1
|
Otzel DM, Nichols L, Conover CF, Marangi SA, Kura JR, Iannaccone DK, Clark DJ, Gregory CM, Sonntag CF, Wokhlu A, Ghayee HK, McPhaul MJ, Levy CE, Plumlee CA, Sammel RB, White KT, Yarrow JF. Musculoskeletal and body composition response to high-dose testosterone with finasteride after chronic incomplete spinal cord injury-a randomized, double-blind, and placebo-controlled pilot study. Front Neurol 2024; 15:1479264. [PMID: 39722695 PMCID: PMC11668665 DOI: 10.3389/fneur.2024.1479264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Background High-dose testosterone replacement therapy (TRT), paired with finasteride (type II 5α-reductase inhibitor), improves body composition, muscle strength, and bone mineral density (BMD) in older men, without inducing prostate enlargement-a side effect associated with TRT. Men with spinal cord injury (SCI) exhibit neuromuscular impairment, muscle atrophy, bone loss, and increased central adiposity, along with low testosterone. However, sparse evidence supports TRT efficacy after SCI. Methods This parallel-group, double-blind, placebo-controlled, and randomized clinical trial (RCT) is a pilot study that enrolled men (N = 12) with low to low-normal testosterone and gait impairments after chronic motor-incomplete SCI. Participants received high-dose intramuscular TRT (testosterone-enanthate, 125 mg/week) with finasteride (5 mg/day) vs. vehicle+placebo for 12 months. Change relative to baseline was determined for body composition, musculoskeletal outcomes, and prostate size, with effect sizes calculated between groups using Hedges' g. Adverse events and feasibility were assessed. Results TRT + finasteride consistently increased testosterone (g = 1.16-3.08) and estradiol (g = 0.43-3.48), while concomitantly reducing dihydrotestosterone (g = 0.31-2.27). Very large effect sizes at both 6 and 12 months suggest TRT + finasteride increased whole-body fat-free (lean) mass (+3-4% vs. baseline, g = 2.12-2.14) and knee extensor (KE) whole-muscle cross-sectional area (+8-11% vs. baseline, g = 2.06-2.53) more than vehicle+placebo. Moderate-to-large effect sizes suggest TRT + finasteride increased KE maximal voluntary isometric torque (+15-40% vs. baseline, g = 0.47-1.01) and femoral neck and distal femur BMD from 6 months onward (g = 0.51-1.13), compared with vehicle+placebo, and reduced fat mass 9-14% within the whole-body, trunk, and android (visceral) regions at 12 months (g = 0.77-1.27). TRT + finasteride also produced small effect sizes favoring lesser prostate growth than vehicle+placebo (g = 0.31-0.43). The participant retention, drug compliance, and incidence and severity of adverse events were similar among the groups. Conclusion These data provide proof-of-concept and rationale for larger RCTs aimed at discerning the impact of TRT + finasteride on body composition, musculoskeletal health, and physical function in men with SCI, along with effect sizes and variance of responses to assist in planning subsequent trials. Clinical trial registration ClinicalTrials.gov, identifier NCT02248701.
Collapse
Affiliation(s)
- Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Department of Physiology & Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Larissa Nichols
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Christine F. Conover
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Stephen A. Marangi
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Jayachandra R. Kura
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Dominic K. Iannaccone
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - David J. Clark
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Chris M. Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher F. Sonntag
- Diagnostic Imaging Service – Radiology, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Anita Wokhlu
- Medical Specialties Service – Cardiology, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hans K. Ghayee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael J. McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Charles E. Levy
- Physical Medicine and Rehabilitation Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Charles A. Plumlee
- Physical Medicine and Rehabilitation Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Spinal Cord Injury Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Robert B. Sammel
- Spinal Cord Injury Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Geriatrics and Extended Care, South Texas Veterans Health Care System, Kerrville, TX, United States
| | - Kevin T. White
- Michael Bilirakis VA Spinal Cord Injury/Disorders Center, James A. Haley Department of Veterans Affairs Medical Center, Tampa, FL, United States
| | - Joshua F. Yarrow
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- Eastern Colorado Geriatrics Research, Education, and Clinical Center, Rocky Mountain Regional Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, United States
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Wanionok NE, Molinuevo MS, Fernández JM, Lucas B, Cortizo AM, Castillo EJ, Jiron JM, Claudia S, Leon S, Aguirre JI, McCarthy AD. Skeletal Effects of a Prolonged Oral Metformin Treatment in Adult Wistar Rats. Exp Clin Endocrinol Diabetes 2024; 132:547-556. [PMID: 38740375 DOI: 10.1055/a-2324-8661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION We previously showed that a 3-week oral metformin (MET) treatment enhances the osteogenic potential of bone marrow stromal cells (BMSCs) and improves several bone histomorphometric parameters in Wistar rats with metabolic syndrome (MetS). However, the skeletal effects of extended periods of MET need to be completely elucidated. Hence, in this study, the impact of a prolonged (3-month) MET treatment was investigated on bone architecture, histomorphometric and biomechanics variables, and osteogenic potential of BMSCs in Wistar rats with or without MetS. MATERIALS AND METHODS Young male Wistar rats (n=36) were randomized into four groups (n=9) that received either 20% fructose (F), MET (MET), F plus MET treatments (FMET), or drinking water alone (Veh). Rats were euthanized, blood was collected, and bones were dissected and processed for peripheral quantitative computed tomography (pQCT) analysis, static and dynamic histomorphometry, and bone biomechanics. In addition, BMSCs were isolated to determine their osteogenic potential. RESULTS MET affected trabecular and cortical bone, altering bone architecture and biomechanics. Furthermore, MET increased the pro-resorptive profile of BMSCs. In addition, fructose-induced MetS practically did not affect the the structural or mechanical variables of the skeleton. CONCLUSION A 3-month treatment with MET (with or without MetS) affects bone architecture and biomechanical variables in Wistar rats.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - María S Molinuevo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Juan M Fernández
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Besada Lucas
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Ana M Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Evelyn J Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Sedlinsky Claudia
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Schurman Leon
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - José I Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Antonio D McCarthy
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
3
|
Deitrich JN, Gorgey AS. Bodyweight influences the relationship between serum testosterone and bone mineral density in men with spinal cord injury. Spinal Cord 2024; 62:555-561. [PMID: 39080393 DOI: 10.1038/s41393-024-01022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/06/2024]
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVE To examine the association between serum testosterone levels (T levels) and bone mineral density after spinal cord injury (SCI). SETTING Medical research center. METHODS Body composition assessments were measured in 53 men with chronic SCI. Serum T levels were measured after an overnight fast. Total and regional bone mineral density (BMD) and bone mineral content (BMC) were measured using dual-energy X-ray absorptiometry. Participants were classified into three groups based on their body weight [<65 kg, 65-80 kg, >80 kg] or serum T levels into low (400 ng/dl), mid-normal (401-544 ng/dl) and normal (>545 ng/dl) ranges. RESULTS Serum T level was negatively related to body weight (r = -0.33, P = 0.016), fat mass (r = -0.46, P < 0.001) and percentage fat mass (r = -0.48, P < 0.001). There were no significant relationships between serum T levels and any of the bone health measurements. Body weight was related to total, regional (P < 0.01 for both) and knee BMD (P < 0.05). T level was only related to total and regional BMD in the group with body weight of 65-80 kg. CONCLUSION Testosterone has no direct relationship with BMD except within a specific weight group. However, body weight or fat mass negatively influences circulating T levels in men with SCI. The relationship between serum T levels and BMD is mediated by body weight in men with SCI.
Collapse
Affiliation(s)
- Jakob N Deitrich
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Richmond, VA, USA.
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, Moralí de la Brena G, Guerra-Araiza C. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024; 12:1478. [PMID: 39062051 PMCID: PMC11274729 DOI: 10.3390/biomedicines12071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The primary mechanism of traumatic spinal cord injury (SCI) comprises the initial mechanical trauma due to the transmission of energy to the spinal cord, subsequent deformity, and persistent compression. The secondary mechanism of injury, which involves structures that remained undamaged after the initial trauma, triggers alterations in microvascular perfusion, the liberation of free radicals and neurotransmitters, lipid peroxidation, alteration in ionic concentrations, and the consequent cell death by necrosis and apoptosis. Research in the treatment of SCI has sought to develop early therapeutic interventions that mitigate the effects of these pathophysiological mechanisms. Clinical and experimental evidence has demonstrated the therapeutic benefits of sex-steroid hormone administration after traumatic brain injury and SCI. The administration of estradiol, progesterone, and testosterone has been associated with neuroprotective effects, better neurological recovery, and decreased mortality after SCI. This review evaluated evidence supporting hormone-related neuroprotection over SCI and the possible underlying mechanisms in animal models. As neuroprotection has been associated with signaling pathways, the effects of these hormones are observed on astrocytes and microglia, modulating the inflammatory response, cerebral blood flow, and metabolism, mediating glutamate excitotoxicity, and their antioxidant effects. Based on the current evidence, it is essential to analyze the benefit of sex steroid hormone therapy in the clinical management of patients with SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Carlos Orozco-Barrios
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Gabriela Moralí de la Brena
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
5
|
Barok R, Grittner JML, Miller S, Dougherty BJ. Sex hormone supplementation improves breathing and restores respiratory neuroplasticity following C2 hemisection in rats. Front Physiol 2024; 15:1390777. [PMID: 38803364 PMCID: PMC11128654 DOI: 10.3389/fphys.2024.1390777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
In addition to loss of sensory and motor function below the level of the lesion, traumatic spinal cord injury (SCI) may reduce circulating steroid hormones that are necessary for maintaining normal physiological function for extended time periods. For men, who comprise nearly 80% of new SCI cases each year, testosterone is the most abundant circulating sex steroid. SCI often results in significantly reduced testosterone production and may result in chronic low testosterone levels. Testosterone plays a role in respiratory function and the expression of respiratory neuroplasticity. When testosterone levels are low, young adult male rats are unable to express phrenic long-term facilitation (pLTF), an inducible form of respiratory neuroplasticity invoked by acute, intermittent hypoxia (AIH). However, testosterone replacement can restore this respiratory neuroplasticity. Complicating the interpretation of this finding is that testosterone may exert its influence in three possible ways: 1) directly through androgen receptor (AR) activation, 2) through conversion to dihydrotestosterone (DHT) by way of the enzyme 5α-reductase, or 3) through conversion to 17β-estradiol (E2) by way of the enzyme aromatase. DHT signals via AR activation similar to testosterone, but with higher affinity, while E2 activates local estrogen receptors. Evidence to date supports the idea that exogenous testosterone supplementation exerts its influence through estrogen receptor signaling under conditions of low circulating testosterone. Here we explored both recovery of breathing function (measured with whole body barometric plethysmography) and the expression of AIH-induced pLTF in male rats following C2-hemisection SCI. One week post injury, rats were supplemented with either E2 or DHT for 7 days. We hypothesized that E2 would enhance ventilation and reveal pLTF following AIH in SCI rats. To our surprise, though E2 did beneficially impact overall breathing recovery following C2-hemisection, both E2 supplementation and DHT restored the expression of AIH-induced pLTF 2 weeks post-SCI.
