33 °C water). Static CA was determined as the ratio between mean changes in middle cerebral artery blood velocity and MAP, dynamic CA as transfer function coherence, gain, and phase between spontaneous changes in MAP to middle cerebral artery blood velocity. RESULTS MAP increased in both groups during cold and post-cold recovery (mean differences: 5-10 mm Hg; main effect of time: p = 0.001). Static CA was not different between the able-bodied vs. the cervical SCI group (mean (95% confidence interval (CI)) of between-group difference: -4 (-11 to 3) and -2 (-5 to 1) cm/s/mm Hg for cold (p = 0.22) and post-cold (p = 0.24), respectively). At baseline, transfer function phase was shorter in the cervical SCI group (mean (95% CI) of between-group difference: 0.6 (0.2 to 1.0) rad; p = 0.006), while between-group differences in changes in phase were not different in response to the cold stress (interaction term: p = 0.06). CONCLUSIONS This pilot study suggests that static CA is similar between individuals with cervical SCI and able-bodied controls in response to moderate increases in MAP, while dynamic CA may be impaired in cervical SCI because of disturbed sympathetic control.
Collapse
|
25
|
Wecht JM, Bauman WA. Implication of altered autonomic control for orthostatic tolerance in SCI. Auton Neurosci 2018; 209:51-58. [DOI: 10.1016/j.autneu.2017.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
|
26
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani JP. Orthostatic Intolerance in Older Persons: Etiology and Countermeasures. Front Physiol 2017; 8:803. [PMID: 29163185 PMCID: PMC5677785 DOI: 10.3389/fphys.2017.00803] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Orthostatic challenge produced by upright posture may lead to syncope if the cardiovascular system is unable to maintain adequate brain perfusion. This review outlines orthostatic intolerance related to the aging process, long-term bedrest confinement, drugs, and disease. Aging-associated illness or injury due to falls often leads to hospitalization. Older patients spend up to 83% of hospital admission lying in bed and thus the consequences of bedrest confinement such as physiological deconditioning, functional decline, and orthostatic intolerance represent a central challenge in the care of the vulnerable older population. This review examines current scientific knowledge regarding orthostatic intolerance and how it comes about and provides a framework for understanding of (patho-) physiological concepts of cardiovascular (in-) stability in ambulatory and bedrest confined senior citizens as well as in individuals with disease conditions [e.g., orthostatic intolerance in patients with diabetes mellitus, multiple sclerosis, Parkinson's, spinal cord injury (SCI)] or those on multiple medications (polypharmacy). Understanding these aspects, along with cardio-postural interactions, is particularly important as blood pressure destabilization leading to orthostatic intolerance affects 3-4% of the general population, and in 4 out of 10 cases the exact cause remains elusive. Reviewed also are countermeasures to orthostatic intolerance such as exercise, water drinking, mental arithmetic, cognitive training, and respiration training in SCI patients. We speculate that optimally applied countermeasures such as mental challenge maintain sympathetic activity, and improve venous return, stroke volume, and consequently, blood pressure during upright standing. Finally, this paper emphasizes the importance of an active life style in old age and why early re-mobilization following bedrest confinement or bedrest is crucial in preventing orthostatic intolerance, falls and falls-related injuries in older persons.
Collapse
Affiliation(s)
- Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
27
|
Affiliation(s)
- J Andrew Taylor
- Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02134, United States; Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA 02138, United States.