Collapse
Affiliation(s)
- Rebecca Barok
- Rehabilitation Science Graduate Program, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jessica M. L. Grittner
- Rehabilitation Science Graduate Program, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shawn Miller
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brendan J. Dougherty
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
6
|
Castillo EJ, Jiron JM, Croft CS, Freehill DG, Castillo CM, Kura J, Yarrow JF, Bhattacharyya I, Kimmel DB, Aguirre JI. Intermittent parathyroid hormone enhances the healing of medication-related osteonecrosis of the jaw lesions in rice rats. Front Med (Lausanne) 2023; 10:1179350. [PMID: 37404809 PMCID: PMC10315582 DOI: 10.3389/fmed.2023.1179350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event in patients treated with antiresorptives. Management of MRONJ is challenging, and no non-antibiotic, established medical treatment exists. Intermittent parathyroid hormone (iPTH) has been used off-label to treat MRONJ with favorable results. However, its medical efficacy has rarely been substantiated in clinical or preclinical experiments. Using a validated rice rat, infection-based model of MRONJ, we evaluated the effects of iPTH on established MRONJ. We hypothesize that iPTH contributes to MRONJ resolution by enhancing alveolar bone turnover and healing oral soft tissues. Eighty-four rice rats began a standard rodent chow diet at age 4 weeks to induce localized periodontitis. Rats were simultaneously randomized to receive saline (vehicle, VEH) or zoledronic acid (ZOL, 80 μg/kg IV) every 4 weeks. Oral exams were conducted bi-weekly to assign a gross quadrant grade (GQG, 0-4) to evaluate any lesion at the lingual aspect of the interdental space between maxillary molar (M2) and M3. 14 of 20 VEH-treated rice rats (70%) developed maxillary localized periodontitis with GQG 2-3 after 30 ± 10 weeks of saline. Additionally, 40 of 64 ZOL-treated rice rats with periodontitis developed MRONJ-like lesions after 30 ± 10 weeks of ZOL treatment. Rice rats with localized periodontitis or MRONJ-like lesions were treated with saline or iPTH (40 μg/kg) subcutaneously (SC) 3 times/week For 6 weeks until euthanasia. We found that iPTH -treated ZOL rats had a lower prevalence of MRONJ (p < 0.001), with lower severity extent of oral lesions (p = 0.003) and percentage of empty osteocyte lacunae (p < 0.001). ZOL rats treated with iPTH displayed a higher osteoblast surface (p < 0.001), more osteoblasts (p < 0.001), higher osteoclast surface (p < 0.001) and more osteoclasts (p = 0.002) at alveolar bone surfaces than ZOL/VEH rats. Greater gingival epithelial thickness and epithelial cell proliferation rate was found in the oral mucosa and gingiva of ZOL/PTH rats than in ZOL/VEH rats (p < 0.001). Our data suggest that iPTH is an efficacious non-operative medicinal therapy that accelerates oral healing and enhances the resolution of MRONJ lesions in ZOL-treated rice rats.
Collapse
Affiliation(s)
- E. J. Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - J. M. Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C. S. Croft
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - D. G. Freehill
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C. M. Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - J. Kura
- VA Medical Center, Research Service, Gainesville, FL, United States
| | - J. F. Yarrow
- VA Medical Center, Research Service, Gainesville, FL, United States
| | - I. Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - D. B. Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - J. Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Testa EJ, Albright JA, Hartnett D, Lemme NJ, Daniels AH, Owens BD, Arcand M. The Relationship Between Testosterone Therapy and Rotator Cuff Tears, Repairs, and Revision Repairs. J Am Acad Orthop Surg 2023; 31:581-588. [PMID: 36745691 DOI: 10.5435/jaaos-d-22-00554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The purpose of this study was to evaluate rates of rotator cuff tears (RCTs), repairs (RCRs), and revision RCR in patients who were prescribed testosterone replacement therapy (TRT) and compare these patients with a control group. METHODS The PearlDiver database was queried for patients who were prescribed testosterone for at least 90 days between 2011 and 2018 to evaluate the incidence of RCTs in this population. A second analysis evaluated patients who sustained RCTs using International Classification of Diseases, 9th/10th codes to evaluate these patients for rates of RCR and revision RCR. Chi square analysis and multivariate regression analyses were used to compare rates of RCTs, RCR, and subsequent or revision RCR between the testosterone and control groups, with a P -value of 0.05 representing statistical significance. RESULTS A total of 673,862 patients with RCT were included for analysis, and 9,168 of these patients were prescribed testosterone for at least 90 days before their RCT. The TRT group had a 3.6 times greater risk of sustaining an RCT (1.14% versus 0.19%; adjusted odds ratio (OR) 3.57; 95% confidence interval (CI) 3.57 to 3.96). A 1.6 times greater rate of RCR was observed in the TRT cohort (TRT, 46.4% RCR rate and control, 34.0% RCR rate; adjusted OR 1.60; 95% CI 1.54 to 1.67). The TRT cohort had a 26.7 times greater risk of undergoing a subsequent RCR, irrespective of laterality, within 1 year of undergoing a primary RCR when compared with the control group (TRT, 47.1% and control, 4.0%; adjusted OR 26.4; 95% CI 25.0 to 27.9, P < 0.001). CONCLUSIONS There is increased risk of RCTs, RCRs, and subsequent RCRs in patients prescribed testosterone. This finding may represent a musculoskeletal consequence of TRT and is important for patients and clinicians to understand. Additional research into the science of tendon injury in the setting of exogenous anabolic steroids remains of interest. LEVEL OF EVIDENCE Level Ⅲ, retrospective cohort study.
Collapse
Affiliation(s)
- Edward J Testa
- From the Department of Orthopaedic Surgery, Brown University, Warren Alpert School of Medicine, Providence, RI
| | | | | | | | | | | | | |
Collapse
|
8
|
YARROW JOSHUAF, WNEK RUSSELLD, CONOVER CHRISTINEF, REYNOLDS MICHAELC, BUCKLEY KINLEYH, KURA JAYACHANDRAR, SUTOR TOMMYW, OTZEL DANAM, MATTINGLY ALEXJ, BORST STEPHENE, CROFT SUMMERM, AGUIRRE JIGNACIO, BECK DARRENT, MCCULLOUGH DANIELLEJ. Passive Cycle Training Promotes Bone Recovery after Spinal Cord Injury without Altering Resting-State Bone Perfusion. Med Sci Sports Exerc 2023; 55:813-823. [PMID: 36728986 PMCID: PMC10090357 DOI: 10.1249/mss.0000000000003101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.
Collapse
Affiliation(s)
- JOSHUA F. YARROW
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL
| | - RUSSELL D. WNEK
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - CHRISTINE F. CONOVER
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - MICHAEL C. REYNOLDS
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - KINLEY H. BUCKLEY
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - JAYACHANDRA R. KURA
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - TOMMY W. SUTOR
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - DANA M. OTZEL
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - ALEX J. MATTINGLY
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - STEPHEN E. BORST
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - SUMMER M. CROFT
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL
| | - J. IGNACIO AGUIRRE
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL
| | - DARREN T. BECK
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL
| | - DANIELLE J. MCCULLOUGH
- Department of Medical Education, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL
| |
Collapse
|
9
|
Liao T, Ke XW, Wang YT. Wheelchair Tai Chi Ball Exercise for Improving Neuromuscular Functions of Older Adults With Disability. Front Aging Neurosci 2022; 14:935986. [PMID: 35928991 PMCID: PMC9344890 DOI: 10.3389/fnagi.2022.935986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The purposes of this perspective article were to summarize Wheelchair or Seated Tai Chi studies related to neuromuscular functions of older adults with disability; to describe the development of Wheelchair Tai Chi Ball (WTCB) exercise — a concept to combine mind-body exercise with strength training; and to propose a new Telehealth WTCB exercise for improving neuromuscular functions of old adults with spinal cord injury (SCI) and disability. With reference to neuromuscular functions, WTC intervention may have positive effects on simple reaction time, range of motion at the shoulder and trunk, static and dynamic sitting balance, handgrip strength, vagal activity, and sympathetic activity among older adults with disability. The developed WTCB intervention is a feasible and safe exercise which combines the mind-body exercise and strength conditioning into one exercise which possesses aerobic, stretching and strength trainings and may facilitate neuromuscular functions of older adults with disability. The proposed Telehealth WTCB 12 forms (TWTCB12) exercise with a “Moving Shadow” method in the telehealth may enable the learner to superimpose learner’s image on an expert’s demonstrating model to enhance the learning and practice effects. Since wheelchair users will learn and practice TWTCB12 movements in a seated position or sitting on a wheelchair the “Moving shadow” method on Zoom would provide an ideal telehealth learning and practice environment for the wheelchair users to learn and practice TWTCB12 exercise from home more feasible and user friendly.
Collapse
Affiliation(s)
- Ting Liao
- Aquatic Therapy and Fitness Research Center, Wuhan Sports University, Wuhan, China
| | - Xiong-Wen Ke
- Department of Marital Art, Wuhan Sports University, Wuhan, China
- Department of Medical Sciences, Health and Management, Rochester Institute of Technology, Rochester, NY, United States
| | - Yong Tai Wang
- Department of Medical Sciences, Health and Management, Rochester Institute of Technology, Rochester, NY, United States
- *Correspondence: Yong Tai Wang,
| |
Collapse
|
10
|
Sutor TW, Kura J, Mattingly AJ, Otzel DM, Yarrow JF. The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury. Int J Mol Sci 2022; 23:608. [PMID: 35054791 PMCID: PMC8775843 DOI: 10.3390/ijms23020608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/04/2023] Open
Abstract
Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.g., neuromuscular or functional electrical stimulation cycling, rowing, or resistance training, as well as other standing, walking, or partial weight-bearing interventions) that reload the paralyzed limbs and promote muscle recovery and use-dependent neuroplasticity. However, only sparse and relatively inconsistent evidence supports the ability of these physical rehabilitation regimens to influence bone metabolism or to increase bone mineral density (BMD) at the most fracture-prone sites in persons with severe SCI. This review discusses the pathophysiology and cellular/molecular mechanisms that influence bone loss after SCI, describes studies evaluating bone turnover and BMD responses to ABPTs during acute versus chronic SCI, identifies factors that may impact the bone responses to ABPT, and provides recommendations to optimize ABPTs for bone recovery.
Collapse
Affiliation(s)
- Tommy W. Sutor
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Jayachandra Kura
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
| | - Alex J. Mattingly
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Joshua F. Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Anabolic Androgenic Steroids in Orthopaedic Surgery: Current Concepts and Clinical Applications. J Am Acad Orthop Surg Glob Res Rev 2022; 6:01979360-202201000-00001. [PMID: 34982051 PMCID: PMC8735789 DOI: 10.5435/jaaosglobal-d-21-00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Despite the well-documented effects of testosterone and its synthetic derivatives—collectively termed anabolic androgenic steroids (AASs)—on the musculoskeletal system, the therapeutic use of these agents has received limited investigation within the field of orthopaedic surgery. In the last 2 decades, preclinical and clinical research has started to identify promising applications of the short-term use of AASs in the perioperative period. There is evidence to suggest that AASs may improve postoperative recovery after anterior cruciate ligament reconstruction and total joint arthroplasty. In addition, AASs may augment the biological healing environment in specific clinical scenarios including muscle injury, fracture repair, and rotator cuff repair. Current literature fails to present strong evidence for or against the use of AASs in orthopaedics, but there is continuous research on this topic. The purpose of this study was to provide a comprehensive overview of the current status of AAS applications in orthopaedic surgery, with an emphasis on preclinical data, clinical studies, and future directions.
Collapse
|
12
|
In vivo imaging in experimental spinal cord injury – Techniques and trends. BRAIN AND SPINE 2022; 2:100859. [PMID: 36248104 PMCID: PMC9560701 DOI: 10.1016/j.bas.2021.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Introduction Traumatic Spinal Cord Injury (SCI) is one of the leading causes of disability in the world. Treatment is limited to supportive care and no curative therapy exists. Experimental research to understand the complex pathophysiology and potential mediators of spinal cord regeneration is essential to develop innovative translational therapies. A multitude of experimental imaging methods to monitor spinal cord regeneration in vivo have developed over the last years. However, little literature exists to deal with advanced imaging methods specifically available in SCI research. Research Question This systematic literature review examines the current standards in experimental imaging in SCI allowing for in vivo imaging of spinal cord regeneration on a neuronal, vascular, and cellular basis. Material and Methods Articles were included meeting the following criteria: experimental research, original studies, rodent subjects, and intravital imaging. Reviewed in detail are microstructural and functional Magnetic Resonance Imaging, Micro-Computed Tomography, Laser Speckle Imaging, Very High Resolution Ultrasound, and in vivo microscopy techniques. Results Following the PRISMA guidelines for systematic reviews, 689 articles were identified for review, of which 492 were sorted out after screening and an additional 104 after detailed review. For qualitative synthesis 93 articles were included in this publication. Discussion and Conclusion With this study we give an up-to-date overview about modern experimental imaging techniques with the potential to advance the knowledge on spinal cord regeneration following SCI. A thorough knowledge of the strengths and limitations of the reviewed techniques will help to optimally exploit our current experimental armamentarium in the field. In vivo imaging is essential to enhance the understanding of SCI pathophysiology. Multiple experimental imaging methods have evolved over the past years. Detailed review of in vivo (f)MRI, μCT, VHRUS, and Microcopy in experimental SCI. Experimental imaging allows for longitudinal examination to the cellular level. Knowledge of the strengths and limitations is essential for future research.
Collapse
|
13
|
Yarrow JF, Wnek RD, Conover CF, Reynolds MC, Buckley KH, Kura JR, Sutor TW, Otzel DM, Mattingly AJ, Croft S, Aguirre JI, Borst SE, Beck DT, McCullough DJ. Bone loss after severe spinal cord injury coincides with reduced bone formation and precedes bone blood flow deficits. J Appl Physiol (1985) 2021; 131:1288-1299. [PMID: 34473574 DOI: 10.1152/japplphysiol.00444.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.
Collapse
Affiliation(s)
- Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, Florida
| | - Russell D Wnek
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Christine F Conover
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michael C Reynolds
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Kinley H Buckley
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jayachandra R Kura
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Tommy W Sutor
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Alex J Mattingly
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Summer Croft
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Stephen E Borst
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Darren T Beck
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| | - Danielle J McCullough
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| |
Collapse
|
14
|
Bauman WA. Pharmacological approaches for bone health in persons with spinal cord injury. Curr Opin Pharmacol 2021; 60:346-359. [PMID: 34534754 DOI: 10.1016/j.coph.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) results in rapid, marked skeletal deterioration below the level of neurological lesion. Ideally, the most effective therapeutic approach would prevent loss of bone mass and architecture shortly after paralysis. Bisphosphonates preserve bone mineral density at the hip but not at the knee, which is the anatomical site most prone to fracture in the SCI population. Denosumab has recently been reported to prevent bone loss in persons with acute SCI but should be continued for an as yet indeterminate time because discontinuation will result in rapid bone loss. Several other novel approaches to preserving bone at the time of acute SCI should be tested, as well as approaches to reverse bone loss in individuals with chronic SCI.
Collapse
Affiliation(s)
- William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Internal Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA; Departments of Medicine & Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Lai RE, Gorgey AS. Low-dose testosterone replacement therapy and electrically evoked resistance training enhance muscle quality after spinal cord injury. Neural Regen Res 2021; 16:1544-1545. [PMID: 33433474 PMCID: PMC8323675 DOI: 10.4103/1673-5374.303026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VI, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VI, USA
| |
Collapse
|
16
|
Holman ME, Chang G, Ghatas MP, Saha PK, Zhang X, Khan MR, Sima AP, Adler RA, Gorgey AS. Bone and non-contractile soft tissue changes following open kinetic chain resistance training and testosterone treatment in spinal cord injury: an exploratory study. Osteoporos Int 2021; 32:1321-1332. [PMID: 33443609 DOI: 10.1007/s00198-020-05778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
UNLABELLED Twenty men with spinal cord injury (SCI) were randomized into two 16-week intervention groups receiving testosterone treatment (TT) or TT combined with resistance training (TT + RT). TT + RT appears to hold the potential to reverse or slow down bone loss following SCI if provided over a longer period. INTRODUCTION Persons with SCI experience bone loss below the level of injury. The combined effects of resistance training and TT on bone quality following SCI remain unknown. METHODS Men with SCI were randomized into 16-week treatments receiving TT or TT + RT. Magnetic resonance imaging (MRI) of the right lower extremity before participation and post-intervention was used to visualize the proximal, middle, and distal femoral shaft, the quadriceps tendon, and the intermuscular fascia of the quadriceps. For the TT + RT group, MRI microarchitecture techniques were utilized to elucidate trabecular changes around the knee. Individual mixed models were used to estimate effect sizes. RESULTS Twenty participants completed the pilot trial. A small effect for yellow marrow in the distal femur was indicated as increases following TT and decreases following TT + RT were observed. Another small effect was observed as the TT + RT group displayed greater increases in intermuscular fascia length than the TT arm. Distal femur trabecular changes for the TT + RT group were generally small in effect (decreased trabecular thickness variability, spacing, and spacing variability; increased network area). Medium effects were generally observed in the proximal tibia (increased plate width, trabecular thickness, and network area; decreased trabecular spacing and spacing variability). CONCLUSIONS This pilot suggests longer TT + RT interventions may be a viable rehabilitation technique to combat bone loss following SCI. CLINICAL TRIAL REGISTRATION Registered with clinicaltrials.gov : NCT01652040 (07/27/2012).
Collapse
Affiliation(s)
- M E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - G Chang
- Department of Radiology, NYU School of Medicine, New York, NY, 10016, USA
| | - M P Ghatas
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - P K Saha
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - X Zhang
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - M R Khan
- Department of Radiology, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A P Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - R A Adler
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA.
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
17
|
Brent MB, Brüel A, Thomsen JS. A Systematic Review of Animal Models of Disuse-Induced Bone Loss. Calcif Tissue Int 2021; 108:561-575. [PMID: 33386477 DOI: 10.1007/s00223-020-00799-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Several different animal models are used to study disuse-induced bone loss. This systematic review aims to give a comprehensive overview of the animal models of disuse-induced bone loss and provide a detailed narrative synthesis of each unique animal model. METHODS PubMed and Embase were systematically searched for animal models of disuse from inception to November 30, 2019. In addition, Google Scholar and personal file archives were searched for relevant publications not indexed in PubMed or Embase. Two reviewers independently reviewed titles and abstracts for full-text inclusion. Data were extracted using a predefined extraction scheme to ensure standardization. RESULTS 1964 titles and abstracts were screened of which 653 full-text articles were included. The most common animal species used to model disuse were rats (59%) and mice (30%). Males (53%) where used in the majority of the studies and genetically modified animals accounted for 7%. Twelve different methods to induce disuse were identified. The most frequently used methods were hindlimb unloading (44%), neurectomy (15%), bandages and orthoses (15%), and botulinum toxin (9%). The median time of disuse was 21 days (quartiles: 14 days, 36 days) and the median number of animals per group subjected to disuse was 10 (quartiles: 7, 14). Random group allocation was reported in 43% of the studies. Fewer than 5% of the studies justified the number of animals per group by a sample size calculation to ensure adequate statistical power. CONCLUSION Multiple animal models of disuse-induced bone loss exist, and several species of animals have successfully been studied. The complexity of disuse-induced bone loss warrants rigid research study designs. This systematic review emphasized the need for standardization of animal disuse research and reporting.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
18
|
Castillo EJ, Messer JG, Abraham AM, Jiron JM, Alekseyenko AV, Israel R, Thomas S, Gonzalez-Perez GM, Croft S, Gohel A, Bhattacharyya I, Yarrow JF, Novince CM, Kimmel DB, Aguirre JI. Preventing or controlling periodontitis reduces the occurrence of osteonecrosis of the jaw (ONJ) in rice rats (Oryzomys palustris). Bone 2021; 145:115866. [PMID: 33515777 PMCID: PMC8265021 DOI: 10.1016/j.bone.2021.115866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/08/2021] [Accepted: 01/24/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Osteonecrosis of the jaw (ONJ) is an adverse event that requires association of both systemic risk factors, such as powerful anti-resorptives (pARs; e.g. zoledronic acid [ZOL]), and local oral risk factors (e.g. tooth extraction, periodontitis). Whereas optimal oral health prior to initiate pARs is recognized as critically important for minimizing ONJ risk, the efficacy of preventive/maintenance measures in patients who are taking pARs is understudied. Rice rats fed a standard diet (STD), rich in insoluble fiber, develop localized periodontitis. STD-rats with localized periodontitis treated with ZOL for 18-24 wk develop ONJ. Hence, we hypothesized that controlling/preventing localized periodontitis in the ZOL-treated rats, reduces ONJ occurrence. METHODS We used two approaches to attempt reducing periodontitis prevalence: 1) periodontal cleaning (PC); and 2) replacing the STD-diet with a nutritionally-equivalent diet high in soluble fiber (SF). 75 four-week-old male rats were weight-randomized into five groups (n = 15) in a 24-week experiment. Three groups ate the STD-diet and two the high SF-diet. STD-diet groups received intravenous (IV) vehicle (VEH) q4wks (STD + VEH), 80 μg/kg ZOL q4wks IV (STD + ZOL), or ZOL plus PC q2wks (STD + ZOL + PC). The SF-diet groups received VEH (SF + VEH) or ZOL (SF + ZOL). Jaws were processed for histopathology and evaluated for ONJ prevalence and tissue-level periodontitis. RESULTS 1) 40% of STD + VEH rats developed maxillary localized periodontitis with no ONJ; 2) 50% of STD + ZOL rats developed ONJ; 3) 7% of STD + ZOL + PC rats developed ONJ (p < 0.01 vs. STD + ZOL); and 4) one SF + ZOL rat developed localized periodontitis, and no SF + VEH or SF + ZOL rats developed ONJ (p < 0.001 vs. STD + ZOL). CONCLUSIONS 1) Periodontal cleaning in ZOL-treated rats decreases localized periodontitis severity and reduces ONJ prevalence; and 2) feeding a SF-diet to ZOL-treated rats reduces both incidence of localized periodontitis and ONJ. Our data indicates strong oral microbial community shifts according to oral health condition and trends in the shifts associated with diet.