| |
Collapse
|
28
|
Inskip JA, Ravensbergen H(RJC, Sahota IS, Zawadzki C, McPhail LT, Borisoff JF, Claydon VE. Dynamic wheelchair seating positions impact cardiovascular function after spinal cord injury. PLoS One 2017; 12:e0180195. [PMID: 28666000 PMCID: PMC5493360 DOI: 10.1371/journal.pone.0180195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Innovative wheelchairs allow individuals to change position easily for comfort and social situations. While these wheelchairs are beneficial in multiple ways, the effects of position changes on blood pressure might exacerbate hypotension and cerebral hypoperfusion, particularly in those with spinal cord injury (SCI) who can have injury to autonomic nerves that regulate cardiovascular control. Conversely, cardiovascular benefits may be obtained with lowered seating. Here we investigate the effect of moderate changes in wheelchair position on orthostatic cardiovascular and cerebrovascular reflex control. METHODS Nineteen individuals with SCI and ten neurologically-intact controls were tested in supine and seated positions (neutral, lowered, and elevated) in the Elevation™ wheelchair. Participants with SCI were stratified into two groups by the severity of injury to cardiovascular autonomic pathways. Beat-to-beat blood pressure, heart rate and middle cerebral artery blood flow velocity (MCAv) were recorded non-invasively. RESULTS Supine blood pressure and MCAv were reduced in individuals with lesions to autonomic pathways, and declined further with standard seating compared to those with preserved autonomic control. Movement to the elevated position triggered pronounced blood pressure and MCAv falls in those with autonomic lesions, with minimum values significantly reduced compared to the seated and lowered positions. The cumulative duration spent below supine blood pressure was greatest in this group. Lowered seating bolstered blood pressure in those with lesions to autonomic pathways. CONCLUSIONS Integrity of the autonomic nervous system is an important variable that affects cardiovascular responses to orthostatic stress and should be considered when individuals with SCI or autonomic dysfunction are selecting wheelchairs. SPONSORSHIP This work was supported in part by the Heart and Stroke Foundation of British Columbia and the Yukon (V.E.C).
Collapse
Affiliation(s)
- Jessica A. Inskip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Henrike (Rianne) J. C. Ravensbergen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Inderjeet S. Sahota
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine Zawadzki
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lowell T. McPhail
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Jaimie F. Borisoff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Institute of Technology (BCIT), Burnaby, British Columbia, Canada
| | - Victoria E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Alterations in autonomic cerebrovascular control after spinal cord injury. Auton Neurosci 2017; 209:43-50. [PMID: 28416148 PMCID: PMC6432623 DOI: 10.1016/j.autneu.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
Among chronic cardiovascular and metabolic sequelae of spinal cord injury (SCI) is an up-to four-fold increase in the risk of ischemic and hemorrhagic stroke, suggesting that individuals with SCI cannot maintain stable cerebral perfusion. In able-bodied individuals, the cerebral vasculature is able to regulate cerebral perfusion in response to swings in arterial pressure (cerebral autoregulation), blood gases (cerebral vasoreactivity), and neural metabolic demand (neurovascular coupling). This ability depends, at least partly, on intact autonomic function, but high thoracic and cervical spinal cord injuries result in disruption of sympathetic and parasympathetic cerebrovascular control. In addition, alterations in autonomic and/or vascular function secondary to paralysis and physical inactivity can impact cerebrovascular function independent of the disruption of autonomic control due to injury. Thus, it is conceivable that SCI results in cerebrovascular dysfunction that may underlie an elevated risk of stroke in this population, and that rehabilitation strategies targeting this dysfunction may alleviate the long-term risk of adverse cerebrovascular events. However, despite this potential direct link between SCI and the risk of stroke, studies exploring this relationship are surprisingly scarce, and the few available studies provide equivocal results. The focus of this review is to provide an integrated overview of the available data on alterations in cerebral vascular function after SCI in humans, and to provide suggestions for future research.