Collapse
Affiliation(s)
- E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - J G Messer
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| | - A M Abraham
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| | - J M Jiron
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - A V Alekseyenko
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, SC, United States of America; Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America; Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States of America.
| | - R Israel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - S Thomas
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - G M Gonzalez-Perez
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - S Croft
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - A Gohel
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, UF, United States of America.
| | - I Bhattacharyya
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, UF, United States of America.
| | - J F Yarrow
- VA Medical Center, Research Service, Gainesville, FL, United States of America; Division of Endocrinology, Diabetes, and Metabolism, UF College of Medicine, Gainesville, FL, United States of America.
| | - C M Novince
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, SC, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| | - J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| |
Collapse
|
19
|
Zhao W, Peng Y, Hu Y, Guo XE, Li J, Cao J, Pan J, Feng JQ, Cardozo C, Jarvis J, Bauman WA, Qin W. Electrical stimulation of hindlimb skeletal muscle has beneficial effects on sublesional bone in a rat model of spinal cord injury. Bone 2021; 144:115825. [PMID: 33348128 PMCID: PMC7868091 DOI: 10.1016/j.bone.2020.115825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI. Notably, ES or ES + TE resulted in the increased mass of the EDL muscles. ES or ES + TE significantly decreased mRNA levels of muscle atrophy markers (e.g., MAFbx and MurF1) in the EDL. Significant decreases in bone mineral density (BMD) (-27%) and trabecular bone volume (-49.3%) at the distal femur were observed in animals 6 weeks post injury. TE, ES and ES + TE treatment significantly increased BMD by +6.4%, +5.4%, +8.5% and bone volume by +22.2%, and +56.2% and+ 60.2%, respectively. Notably, ES alone or ES + TE resulted in almost complete restoration of cortical stiffness estimated by finite element analysis in SCI animals. Osteoblastogenesis was evaluated by colony-forming unit-fibroblastic (CFU-F) staining using bone marrow mesenchymal stem cells obtained from the femur. SCI decreased the CFU-F+ cells by -56.8% compared to sham animals. TE or ES + TE treatment after SCI increased osteoblastogenesis by +74.6% and +67.2%, respectively. An osteoclastogenesis assay revealed significantly increased TRAP+ multinucleated cells (+34.8%) in SCI animals compared to sham animals. TE, ES and TE + ES treatment following SCI markedly decreased TRAP+ cells by -51.3%, -40.3% and -46.9%, respectively. Each intervention greatly reduced the ratio of RANKL to OPG mRNA of sublesional long bone. Collectively, our findings demonstrate that after neurologically complete paralysis, dynamic muscle resistance exercise by ES reduced muscle atrophy, downregulated genes involved in muscle wasting, and restored mechanical loading to sublesional bone to a degree that allowed for the preservation of bone by inhibition of bone resorption and/or by facilitating bone formation.
Collapse
Affiliation(s)
- Wei Zhao
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jiliang Li
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jay Cao
- United States Department of Agriculture Agricultural Research Service Human Nutrition Research Center, Grand Forks, ND, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jian Q Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - William A Bauman
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Qin
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Jesus I, Michel-Flutot P, Deramaudt TB, Paucard A, Vanhee V, Vinit S, Bonay M. Effects of aerobic exercise training on muscle plasticity in a mouse model of cervical spinal cord injury. Sci Rep 2021; 11:112. [PMID: 33420246 PMCID: PMC7794462 DOI: 10.1038/s41598-020-80478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical spinal cord injury (SCI) results in permanent life-altering motor and respiratory deficits. Other than mechanical ventilation for respiratory insufficiency secondary to cervical SCI, effective treatments are lacking and the development of animal models to explore new therapeutic strategies are needed. The aim of this work was to demonstrate the feasibility of using a mouse model of partial cervical spinal hemisection at the second cervical metameric segment (C2) to investigate the impact of 6 weeks training on forced exercise wheel system on locomotor/respiratory plasticity muscles. To measure run capacity locomotor and respiratory functions, incremental exercise tests and diaphragmatic electromyography were done. In addition, muscle fiber type composition and capillary distribution were assessed at 51 days following chronic C2 injury in diaphragm, extensor digitorum communis (EDC), tibialis anterior (TA) and soleus (SOL) muscles. Six-week exercise training increased the running capacity of trained SCI mice. Fiber type composition in EDC, TA and SOL muscles was not modified by our protocol of exercise. The vascularization was increased in all muscle limbs in SCI trained group. No increase in diaphragmatic electromyography amplitude of the diaphragm muscle on the side of SCI was observed, while the contraction duration was significantly decreased in sedentary group compared to trained group. Cross-sectional area of type IIa myofiber in the contralateral diaphragm side of SCI was smaller in trained group. Fiber type distribution between contralateral and ipsilateral diaphragm in SCI sedentary group was affected, while no difference was observed in trained group. In addition, the vascularization of the diaphragm side contralateral to SCI was increased in trained group. All these results suggest an increase in fatigue resistance and a contribution to the running capacity in SCI trained group. Our exercise protocol could be a promising non-invasive strategy to sustain locomotor and respiratory muscle plasticity following SCI.
Collapse
Affiliation(s)
- Isley Jesus
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | | | | | - Alexia Paucard
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | - Valentin Vanhee
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | - Stéphane Vinit
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | - Marcel Bonay
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France.
- Service de Physiologie-Explorations Fonctionnelles; Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne, France.
| |
Collapse
|
21
|
Wang H, Zhou WX, Huang JF, Zheng XQ, Tian HJ, Wang B, Fu WL, Wu AM. Endocrine Therapy for the Functional Recovery of Spinal Cord Injury. Front Neurosci 2020; 14:590570. [PMID: 33390881 PMCID: PMC7773784 DOI: 10.3389/fnins.2020.590570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of physical disability and leads to patient dissatisfaction with their quality of life. Patients with SCI usually exhibit severe clinical symptoms, including sensory and motor dysfunction below the injured levels, paraplegia, quadriplegia and urinary retention, which can exacerbate the substantial medical and social burdens. The major pathological change observed in SCI is inflammatory reaction, which induces demyelination, axonal degeneration, and the apoptosis and necrosis of neurons. Traditional medical treatments are mainly focused on the recovery of motor function and prevention of complications. To date, numerous studies have been conducted to explore the cellular and molecular mechanism of SCI and have proposed lots of effective treatments, but the clinical applications are still limited due to the complex pathogenesis and poor prognosis after SCI. Endocrine hormones are kinds of molecules that are synthesized by specialized endocrine organs and can participate in the regulation of multiple physiological activities, and their protective effects on several disorders have been widely discussed. In addition, many studies have identified that endocrine hormones can promote nerve regeneration and functional recovery in individuals with central nervous system diseases. Therefore, studies investigating the clinical applications of endocrine hormones as treatments for SCI are necessary. In this review, we described the neuroprotective roles of several endocrine hormones in SCI; endocrine hormone administration reduces cell death and promotes functional repair after SCI. We also proposed novel therapies for SCI.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wen-Xian Zhou
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jin-Feng Huang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuan-Qi Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hai-Jun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Li Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-Min Wu
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Wang YT, Goh CH, Liao T, Dong XN, Duke G, Alfred D, Yang Y, Xu J, Yu S. Effects of wheelchair Tai Chi ball exercise on physical and mental health and functional abilities among elderly with physical disability. Res Sports Med 2020; 29:289-302. [PMID: 32546105 DOI: 10.1080/15438627.2020.1777553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to examine the effect of a 12-week Wheelchair Tai Chi Ball (WTCB) intervention, a combination of mind-body exercise with strength training, on physical and mental health and functional abilities among elderly with disability. Twenty-six elderly persons participated in the study, nine WTCB group participants and ten control group participants completed the study. The WTCB group practised WTCB12 twice/week for one hour each time. The control group did their daily routine without WTCB intervention. The outcomes measures were: Pain Self-Efficacy Questionnaire (PSEQ), SF-36v2 for physical and mental health, heart rate, blood pressure, range of motion and muscle strength of the dominant arm at the shoulder, elbow and wrist joints. The Mixed Model ANOVA was employed to examine the differences between and within the two groups using pre-test and post-test scores. The results demonstrated the WTCB group had significant improvements on PSEQ, general physical health and had positive effects on maintaining muscle strength at the shoulder, elbow and wrist joints as compared to the control group. The WTCB12 exercise had positive effects on self-efficacy for pain management, general physical health, and maintain upper extremity muscle strength and is a feasible exercise for elderly with disability.