Collapse
|
30
|
Bauman WA, Wecht JM, Biering-Sørensen F. International spinal cord injury endocrine and metabolic extended data set. Spinal Cord 2017; 55:466-477. [DOI: 10.1038/sc.2016.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/21/2016] [Indexed: 01/27/2023]
|
31
|
Wecht JM, Weir JP, Bauman WA. Inter-day reliability of blood pressure and cerebral blood flow velocities in persons with spinal cord injury and intact controls. J Spinal Cord Med 2017; 40:159-169. [PMID: 26860937 PMCID: PMC5430472 DOI: 10.1080/10790268.2015.1135556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Due to interruption of cardiovascular autonomic control unstable blood pressure (BP) is common in individuals with spinal cord injury (SCI) above the sixth thoracic vertebral level. The impact of unstable BP on cerebral blood flow (CBF) is not well appreciated, but symptoms associated with altered cerebral perfusion are reported, which can negatively impact daily life activities. METHODS We measured seated BP and CBF in participants with SCI and able-bodied (AB) controls on three laboratory visits to determine the inter-day reliability (intraclass correlation coefficient: ICC). BP was assessed at the finger using photoplethysmography and at the brachial artery with manual sphygmomanometry. CBF velocities (CBFv) were assessed at the middle cerebral artery using transcranial Doppler (TCD) ultrasound. RESULTS Data were collected in 15 participants with chronic SCI (C3-T4) and 10 AB controls, the groups did not differ for age, height, weight or BMI; however, brachial BP (P < 0.001), finger BP (P < 0.01) and CBFv (P < 0.05) were significantly lower in the SCI group compared to the controls. The inter-day ICC for brachial BP ranged from 0.51 to 0.79, whereas the ICC for finger BP was not as high (0.17 to 0.47). The inter-day ICC for CBFv ranged from 0.45 to 0.96, indicating fair to substantial reliability. CONCLUSIONS These data indicate good inter-day reliability of brachial BP and TCD recording of CBFv; however, the assessment of finger BP appears to be somewhat less reliable. In addition, these data confirm reduced resting CBFv in association with hypotension in individuals with SCI compared to matched controls with low BP.
Collapse
Affiliation(s)
- Jill M. Wecht
- VA RR&D Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, NY, USA,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA,Correspondence to: Jill M. Wecht, Center of Excellence: Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center; Room 1E-02, 130 West Kingsbridge Rd., Bronx, NY 10468, USA. E-mail:
| | - Joseph P. Weir
- Department of Health, Sport and Exercise Sciences, The University of Kansas, Lawrence, KS, USA
| | - William A. Bauman
- VA RR&D Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, NY, USA,The Medical Service, James J. Peters VAMC, Bronx, NY, USA,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Wecht JM, Weir JP, Radulovic M, Bauman WA. Effects of midodrine and L-NAME on systemic and cerebral hemodynamics during cognitive activation in spinal cord injury and intact controls. Physiol Rep 2016; 4:4/3/e12683. [PMID: 26869679 PMCID: PMC4758920 DOI: 10.14814/phy2.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously showed that increases in mean arterial pressure (MAP) following administration of midodrine hydrochloride (MH) and nitro‐L‐arginine methyl ester (L‐NAME) resulted in increased mean cerebral blood flow velocity (MFV) during head‐up tilt in hypotensive individuals with spinal cord injury (SCI) and question if this same association was evident during cognitive activation. Herein, we report MAP and MFV during two serial subtraction tasks (SSt) given before (predrug) and after (postdrug) administration of MH; (10 mg), L‐NAME (1 mg/kg) or no drug (ND) in 15 subjects with SCI compared to nine able‐bodied (AB) controls. Three‐way factorial analysis of variance (ANOVA) models were used to determine significant main and interaction effects for group (SCI, AB), visit (MH, L‐NAME, ND), and time (predrug, postdrug) for MAP and MFV during the two SSt. The three‐way interaction was significant for MAP (F = 4.262; P = 0.020); both MH (30 ± 26 mmHg; P < 0.05) and L‐NAME (27 ± 22 mmHg; P < 0.01) significantly increased MAP in the SCI group, but not in the AB group. There was a significant visit by time interaction for MFV suggesting an increase from predrug to postdrug following L‐NAME (6 ± 8 cm/sec; P < 0.05) and MH (4 ± 7 cm/sec; P < 0.05), regardless of study group, with little change following ND (3 ± 3 cm/sec). The relationship between change in MAP and MFV was significant in the SCI group following administration of MH (r2 = 0.38; P < 0.05) and L‐NAME (r2 = 0.32; P < 0.05). These antihypotensive agents, at the doses tested, raised MAP, which was associated with an increase MFV during cognitive activation in hypotensive subjects with SCI.
Collapse
Affiliation(s)
- Jill M Wecht
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, New York The Medical Service, James J. Peters VAMC, Bronx New York Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, The University of Kansas, Lawrence, Kansas
| | - Miroslav Radulovic
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, New York The Medical Service, James J. Peters VAMC, Bronx New York Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, New York The Medical Service, James J. Peters VAMC, Bronx New York Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
West CR, Krassioukov AV. Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury. Disabil Rehabil 2016; 39:127-134. [DOI: 10.3109/09638288.2015.1118161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Christopher R. West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
- G. F. Strong Rehab Centre, Vancouver, BC, Canada
| |
Collapse
|
34
|
|
35
|
Boosting in Elite Athletes with Spinal Cord Injury: A Critical Review of Physiology and Testing Procedures. Sports Med 2015; 45:1133-42. [DOI: 10.1007/s40279-015-0340-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
West CR, Gee CM, Voss C, Hubli M, Currie KD, Schmid J, Krassioukov AV. Cardiovascular control, autonomic function, and elite endurance performance in spinal cord injury. Scand J Med Sci Sports 2014; 25:476-85. [DOI: 10.1111/sms.12308] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Affiliation(s)
- C. R. West
- International Collaboration on Repair Discoveries (ICORD); Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - C. M. Gee
- International Collaboration on Repair Discoveries (ICORD); Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - C. Voss
- Centre for Hip Health and Mobility; Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - M. Hubli
- International Collaboration on Repair Discoveries (ICORD); Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - K. D. Currie
- International Collaboration on Repair Discoveries (ICORD); Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - J. Schmid
- Paracycling Classification; International Cycling Union; Aigle Switzerland
| | - A. V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD); Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
- Division of Physical Medicine and Rehabilitation; Faculty of Medicine; University of British Columbia; Vancouver British Columbia Canada
- GF Strong Rehabilitation Centre; Vancouver Health Authority; Vancouver British Columbia Canada
| |
Collapse
|
37
|
Berger MJ, Hubli M, Krassioukov AV. Sympathetic skin responses and autonomic dysfunction in spinal cord injury. J Neurotrauma 2014; 31:1531-9. [PMID: 24874269 DOI: 10.1089/neu.2014.3373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sympathetic skin responses (SSRs), a measure of sympathetic cholinergic sudomotor function, have been used in the assessment of autonomic dysfunction in patients with spinal cord injury (SCI). This review highlights the basic mechanisms underlying SSRs as well as their application to the SCI population. We address the utility of SSRs in assessing autonomic function, the relationship between autonomic and sensorimotor impairment, and the association between SSRs and the sequelae of autonomic dysfunction in SCI, particularly autonomic dysreflexia and orthostatic hypotension. Overall, SSRs are a rapid, convenient and non-invasive method illustrating that the severity of autonomic impairment can be independent from sensorimotor impairment. We suggest that SSRs be used in conjunction with other validated autonomic tests in order to predict or document autonomic dysfunction in SCI.
Collapse
Affiliation(s)
- Michael J Berger
- 1 Division of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver
| | | | | |
Collapse
|
38
|
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DER. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J Appl Physiol (1985) 2014; 116:645-53. [PMID: 24436297 DOI: 10.1152/japplphysiol.01090.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Individuals with spinal cord injury (SCI) above the T6 spinal segment suffer from orthostatic intolerance. How cerebral blood flow (CBF) responds to orthostatic challenges in SCI is poorly understood. Furthermore, it is unclear how interventions meant to improve orthostatic tolerance in SCI influence CBF. This study aimed to examine 1) the acute regional CBF responses to rapid changes in blood pressure (BP) during orthostatic stress in individuals with SCI and able-bodied (AB) individuals; and 2) the effect of midodrine (alpha1-agonist) on orthostatic tolerance and CBF regulation in SCI. Ten individuals with SCI >T6, and 10 age- and sex-matched AB controls had beat-by-beat BP and middle and posterior cerebral artery blood velocity (MCAv, PCAv, respectively) recorded during a progressive tilt-test to quantify the acute CBF response and orthostatic tolerance. Dynamic MCAv and PCAv to BP relationships were evaluated continuously in the time domain and frequency domain (via transfer function analysis). The SCI group was tested again after administration of 10 mg midodrine to elevate BP. Coherence (i.e., linearity) was elevated in SCI between BP-MCAv and BP-PCAv by 35% and 22%, respectively, compared with AB, whereas SCI BP-PCAv gain (i.e., magnitudinal relationship) was reduced 30% compared with AB (all P < 0.05). The acute (i.e., 0-30 s after tilt) MCAv and PCAv responses were similar between groups. In individuals with SCI, midodrine led to improved PCAv responses 30-60 s following tilt (10 ± 3% vs. 4 ± 2% decline; P < 0.05), and a 59% improvement in orthostatic tolerance (P < 0.01). The vertebrobasilar region may be particularly susceptible to hypoperfusion in SCI, leading to increased orthostatic intolerance.