Collapse
Affiliation(s)
- Yong Tai Wang
- School of Nursing, University of Texas at Tyler, Tyler, United States
| | - Chung-Hyun Goh
- Department of Mechanical Engineering, University of Texas at Tyler, Tyler, United States
| | - Ting Liao
- Wuhan Sports University, Wuhan, China
| | - Xuanliang Neil Dong
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, United States
| | - Gloria Duke
- School of Nursing, University of Texas at Tyler, Tyler, United States
| | - Danita Alfred
- School of Nursing, University of Texas at Tyler, Tyler, United States
| | - Yi Yang
- Wuhan Sports University, Wuhan, China
| | - Jingle Xu
- School of Nursing, University of Texas at Tyler, Tyler, United States
| | - Shiqi Yu
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, United States
| |
Collapse
|
23
|
Gorgey AS, Graham ZA, Chen Q, Rivers J, Adler RA, Lesnefsky EJ, Cardozo CP. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol (1985) 2020; 128:1487-1496. [PMID: 32352341 DOI: 10.1152/japplphysiol.00865.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of testosterone replacement therapy (TRT) with and without evoked resistance training (RT) on protein expression of key metabolic and hypertrophy regulators, muscle fiber cross-sectional area (CSA), and markers of mitochondrial health after spinal cord injury (SCI). Twenty-two men with chronic motor complete SCI were randomly assigned to either TRT + RT (n = 11) or TRT (n = 11) for 16 wk. TRT + RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Muscle biopsies were obtained before and after 16 wk from the right vastus lateralis. Expression of proteins associated with oxidative muscles and mechanical loading (PGC-1α and FAK), muscle hypertrophy (total and phosphorylated Akt, total and phosphorylated mTOR), and cellular metabolism (total and phosphorylated AMPK and GLUT4) were evaluated. Immunohistochemistry analysis was performed to measure fiber CSA and succinate dehydrogenase (SDH) activity as well as mitochondrial citrate synthase (CS) activity and complex III (CIII) activities. TRT + RT demonstrated a robust 27.5% increase in average fiber CSA compared with a -9% decrease following TRT only (P = 0.01). GLUT4 protein expression was elevated in the TRT + RT group compared with TRT only (P = 0.005). Total Akt (P = 0.06) and phosphorylated Akt Ser389 (P = 0.049) were also elevated in the TRT + RT group. Mitochondrial activity of SDH (P = 0.03) and CS (P = 0.006) increased in the TRT + RT group, with no changes in the TRT-only group. Sixteen weeks of TRT with RT resulted in fiber hypertrophy and beneficial changes in markers of skeletal muscle health and function.NEW & NOTEWORTHY Fiber cross-sectional area (CSA), protein expression, mitochondrial citrate synthase (CS), and succinate dehydrogenase (SDH) were measured following 16 wk of low-dose testosterone replacement therapy (TRT) with and without electrically evoked resistance training (RT) in men with spinal cord injury (SCI). Fiber CSA and protein expression of total GLUT4, total Akt, and phosphorylated Akt increased following TRT + RT but not in the TRT-only group. Mitochondrial CS and SDH increased after TRT + RT but not in TRT-only group.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Virginia Commonwealth University, Department of Physical Medicine and Rehabilitation, Richmond, Virginia
| | - Zachary A Graham
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Rivers
- Surgery Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
24
|
Holman ME, Gorgey AS. Testosterone and Resistance Training Improve Muscle Quality in Spinal Cord Injury. Med Sci Sports Exerc 2020; 51:1591-1598. [PMID: 30845047 DOI: 10.1249/mss.0000000000001975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Spinal cord injury (SCI) negatively impacts muscle quality and testosterone levels. Resistance training (RT) has been shown to increase muscle cross-sectional area (CSA) after SCI, whereas testosterone replacement therapy (TRT) has been shown to improve muscle quality in other populations. The purpose of this pilot study was to examine if the combined effects of these interventions, TRT + RT, may maximize the beneficial effects on muscle quality after SCI. METHODS Twenty-two SCI subjects randomized into either a TRT + RT (n = 11) or TRT (n = 11) intervention for 16 wk. Muscle quality measured by peak torque (PT) at speeds of 0°·s (PT-0°), 60°·s (PT-60°), 90°·s (PT-90°), and 180°·s (PT-180°), knee extensor CSA, specific tension, and contractile speed (rise time [RTi], and half-time to relaxation [½TiR]) was assessed for each limb at baseline and postintervention using 2 × 2 mixed models. RESULTS After 16 wk, subjects in the TRT + RT group increased PT-0° (48.4%, P = 0.017), knee extensor CSA (30.8%, P < 0.0001), and RTi (17.7%, P = 0.012); with no significant changes observed in the TRT group. Regardless of the intervention, changes to PT-60° (28.4%, P = 0.020), PT-90° (26.1%, P = 0.055), and PT-180° (20.6%, P = 0.09) for each group were similar. CONCLUSIONS The addition of mechanical stress via RT to TRT maximizes improvements to muscle quality after complete SCI when compared with TRT administered alone. Our evidence shows that this intervention increases muscle size and strength while also improving muscle contractile properties.
Collapse
Affiliation(s)
- Matthew E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA
| | | |
Collapse
|
25
|
Tao J, Liu X, Bai W. Testosterone Supplementation in Patients With Chronic Heart Failure: A Meta-Analysis of Randomized Controlled Trials. Front Endocrinol (Lausanne) 2020; 11:110. [PMID: 32231640 PMCID: PMC7082858 DOI: 10.3389/fendo.2020.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
Background: The effect of testosterone supplementation in patients with chronic heart failure (CHF) remains uncertain. Methods: A meta-analysis of randomized controlled trials (RCTs) was performed. RCTs that evaluate the chronic effect of testosterone supplementation on exercise capacity and cardiac function in CHF were identified via searching of PubMed, Embase, and the Cochrane's Library databases. Heterogeneity was evaluated by the Cochrane's Q test and I2 statistics. A fixed-effect model was used if the heterogeneity was not significant (I2 < 50%); otherwise, a random-effect model was applied. Results: Eight studies including 170 patients in the testosterone supplementation group and 162 in the control group were included. Overall, testosterone supplementation was not associated with an improved exercise capacity (walking test: standardized mean difference [SMD] = 0.36, p = 0.07). Sensitivity analyses limited to male patients showed similar results (SMD = 0.21, p = 0.15), and subgroup analyses also showed similar results in male HF patients with baseline total testosterone (TT) ≥ or < 10 nmol/L. However, patients with TT at endpoint ≥ 25 nmol/L was associated with improved exercise capacity (SMD = 1.12, p = 0.02), but not for those with TT at endpoint < 25 nmol/L (SMD = 0.24, p = 0.12). In addition, VO2max (weight mean difference [WMD] = 0.85, p = 0.43), the functional classification (the New York Heart Association classification: WMD = -0.08, p = 0.16) and quality of life (Minnesota Living with Heart Failure [MLHF] questionnaire: WMD = -6.03, p = 0.12) were not significantly affected. Moreover, testosterone supplementation did not significantly affect left ventricular ejection fraction (WMD: -1.52%, p = 0.37), serum B-type natriuretic peptide (SMD: -0.19, p = 0.23), or a composite outcome of death or HF hospitalization (risk ratio [RR]: 1.02, p = 0.96). Although testosterone supplementation increased systolic blood pressure (BP) in CHF patients (WMD: 5.68 mmHg, p < 0.001), diastolic BP or heart rate was not significantly changed as compared to control. Conclusions: Testosterone supplementation within a physiological range is not associated with significantly improved exercise capacity, cardiac function, quality of life, or clinical outcome in CHF patients.
Collapse
Affiliation(s)
- Jianping Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenwei Bai
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
Yarrow JF, Kok HJ, Phillips EG, Conover CF, Lee J, Bassett TE, Buckley KH, Reynolds MC, Wnek RD, Otzel DM, Chen C, Jiron JM, Graham ZA, Cardozo C, Vandenborne K, Bose PK, Aguirre JI, Borst SE, Ye F. Locomotor training with adjuvant testosterone preserves cancellous bone and promotes muscle plasticity in male rats after severe spinal cord injury. J Neurosci Res 2019; 98:843-868. [PMID: 31797423 DOI: 10.1002/jnr.24564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Loading and testosterone may influence musculoskeletal recovery after spinal cord injury (SCI). Our objectives were to determine (a) the acute effects of bodyweight-supported treadmill training (TM) on hindlimb cancellous bone microstructure and muscle mass in adult rats after severe contusion SCI and (b) whether longer-term TM with adjuvant testosterone enanthate (TE) delivers musculoskeletal benefit. In Study 1, TM (40 min/day, 5 days/week, beginning 1 week postsurgery) did not prevent SCI-induced hindlimb cancellous bone loss after 3 weeks. In Study 2, TM did not attenuate SCI-induced plantar flexor muscles atrophy nor improve locomotor recovery after 4 weeks. In our main study, SCI produced extensive distal femur and proximal tibia cancellous bone deficits, a deleterious slow-to-fast fiber-type transition in soleus, lower muscle fiber cross-sectional area (fCSA), impaired muscle force production, and levator ani/bulbocavernosus (LABC) muscle atrophy after 8 weeks. TE alone (7.0 mg/week) suppressed bone resorption, attenuated cancellous bone loss, constrained the soleus fiber-type transition, and prevented LABC atrophy. In comparison, TE+TM concomitantly suppressed bone resorption and stimulated bone formation after SCI, produced near-complete cancellous bone preservation, prevented the soleus fiber-type transition, attenuated soleus fCSA atrophy, maintained soleus force production, and increased LABC mass. 75% of SCI+TE+TM animals recovered voluntary over-ground hindlimb stepping, while no SCI and only 20% of SCI+TE animals regained stepping ability. Positive associations between testosterone and locomotor function suggest that TE influenced locomotor recovery. In conclusion, short-term TM alone did not improve bone, muscle, or locomotor recovery in adult rats after severe SCI, while longer-term TE+TM provided more comprehensive musculoskeletal benefit than TE alone.
Collapse
Affiliation(s)
- Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hui Jean Kok
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ean G Phillips
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Christine F Conover
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Jimmy Lee
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Taylor E Bassett
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Kinley H Buckley
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Michael C Reynolds
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Russell D Wnek
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Cong Chen
- Divison of Orthopedics and Rehabilitation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Zachary A Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,Departments of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,Departments of Medicine, Icahn School of Medicine, New York, NY, USA.,Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Prodip K Bose
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Division of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jose Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Stephen E Borst
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Fan Ye
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| |
Collapse
|
27
|
Messer JG, La S, Kipp DE, Castillo EJ, Yarrow JF, Jorgensen M, Wnek RD, Kimmel DB, Aguirre JI. Diet-induced Generalized Periodontitis in Lewis Rats. Comp Med 2019; 69:384-400. [PMID: 31575381 DOI: 10.30802/aalas-cm-18-000113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontitis is an important public health concern worldwide. Because rodents from the genus Rattus are resistant to spontaneous periodontitis, experimental periodontitis must be initiated by mechanical procedures and interventions. Due to their exacerbated Th1 response and imbalanced Th17 regulatory T-cell responses, Lewis rats are highly susceptible to inducible inflammatory and autoimmune diseases. We hypothesized that feeding Lewis rats a diet high in sucrose and casein (HSC) would alter the oral microenvironment and induce inflammation and the development of periodontitis lesions without mechanical intervention. A baseline group (BSL, n = 8) was euthanized at age 6 wk. Beginning at 6 wk of age, 2 groups of Lewis rats were fed standard (STD, n = 12) or HSC (n = 20) chow and euthanized at 29 wk of age. We evaluated the degree of periodontitis through histology and μCT of maxillae and mandibles. The HSC-induced inflammatory response of periodontal tissues was assessed by using immunohistochemistry. Gene expression analysis of inflammatory cytokines associated with Th1 and Th17 responses, innate immunity cytokines, and tissue damage in response to bacteria were assessed also. The potential systemic effects of HSC diet were evaluated by assessing body composition and bone densitometry endpoints; serum leptin and insulin concentrations; and gene expression of inflammatory cytokines in the liver. Placing Lewis rats on HSC diet for 24 wk induced a host Th1-immune response in periodontal tissues and mild to moderate, generalized periodontitis characterized by inflammatory cell infiltration (predominantly T cells and macrophages), osteoclast resorption of alveolar bone, and hyperplasia and migration of the gingival epithelium. HSC-fed Lewis rats developed periodontitis without mechanical intervention in the oral cavity and in the absence of any noteworthy metabolic abnormalities. Consequently, the rat model we described here may be a promising approach for modeling mild to moderate periodontitis that is similar in presentation to the human disease.