Collapse
Affiliation(s)
- Aaron A Phillips
- Cardiovascular Physiology and Rehabilitation Laboratory, Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
39
|
Shaw BH, Claydon VE. The relationship between orthostatic hypotension and falling in older adults. Clin Auton Res 2013; 24:3-13. [PMID: 24253897 DOI: 10.1007/s10286-013-0219-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/01/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Brett H Shaw
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | |
Collapse
|
40
|
West CR, Bellantoni A, Krassioukov AV. Cardiovascular function in individuals with incomplete spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil 2013; 19:267-78. [PMID: 24244092 DOI: 10.1310/sci1904-267] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is a clear relationship between the neurological level of spinal cord injury (SCI) and cardiovascular function; however, the relationship between completeness of injury and cardiovascular function is less straightforward. Traditionally completeness of injury has referred to neurological (motor/sensory) completeness. Recently, a number of studies have started to investigate autonomic completeness of injury. OBJECTIVE To investigate the relationships between cardiovascular function and neurological and autonomic completeness of injury. METHODS A literature search was conducted in November 2012 through MEDLINE, Embase, and CINAHL. Twenty-one studies were included in this review. RESULTS In acute SCI, there is no clear consensus about whether resting heart rate (HR), blood pressure (BP), or prevalence of BP abnormalities differs between neurologically complete and incomplete SCI. In chronic SCI, there is limited evidence that there is less prevalence of autonomic dysreflexia and improved heart rate variability in response to provocation in neurologically incomplete SCI; however, resting HR and BP appear similar between neurologically complete and incomplete SCI. There is growing evidence that BP and HR at rest and during orthostasis is enhanced in autonomically incomplete SCI. Numerous studies report that neurological completeness does not agree with autonomic completeness of injury. CONCLUSIONS For acute SCI, there is no clear consensus whether cardiovascular function differs between complete and incomplete. For chronic SCI, the studies to date suggest that autonomic completeness of SCI is more strongly related to cardiovascular function than neurological completeness of injury. Thus, clinicians and scientists should account for autonomic completeness of injury when assessing cardiovascular function in SCI.
Collapse
Affiliation(s)
- Christopher R West
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | | | | |
Collapse
|
41
|
Ravensbergen HJCR, de Groot S, Post MWM, Slootman HJ, van der Woude LHV, Claydon VE. Cardiovascular function after spinal cord injury: prevalence and progression of dysfunction during inpatient rehabilitation and 5 years following discharge. Neurorehabil Neural Repair 2013; 28:219-29. [PMID: 24243916 DOI: 10.1177/1545968313504542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autonomic dysfunction after spinal cord injury (SCI) is an under-researched area when compared with motor and sensory dysfunction. Cardiovascular autonomic dysfunction is a particular concern, leading to impaired control of blood pressure and heart rate. OBJECTIVES (1) To determine the prevalence of hypotension in individuals with SCI during and after rehabilitation; (2) To investigate changes in cardiovascular variables during and after rehabilitation; (3) To evaluate the influence of personal and lesion characteristics on cardiovascular variables. METHODS Cardiovascular variables (resting systolic [SAP] and diastolic [DAP] arterial pressures and resting [HRrest] and peak heart rates [HRpeak]) were measured on 5 test occasions: start of inpatient rehabilitation, 3 months later, at discharge, and at 1 and 5 years after discharge. The time course and effects of personal and lesion characteristics on cardiovascular variables were studied using multilevel regression analyses. RESULTS The prevalence of hypotension was unchanged during rehabilitation and for 5 years after discharge. Odds for hypotension were highest in those with cervical and high thoracic lesions, younger individuals, and men. DAP increased during the 5 years after discharge. HRrest decreased during and after rehabilitation. SAP, DAP, HRrest, and HRpeak were lowest in those with cervical and high thoracic lesions. SAP and DAP increased with age; HRpeak decreased with age. CONCLUSIONS These longitudinal data provide normative values for blood pressure and heart rate changes with time after injury according to lesion and personal characteristics. These results can be used to guide clinical practice and place changes in cardiovascular function caused by interventions in perspective.
Collapse
|
42
|
Zhu C, Galea M, Livote E, Signor D, Wecht JM. A retrospective chart review of heart rate and blood pressure abnormalities in veterans with spinal cord injury. J Spinal Cord Med 2013; 36:463-75. [PMID: 23941794 PMCID: PMC3739896 DOI: 10.1179/2045772313y.0000000145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Autonomic impairment may lead to increased prevalence of heart rate (HR) and blood pressure (BP) abnormalities in veterans with spinal cord injury (SCI). In addition, comorbid medical conditions and prescription medication use may influence these abnormalities, including bradycardia, and tachycardia, hypotension, hypertension as well as autonomic dysreflexia (AD), and orthostatic hypotension (OH). DESIGN A retrospective review of clinical and administrative datasets in veterans with SCI and compared the prevalence rates between clinical values and ICD-9 diagnostic codes in individuals with tetraplegia (T: C1-C8), high paraplegia (HP: T1-T6), and low paraplegia (LP: T7 and below). RESULTS The prevalence of clinical values indicative of a HR ≥ 80 beats per minute was higher in the HP compared to the LP and T groups. A systolic BP (SBP) ≤ 110 mmHg was more common in the T compared to the HP and LP groups, whereas the prevalence of a SBP ≥ 140 mmHg was increased in the LP compared to the HP and T groups. Diagnosis of hypertension was 39-60% whereas the diagnosis of hypotension was less than 1%. Diagnosis of AD and OH was highest in the T group, but remained below 10%, regardless of categorical lesion level. Antihypertensive medications were commonly prescribed (55%), and patients on these medications were less likely to have high BP. The odds ratio of higher SBP and DBP increased with age and body mass index (BMI). CONCLUSION In veterans with SCI, the prevalence of HR and BP abnormalities varied depending on level of lesion, age, BMI, and prescription medication use.