Collapse
Affiliation(s)
- Jonathan G Messer
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Stephanie La
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, North Carolina
| | - Deborah E Kipp
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, North Carolina
| | - Evelyn J Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Joshua F Yarrow
- Department of Research Service, Veterans Affairs Medical Center, North Florida-South Georgia Veteran Health System, Gainesville, Florida
| | - Marda Jorgensen
- Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Florida, Gainesville, Florida
| | - Russell D Wnek
- Department of Research Service, Veterans Affairs Medical Center, North Florida-South Georgia Veteran Health System, Gainesville, Florida
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - José Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, Florida;,
| |
Collapse
|
28
|
Gorgey AS, Khalil RE, Gill R, Gater DR, Lavis TD, Cardozo CP, Adler RA. Low-Dose Testosterone and Evoked Resistance Exercise after Spinal Cord Injury on Cardio-Metabolic Risk Factors: An Open-Label Randomized Clinical Trial. J Neurotrauma 2019; 36:2631-2645. [PMID: 30794084 DOI: 10.1089/neu.2018.6136] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of the work is to investigate the effects of low-dose testosterone replacement therapy (TRT) and evoked resistance training (RT) on body composition and metabolic variables after spinal cord injury (SCI). Twenty-two individuals with chronic motor complete SCI (ages 18-50 years) were randomly assigned to either TRT+RT (n = 11) or TRT (n = 11) for 16 weeks following a 4 -week delayed entry period. TRT+RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Body composition was tested using anthropometrics, dual energy x-ray absorptiometry, and magnetic resonance imaging. After an overnight fast, basal metabolic rate (BMR), lipid panel, serum testosterone, adiponectin, inflammatory and anabolic biomarkers (insulin-like growth factor-1 and insulin-like growth factor-binding protein 3 [IGFBP-3]), glucose effectiveness (Sg), and insulin sensitivity (Si) were measured. Total body lean mass (LM; 2.7 kg, p < 0.0001), whole muscle (p < 0.0001), and whole muscle knee extensor cross-sectional areas (CSAs; p < 0.0001) increased in the TRT+RT group, with no changes in the TRT group. Visceral adiposity decreased (p = 0.049) in the TRT group, with a trend in the TRT+RT (p = 0.07) group. There was a trend (p = 0.050) of a 14-17% increase in BMR following TRT+RT. Sg showed a trend (p = 0.07) to improvement by 28.5-31.5% following both interventions. IGFBP-3 increased (p = 0.0001) while IL-6 decreased (p = 0.039) following both interventions, and TRT+RT suppressed adiponectin (p = 0.024). TRT+RT resulted in an increase in LM and whole thigh and knee extensor muscle CSAs, with an increase in BMR and suppressed adiponectin. Low-dose TRT may mediate modest effects on visceral adipose tissue, Sg, IGFBP-3, and IL-6, independent of changes in LM.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy D Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
29
|
Metzger CE, Gong S, Aceves M, Bloomfield SA, Hook MA. Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model. Bone 2019; 120:465-475. [PMID: 30550849 DOI: 10.1016/j.bone.2018.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Profound bone loss occurs following spinal cord injury (SCI) resulting in a high incidence of fractures. While likely caused in part by loss of weight-bearing, there is greater bone loss following SCI when compared to that observed in other disuse animal models. Patients with SCI have a protracted inflammatory response, with elevated circulating levels of pro-inflammatory markers. This chronic inflammation could compound the bone loss attributed to disuse and the loss of neural signaling. To assess this, we examined inflammatory markers and bone turnover regulators in osteocytes from rats with a moderate spinal contusion injury (SCI) and intact controls (CON). We counted osteocytes positive for cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-17 (IL-17), and interleukin-10 (IL-10)], osteoclastogenesis regulators RANKL and OPG, and the bone formation inhibitor sclerostin, 32 days after the spinal contusion. By day 9 post-injury, the majority of SCI rats had recovered significant locomotor function and were bearing weight on their hindlimbs. However, despite weight-bearing, peripheral QCT scans demonstrated lower bone mass due to SCI in the proximal tibia metaphysis compared to CON. SCI animals also had lower cancellous bone volume, lower bone formation rate (BFR), lower osteoid surface (OS), and higher osteoclast surface (Oc.S). Tibial mid-shaft periosteal BFR was also lower after SCI. Immunohistochemical staining of the distal femur bone revealed cancellous osteocytes positive for TNF-α, IL-6, IL-17, and IL-10 were elevated in SCI animals relative to intact controls. Protein expression of RANKL+, OPG+, and sclerostin+ osteocytes was also higher in SCI rats. At the cortical midshaft, osteocyte TNF-α, IL-6, and sclerostin were statistically higher in SCI vs. CON. With regression analysis, inflammatory factors were associated with changes in bone turnover. In conclusion, inflammatory factors as well as altered mechanical loading influence bone turnover following a moderate SCI. Treatments aimed at minimizing fracture risk after SCI may need to target both the chronically altered inflammatory state as well as disuse-induced bone loss.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States of America.
| | - Sammy Gong
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States of America
| | - Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States of America
| | - Susan A Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States of America.
| |
Collapse
|
30
|
Messer JG, Jiron JM, Mendieta Calle JL, Castillo EJ, Israel R, Phillips EG, Yarrow JF, Van Poznak C, Kesavalu L, Kimmel DB, Aguirre JI. Zoledronate treatment duration is linked to bisphosphonate-related osteonecrosis of the jaw prevalence in rice rats with generalized periodontitis. Oral Dis 2019; 25:1116-1135. [PMID: 30712276 PMCID: PMC6487955 DOI: 10.1111/odi.13052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine the extent that zoledronate (ZOL) dose and duration is associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ) prevalence in rice rats with generalized periodontitis (PD), characterize structural and tissue-level features of BRONJ-like lesions in this model, and examine the specific anti-resorptive role of ZOL in BRONJ. MATERIALS AND METHODS Rice rats (n = 228) consumed high sucrose-casein diet to enhance generalized PD. Groups of rats received 0, 8, 20, 50 or 125 µg/kg IV ZOL/4 weeks encompassing osteoporosis and oncology ZOL doses. Rats from each dose group (n = 9-16) were necropsied after 12, 18, 24 and 30 weeks of treatment. BRONJ-like lesion prevalence and tissue-level features were assessed grossly, histopathologically and by MicroCT. ZOL bone turnover effects were assessed by femoral peripheral quantitative computed tomography, serum bone turnover marker ELISAs and osteoclast immunolabelling. RESULTS Prevalence of BRONJ-like lesions was significantly associated with (a) ZOL treatment duration, but plateaued at the lowest oncologic dose, and (b) there was a similar dose-related plateau in the systemic anti-resorptive effect of ZOL. ZOL and BRONJ-like lesions also altered the structural and tissue-level features of the jaw. CONCLUSION The relationship between BRONJ-like lesion prevalence and ZOL dose and duration varies depending on the co- or pre-existing oral risk factor. At clinically relevant doses of ZOL, BRONJ-like lesions are associated with anti-resorptive activity.
Collapse
Affiliation(s)
- Jonathan G Messer
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | | | - Evelyn J Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Ronnie Israel
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Ean G Phillips
- Research Service, VA Medical Center, Gainesville, Florida
| | | | | | - Lakshmyya Kesavalu
- Department of Periodontology and Oral Biology, College of Dentistry, Gainesville, Florida
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
31
|
Otzel DM, Conover CF, Ye F, Phillips EG, Bassett T, Wnek RD, Flores M, Catter A, Ghosh P, Balaez A, Petusevsky J, Chen C, Gao Y, Zhang Y, Jiron JM, Bose PK, Borst SE, Wronski TJ, Aguirre JI, Yarrow JF. Longitudinal Examination of Bone Loss in Male Rats After Moderate-Severe Contusion Spinal Cord Injury. Calcif Tissue Int 2019; 104:79-91. [PMID: 30218117 PMCID: PMC8349506 DOI: 10.1007/s00223-018-0471-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Christine F Conover
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Fan Ye
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Ean G Phillips
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Taylor Bassett
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Russell D Wnek
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Micah Flores
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Andrea Catter
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Payal Ghosh
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Alexander Balaez
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Jason Petusevsky
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Cong Chen
- Department of Orthopedics and Rehabilitation, University of Florida, PO Box 112727, Gainesville, FL, 32611, USA
| | - Yongxin Gao
- University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Yi Zhang
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
| | - Prodip K Bose
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, HSC PO Box 100236, Gainesville, FL, 32610, USA
| | - Stephen E Borst
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL, 32611, USA
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
| | - Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA.
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
32
|
Nightingale TE, Moore P, Harman J, Khalil R, Gill RS, Castillo T, Adler RA, Gorgey AS. Body composition changes with testosterone replacement therapy following spinal cord injury and aging: A mini review. J Spinal Cord Med 2018; 41:624-636. [PMID: 28770686 PMCID: PMC6217462 DOI: 10.1080/10790268.2017.1357917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Context Hypogonadism is a male clinical condition in which the body does not produce enough testosterone. Testosterone plays a key role in maintaining body composition, bone mineral density, sexual function, mood, erythropoiesis, cognition and quality of life. Hypogonadism can occur due to several underlying pathologies during aging and in men with physical disabilities, such as spinal cord injury (SCI). This condition is often under diagnosed and as a result, symptoms undertreated. Methods In this mini-review, we propose that testosterone replacement therapy (TRT) may be a viable strategy to improve lean body mass (LBM) and fat mass (FM) in men with SCI. Evidence Synthesis Supplementing the limited data from SCI cohorts with consistent findings from studies in non-disabled aging men, we present evidence that, relative to placebo, transdermal TRT can increase LBM and reduce FM over 3-36 months. The impact of TRT on bone mineral density and metabolism is also discussed, with particular relevance for persons with SCI. Moreover, the risks of TRT remain controversial and pertinent safety considerations related to transdermal administration are outlined. Conclusion Further research is necessary to help develop clinical guidelines for the specific dose and duration of TRT in persons with SCI. Therefore, we call for more high-quality randomized controlled trials to examine the efficacy and safety of TRT in this population, which experiences an increased risk of cardiometabolic diseases as a result of deleterious body composition changes after injury.
Collapse
Affiliation(s)
- Tom E. Nightingale
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pamela Moore
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Joshua Harman
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Refka Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Ranjodh S. Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Teodoro Castillo
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert A. Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA,Correspondence to: Ashraf S. Gorgey, Department of Veterans Affairs, Hunter Holmes McGuire Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| |
Collapse
|
33
|
Jones IA, Togashi R, Hatch GFR, Weber AE, Vangsness CT. Anabolic steroids and tendons: A review of their mechanical, structural, and biologic effects. J Orthop Res 2018; 36:2830-2841. [PMID: 30047601 DOI: 10.1002/jor.24116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023]
Abstract
One of the suspected deleterious effects of androgenic-anabolic steroids (AAS) is the increased risk for tendon rupture. However, investigations to date have produced inconsistent results and it is still unclear how AAS influence tendons. A systematic review of the literature was conducted to identify studies that have investigated the mechanical, structural, or biologic effects that AAS have on tendons. In total, 18 highly heterogeneous studies were identified. Small animal studies made up the vast majority of published research, and contradictory results were reported frequently. All of the included studies focused on the potential deleterious effects that AAS have on tendon, which is striking given the recent use of AAS in patients following tendon injury. Rather than providing strong evidence for or against the use of AAS, this review highlights the need for additional research. Future studies investigating the use of AAS as a possible treatment for tendon injury/pathology are supported by reports suggesting that AAS may counteract the irreparable structural/functional changes that occur in the musculotendinous unit following rotator cuff tears, as well as studies suggesting that the purported deleterious effects on tendon may be transient. Other possible areas for future research are discussed in the context of key findings that may have implications for the therapeutic application of AAS. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2830-2841, 2018.