Collapse
Affiliation(s)
- Carolyn Zhu
- Department of Geriatrics and Palliative Medicine, James J. Peters VAMC, Bronx, NY, USA
| | - Marinella Galea
- Medical Service, James J. Peters VAMC, Bronx, NY, USA; and Department of Rehabilitation Medicine, The Mount Sinai School of Medicine, NY, USA
| | - Elayne Livote
- Department of Geriatrics and Palliative Medicine, James J. Peters VAMC, Bronx, NY, USA
| | - Dan Signor
- Department of Geriatrics and Palliative Medicine, James J. Peters VAMC, Bronx, NY, USA
| | - Jill M. Wecht
- Medical Service, James J. Peters VAMC, Bronx, NY, USA; The Center of Excellence, James J. Peters VAMC, Bronx, NY, USA; Department of Medicine, The Mount Sinai School of Medicine, NY, USA; and Department of Rehabilitation Medicine, The Mount Sinai School of Medicine, NY, USA
| |
Collapse
|
43
|
Phillips AA, Ainslie PN, Krassioukov AV, Warburton DER. Regulation of cerebral blood flow after spinal cord injury. J Neurotrauma 2013; 30:1551-63. [PMID: 23758347 DOI: 10.1089/neu.2013.2972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Significant cardiovascular and autonomic dysfunction occurs after era spinal cord injury (SCI). Two major conditions arising from autonomic dysfunction are orthostatic hypotension and autonomic dysreflexia (i.e., severe acute hypertension). Effective regulation of cerebral blood flow (CBF) is essential to offset these drastic changes in cerebral perfusion pressure. In the context of orthostatic hypotension and autonomic dysreflexia, the purpose of this review is to critically examine the mechanisms underlying effective CBF after an SCI and propose future avenues for research. Although only 16 studies have examined CBF control in those with high-level SCI (above the sixth thoracic spinal segment), it appears that CBF regulation is markedly altered in this population. Cerebrovascular function comprises three major mechanisms: (1) cerebral autoregulation, (i.e., ΔCBF/Δ blood pressure); (2) cerebrovascular reactivity to changes in PaCO2 (i.e. ΔCBF/arterial gas concentration); and (3) neurovascular coupling (i.e., ΔCBF/Δ metabolic demand). While static cerebral autoregulation appears to be well maintained in high-level SCI, dynamic cerebral autoregulation, cerebrovascular reactivity, and neurovascular coupling appear to be markedly altered. Several adverse complications after high-level SCI may mediate the changes in CBF regulation including: systemic endothelial dysfunction, sleep apnea, dyslipidemia, decentralization of sympathetic control, and dominant parasympathetic activity. Future studies are needed to describe whether altered CBF responses after SCI aid or impede orthostatic tolerance. Further, simultaneous evaluation of extracranial and intracranial CBF, combined with modern structural and functional imaging, would allow for a more comprehensive evaluation of CBF regulatory processes. We are only beginning to understand the functional effects of dysfunctional CBF regulation on brain function on persons with SCI, which are likely to include increased risk of transient ischemic attacks, stroke, and cognitive dysfunction.
Collapse
Affiliation(s)
- Aaron A Phillips
- Cardiovascular Physiology and Rehabilitation Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
44
|
Shroff FM, Sahota IS. Holistic Health and People With Spinal Cord Injuries. HOME HEALTH CARE MANAGEMENT AND PRACTICE 2013. [DOI: 10.1177/1084822312472055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined the perspectives of rehabilitation professionals in British Columbia on the use of holistic practices (HP) by their clients with spinal cord injury (SCI). This was a qualitative descriptive study with 13 rehabilitation professionals.Results show that health care practitioners serving those with SCI noted interest in and use of HP between 75% and 90% among their client groups. Most rehabilitation professionals already work in an interdisciplinary fashion with HP practitioners. Some were skeptical about HP, others saw a great benefit to their clients and others still only pursued HP when asked about it by their clients. Conclusions are that health care professionals are willing to acquire more knowledge about HP to provide the best available care. Participants showed interest in incorporating other aspects of health care to aid rehabilitation.
Collapse
Affiliation(s)
- Farah M. Shroff
- University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
45
|
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex Function after Spinal Cord Injury. J Neurotrauma 2012; 29:2431-45. [DOI: 10.1089/neu.2012.2507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Aaron A. Phillips
- Cardiovascular Physiology and Rehabilitation Laboratory, Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, University of British Columbia, British Columbia, Canada
- International Collaboration of Repair Discoveries, University of British Columbia, British Columbia, Canada
| | - Andrei V. Krassioukov
- Experimental Medicine Program, Faculty of Medicine, University of British Columbia, British Columbia, Canada
- International Collaboration of Repair Discoveries, University of British Columbia, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, British Columbia, Canada
| | - Philip N. Ainslie
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Darren E.R. Warburton
- Cardiovascular Physiology and Rehabilitation Laboratory, Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, University of British Columbia, British Columbia, Canada
- International Collaboration of Repair Discoveries, University of British Columbia, British Columbia, Canada
| |
Collapse
|