Collapse
Affiliation(s)
- Ian A Jones
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - Ryan Togashi
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - George F Rick Hatch
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - Alexander E Weber
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| | - C Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, HCT 1520 San Pablo Street, Suite 2000, Los Angeles 90033, California
| |
Collapse
|
34
|
Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int 2018; 29:1713-1720. [PMID: 29777277 PMCID: PMC7861141 DOI: 10.1007/s00198-018-4570-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Bone fractures in older adults are often preceded by a loss of muscle mass and strength. Likewise, bone loss with prolonged bed rest, spinal cord injury, or with exposure to microgravity is also preceded by a rapid loss of muscle mass. Recent studies using animal models in the setting of hindlimb unloading or botulinum toxin (Botox) injection also reveal that muscle loss can induce bone loss. Moreover, muscle-derived factors such as irisin and leptin can inhibit bone loss with unloading, and knockout of catabolic factors in muscle such as the ubiquitin ligase Murf1 or the myokine myostatin can reduce osteoclastogenesis. These findings suggest that therapies targeting muscle in the setting of disuse atrophy may potentially attenuate bone loss, primarily by reducing bone resorption. These potential therapies not only include pharmacological approaches but also interventions such as whole-body vibration coupled with resistance exercise and functional electric stimulation of muscle.
Collapse
Affiliation(s)
- T Bettis
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - B-J Kim
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
- ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - M W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA.
| |
Collapse
|
35
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
36
|
Phillips EG, Beggs LA, Ye F, Conover CF, Beck DT, Otzel DM, Ghosh P, Bassit ACF, Borst SE, Yarrow JF. Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury. PLoS One 2018; 13:e0194440. [PMID: 29579075 PMCID: PMC5868788 DOI: 10.1371/journal.pone.0194440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Sclerostin is a circulating osteocyte-derived glycoprotein that negatively regulates Wnt-signaling after binding the LRP5/LRP6 co-receptors. Pharmacologic sclerostin inhibition produces bone anabolic effects after spinal cord injury (SCI), however, the effects of sclerostin-antibody (Scl-Ab) on muscle morphology remain unknown. In comparison, androgen administration produces bone antiresorptive effects after SCI and some, but not all, studies have reported that testosterone treatment ameliorates skeletal muscle atrophy in this context. Our purposes were to determine whether Scl-Ab prevents hindlimb muscle loss after SCI and compare the effects of Scl-Ab to testosterone enanthate (TE), an agent with known myotrophic effects. Male Sprague-Dawley rats aged 5 months received: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe contusion SCI, (C) SCI+TE (7.0 mg/wk, im), or (D) SCI+Scl-Ab (25 mg/kg, twice weekly, sc). Twenty-one days post-injury, SCI animals exhibited a 31% lower soleus mass in comparison to SHAM, accompanied by >50% lower soleus muscle fiber cross-sectional area (fCSA) (p<0.01 for all fiber types). Scl-Ab did not prevent soleus atrophy, consistent with the relatively low circulating sclerostin concentrations and with the 91-99% lower LRP5/LRP6 gene expressions in soleus versus tibia (p<0.001), a tissue with known anabolic responsiveness to Scl-Ab. In comparison, TE partially prevented soleus atrophy and increased levator ani/bulbocavernosus (LABC) mass by 30-40% (p<0.001 vs all groups). The differing myotrophic responsiveness coincided with a 3-fold higher androgen receptor gene expression in LABC versus soleus (p<0.01). This study provides the first direct evidence that Scl-Ab does not prevent soleus muscle atrophy in rodents after SCI and suggests that variable myotrophic responses in rodent muscles after androgen administration are influenced by androgen receptor expression.
Collapse
Affiliation(s)
- Ean G. Phillips
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Luke A. Beggs
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Fan Ye
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Christine F. Conover
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, United States of America
| | - Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States of America
| | - Anna C. F. Bassit
- Orthopedics Department, Shriners Hospital for Children, Montreal, QC, Canada
| | - Stephen E. Borst
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Joshua F. Yarrow
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States of America
| |
Collapse
|
37
|
Yarrow JF, Phillips EG, Conover CF, Bassett TE, Chen C, Teurlings T, Vasconez A, Alerte J, Prock H, Jiron JM, Flores M, Aguirre JI, Borst SE, Ye F. Testosterone Plus Finasteride Prevents Bone Loss without Prostate Growth in a Rodent Spinal Cord Injury Model. J Neurotrauma 2017; 34:2972-2981. [PMID: 28338402 DOI: 10.1089/neu.2016.4814] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have reported that testosterone-enanthate (TE) prevents the musculoskeletal decline occurring acutely after spinal cord injury (SCI), but results in a near doubling of prostate mass. Our purpose was to test the hypothesis that administration of TE plus finasteride (FIN; type II 5α-reductase inhibitor) would prevent the chronic musculoskeletal deficits in our rodent severe contusion SCI model, without inducing prostate enlargement. Forty-three 16-week-old male Sprague-Dawley rats received: 1) SHAM surgery (T9 laminectomy); 2) severe (250 kdyne) contusion SCI; 3) SCI+TE (7.0 mg/week, intramuscular); or 4) SCI+TE+FIN (5 mg/kg/day, subcutaneous). At 8 weeks post-surgery, SCI animals exhibited reduced serum testosterone and levator ani/bulbocavernosus (LABC) muscle mass, effects that were prevented by TE. Cancellous and cortical (periosteal) bone turnover (assessed by histomorphometry) were elevated post-SCI, resulting in reduced distal femur cancellous and cortical bone mass (assessed by microcomputed tomography). TE treatment normalized cancellous and cortical bone turnover and maintained cancellous bone mass at the level of SHAM animals, but produced prostate enlargement. FIN coadministration did not inhibit the TE-induced musculoskeletal effects, but prevented prostate growth. Neither drug regimen prevented SCI-induced cortical bone loss, although no differences in whole bone strength were present among groups. Our findings indicate that TE+FIN prevented the chronic cancellous bone deficits and LABC muscle loss in SCI animals without inducing prostate enlargement, which provides a rationale for the inclusion of TE+FIN in multimodal therapeutic interventions intended to alleviate the musculoskeletal decline post-SCI.
Collapse
Affiliation(s)
- Joshua F Yarrow
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida.,2 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| | - Ean G Phillips
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Christine F Conover
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Taylor E Bassett
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Cong Chen
- 3 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Tyler Teurlings
- 3 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Andrea Vasconez
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jonathan Alerte
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Hannah Prock
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jessica M Jiron
- 4 Physiological Sciences, University of Florida , Gainesville, Florida
| | - Micah Flores
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - J Ignacio Aguirre
- 4 Physiological Sciences, University of Florida , Gainesville, Florida
| | - Stephen E Borst
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida.,2 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| | - Fan Ye
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
38
|
Laurent MR, Jardí F, Dubois V, Schollaert D, Khalil R, Gielen E, Carmeliet G, Claessens F, Vanderschueren D. Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone 2016; 93:33-42. [PMID: 27622887 DOI: 10.1016/j.bone.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Aging hypogonadal men are at increased risk of osteoporosis and sarcopenia. Testosterone is a potentially appealing strategy to prevent simultaneous bone and muscle loss. The androgen receptor (AR) mediates antiresorptive effects on trabecular bone via osteoblast-lineage cells, as well as muscle-anabolic actions. Sex steroids also modify the skeletal response to mechanical loading. However, it is unclear whether the effects of androgens on bone remain effective independent of mechanical stimulation or rather require indirect androgen effects via muscle. This study aims to characterize the effects and underlying mechanisms of androgens on disuse osteosarcopenia. Adult male mice received a unilateral botulinum toxin (BTx) injection, and underwent sham surgery or orchidectomy (ORX) without or with testosterone (ORX+T) or dihydrotestosterone (ORX+DHT) replacement. Compared to the contralateral internal control hindlimb, acute trabecular number and bone volume loss was increased by ORX and partially prevented DHT. T was more efficient and increased BV/TV in both hindlimbs over sham values, although it did not reduce the detrimental effect of BTx. Both androgens and BTx regulated trabecular osteoclast surface as well as tartrate-resistant acid phosphatase expression. Androgens also prevented BTx-induced body weight loss but did not significantly influence paralysis or muscle atrophy. BTx and ORX both reduced cortical thickness via endosteal expansion, which was prevented by T but not DHT. In long-term follow-up, the residual trabecular bone volume deficit in sham-BTx hindlimbs was prevented by DHT but T restored it more efficiently to pre-treatment levels. Conditional AR deletion in late osteoblasts and osteocytes or in the satellite cell lineage increased age-related trabecular bone loss in both hindlimbs without influencing the effect of BTx on trabecular osteopenia. We conclude that androgens have antiresorptive effects on trabecular disuse osteopenia which do not require AR actions on bone via muscle or via osteocytes.
Collapse
MESH Headings
- Acute Disease
- Androgens/pharmacology
- Androgens/therapeutic use
- Animals
- Body Weight
- Bone Diseases, Metabolic/complications
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/pathology
- Bone Diseases, Metabolic/physiopathology
- Bone Remodeling/drug effects
- Bone Resorption/complications
- Bone Resorption/drug therapy
- Bone Resorption/pathology
- Bone Resorption/physiopathology
- Calcification, Physiologic
- Cancellous Bone/diagnostic imaging
- Cancellous Bone/drug effects
- Cancellous Bone/pathology
- Cancellous Bone/physiopathology
- Cortical Bone/diagnostic imaging
- Cortical Bone/drug effects
- Cortical Bone/pathology
- Cortical Bone/physiopathology
- Extracellular Matrix Proteins/metabolism
- Female
- Gene Deletion
- Integrases/metabolism
- Male
- Mice, Inbred C57BL
- Muscular Atrophy/complications
- Muscular Atrophy/drug therapy
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Muscular Disorders, Atrophic/complications
- Muscular Disorders, Atrophic/drug therapy
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/physiopathology
- MyoD Protein/metabolism
- Organ Size
- Receptors, Androgen/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Michaël R Laurent
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium; Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49, PO box 7003, 3000 Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Dieter Schollaert
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Rougin Khalil
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49, PO box 7003, 3000 Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Moore PD, Gorgey AS, Wade RC, Khalil RE, Lavis TD, Khan R, Adler RA. Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: A case series. World J Clin Cases 2016; 4:172-176. [PMID: 27458592 PMCID: PMC4945587 DOI: 10.12998/wjcc.v4.i7.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023] Open
Abstract
Neuromuscular electrical stimulation (NMES) and testosterone replacement therapy (TRT) are effective rehabilitation strategies to attenuate muscle atrophy and evoke hypertrophy in persons with spinal cord injury (SCI). However both interventions might increase heterotopic ossification (HO) size in SCI patients. We present the results of two men with chronic traumatic motor complete SCI who also had pre-existing HO and participated in a study investigating the effects of TRT or TRT plus NMES resistance training (RT) on body composition. The 49-year-old male, Subject A, has unilateral HO in his right thigh. The 31-year-old male, Subject B, has bilateral HO in both thighs. Both participants wore transdermal testosterone patches (4-6 mg/d) daily for 16 wk. Subject A also underwent progressive NMES-RT twice weekly for 16 wk. Magnetic resonance imaging scans were acquired prior to and post intervention. Cross-sectional areas (CSA) of the whole thigh and knee extensor skeletal muscles, femoral bone, and HO were measured. In Subject A (NMES-RT + TRT), the whole thigh skeletal muscle CSA increased by 10%, the knee extensor CSA increased by 17%, and the HO + femoral bone CSA did not change. In Subject B (TRT), the whole thigh skeletal muscle CSA increased by 13% in the right thigh and 6% in the left thigh. The knee extensor CSA increased by 7% in the right thigh and did not change in the left thigh. The femoral bone and HO CSAs in both thighs did not change. Both the TRT and NMES-RT + TRT protocols evoked muscle hypertrophy without stimulating the growth of pre-existing HO.
Collapse
|
41
|
Smith GI, Mittendorfer B. Sexual dimorphism in skeletal muscle protein turnover. J Appl Physiol (1985) 2015; 120:674-82. [PMID: 26702024 DOI: 10.1152/japplphysiol.00625.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle is the major constituent of lean body mass and essential for the body's locomotor function. Women have less muscle mass (and more body fat) than men and are therefore not able to exert the same absolute maximal force as men. The difference in body composition between the sexes is evident from infancy but becomes most marked after puberty (when boys experience an accelerated growth spurt) and persists into old age. During early adulthood until approximately the fourth decade of life, muscle mass is relatively stable, both in men and women, but then begins to decline, and the rate of loss is slower in women than in men. In this review we discuss the underlying mechanisms responsible for the age-associated sexual dimorphism in muscle mass (as far as they have been elucidated to date) and highlight areas that require more research to advance our understanding of the control of muscle mass throughout life.
Collapse
Affiliation(s)
- Gordon I Smith
- Washington University, School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
42
|
Lin T, Tong W, Chandra A, Hsu SY, Jia H, Zhu J, Tseng WJ, Levine MA, Zhang Y, Yan SG, Liu XS, Sun D, Young W, Qin L. A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats. Bone Res 2015; 3:15028. [PMID: 26528401 PMCID: PMC4621491 DOI: 10.1038/boneres.2015.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI.
Collapse
Affiliation(s)
- Tiao Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA ; Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA ; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Abhishek Chandra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Shao-Yun Hsu
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey , Piscataway, NJ, USA
| | - Haoruo Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA ; Department of Orthopaedic Surgery, School of Medicine, Shihezi University , Shihezi, Xinjiang, China
| | - Ji Zhu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Wei-Ju Tseng
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania , PA, USA
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA ; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania and Translational Musculoskeletal Research Center, Philadelphia Veterans Affairs Medical Center , Philadelphia, PA, USA
| | - Shi-Gui Yan
- Department of Orthopaedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Dongming Sun
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey , Piscataway, NJ, USA
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey , Piscataway, NJ, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
43
|
Schwarz A, Pick C, Harrach R, Stein G, Bendella H, Ozsoy O, Ozsoy U, Schoenau E, Jaminet P, Sarikcioglu L, Dunlop S, Angelov D. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:123-36. [PMID: 26032204 PMCID: PMC5133715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.
Collapse
Affiliation(s)
- A. Schwarz
- Department of Anatomy I, University of Cologne, Germany
| | - C. Pick
- Department of Anatomy I, University of Cologne, Germany
| | - R. Harrach
- Department of Anatomy I, University of Cologne, Germany
| | - G. Stein
- Department of Orthopedics and Trauma Surgery, University of Cologne, Germany
| | - H. Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Cologne, Germany
| | - O. Ozsoy
- Department of Physiology, Akdeniz University of Antalya, Turkey
| | - U. Ozsoy
- Department of Anatomy, Akdeniz University of Antalya, Turkey
| | - E. Schoenau
- Children’s Hospital, University of Cologne, Germany
| | - P. Jaminet
- Department of Hand-, Plastic-, and Reconstructive Surgery with Burn Unit, BG-Trauma Centre, University of Tuebingen, Germany
| | - L. Sarikcioglu
- Department of Anatomy, Akdeniz University of Antalya, Turkey
| | - S. Dunlop
- School of Animal Biology, The University of Western Australia, Australia
| | - D.N. Angelov
- Department of Anatomy I, University of Cologne, Germany,Corresponding author: Prof. Dr. Doychin N. Angelov, M.D., Ph.D., Institut 1 für Anatomie der Universität zu Köln, Joseph-Stelzmann-Strasse 9, D-50924 Köln, Germany E-mail:
| |
Collapse
|
44
|
Beggs LA, Ye F, Ghosh P, Beck DT, Conover CF, Balaez A, Miller JR, Phillips EG, Zheng N, Williams AA, Aguirre JI, Wronski TJ, Bose PK, Borst SE, Yarrow JF. Sclerostin inhibition prevents spinal cord injury-induced cancellous bone loss. J Bone Miner Res 2015; 30:681-9. [PMID: 25359699 PMCID: PMC8367350 DOI: 10.1002/jbmr.2396] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte-derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl-Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl-Ab to that of testosterone-enanthate (TE), an agent that we have previously shown prevents SCI-induced bone loss. Fifty-five (n = 11-19/group) skeletally mature male Sprague-Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl-Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty-one days post-injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via μCT and histomorphometry) and distal femur (via μCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl-Ab and TE both prevented SCI-induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl-Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl-Ab and SCI + TE animals, whereas only Scl-Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI-induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl-Ab prevents osteoporosis in the SCI population.
Collapse
Affiliation(s)
- Luke A Beggs
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Fan Ye
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Payal Ghosh
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Darren T Beck
- Geriatrics Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| | - Christine F Conover
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Alexander Balaez
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Julie R Miller
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Ean G Phillips
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Nigel Zheng
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte NC,, USA
| | - Alyssa A Williams
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - JIgnacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Prodip K Bose
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Stephen E Borst
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Geriatrics Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Joshua F Yarrow
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Traish AM. Adverse health effects of testosterone deficiency (TD) in men. Steroids 2014; 88:106-16. [PMID: 24942084 DOI: 10.1016/j.steroids.2014.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/05/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022]
Abstract
Testosterone and its metabolite, 5α-dihydrotestosterone are critical metabolic and vascular hormones, which regulate a host of biochemical pathways including carbohydrate, lipid and protein metabolism and modulate vascular function. Testosterone deficiency (TD) is a well-recognized medical condition with important health implications. TD is associated with a number of co-morbidities including increased body weight, adiposity and increased waist circumference, insulin resistance (IR) and type 2 diabetes mellitus (T2DM), hypertension, inflammation, atherosclerosis and cardiovascular disease, erectile dysfunction (ED) and increased incidence of mortality. In this review, we summarize the data in the literature on the prevalence of TD and its association with the various co-morbidities and suggest that T therapy is necessary to improve health outcomes in men with TD.
Collapse
|
47
|
Yarrow JF, Ye F, Balaez A, Mantione JM, Otzel DM, Chen C, Beggs LA, Baligand C, Keener JE, Lim W, Vohra RS, Batra A, Borst SE, Bose PK, Thompson FJ, Vandenborne K. Bone loss in a new rodent model combining spinal cord injury and cast immobilization. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2014; 14:255-266. [PMID: 25198220 PMCID: PMC8349504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Characterize bone loss in our newly developed severe contusion spinal cord injury (SCI) plus hindlimb immobilization (IMM) model and determine the influence of muscle contractility on skeletal integrity after SCI. METHODS Female Sprague-Dawley rats were randomized to: (a) intact controls, (b) severe contusion SCI euthanized at Day 7 (SCI-7) or (c) Day 21 (SCI-21), (d) 14 days IMM-alone, (e) SCI+IMM, or (f) SCI+IMM plus 14 days body weight supported treadmill exercise (SCI+IMM+TM). RESULTS SCI-7 and SCI-21 exhibited a >20% reduction in cancellous volumetric bone mineral density (vBMD) in the hindlimbs (p⋜0.01), characterized by reductions in cancellous bone volume (cBV/TV%), trabecular number (Tb.N), and trabecular thickness. IMM-alone induced no observable bone loss. SCI+IMM exacerbated cancellous vBMD deficits with values being >45% below Controls (p⋜0.01) resulting from reduced cBV/TV% and Tb.N. SCI+IMM also produced the greatest cortical bone loss with distal femoral cortical area and cortical thickness being 14-28% below Controls (p⋜0.01) and bone strength being 37% below Controls (p⋜0.01). SCI+IMM+TM partially alleviated bone deficits, but values remained below Controls. CONCLUSIONS Residual and/or facilitated muscle contractility ameliorate bone decrements after severe SCI. Our novel SCI+IMM model represents a clinically-relevant means of assessing strategies to prevent SCI-induced skeletal deficits.
Collapse
Affiliation(s)
- J F Yarrow
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States, 32608
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bauman WA, Cardozo CP. Osteoporosis in individuals with spinal cord injury. PM R 2014; 7:188-201; quiz 201. [PMID: 25171878 DOI: 10.1016/j.pmrj.2014.08.948] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023]
Abstract
The pathophysiology, clinical considerations, and relevant experimental findings with regard to osteoporosis in individuals with spinal cord injury (SCI) will be discussed. The bone loss that occurs acutely after more neurologically motor complete SCI is unique for its sublesional skeletal distribution and rate, at certain skeletal sites approaching 1% of bone mineral density per week, and its resistance to currently available treatments. The areas of high bone loss include the distal femur, proximal tibia, and more distal boney sites. Evidence from a study performed in monozygotic twins discordant for SCI indicates that sublesional bone loss in the twin with SCI increases for several decades, strongly suggesting that the heightened net bone loss after SCI may persist for an extended period of time. The increased frequency of fragility fracture after paralysis will be discussed, and a few risk factors for such fractures after SCI will be examined. Because vitamin D deficiency, regardless of disability, is a relevant consideration for bone health, as well as an easily reversible condition, the increased prevalence of and treatment target values for vitamin D in this deficiency state in the SCI population will be reviewed. Pharmacological and mechanical approaches to preserving bone integrity in persons with acute and chronic SCI will be reviewed, with emphasis placed on efficacy and practicality. Emerging osteoanabolic agents that improve functioning of WNT/β-catenin signaling after paralysis will be introduced as therapeutic interventions that may hold promise.
Collapse
Affiliation(s)
- William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468; Medical Service, James J. Peters VA Medical Center, Bronx, NY; Departments of Medicine and Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY∗.
| | - Christopher P Cardozo
- Department of Veterans Affairs Rehabilitation Research & Development Service, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY; Medical Service, James J. Peters VA Medical Center, Bronx, NY; Departments of Medicine and Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY(†)
| |
Collapse
|