1
|
Angeli CA, Rejc E, Ugiliweneza B, Boakye M, Forrest GF, Brockman K, Vogt J, Logsdon B, Fields K, Harkema SJ. Activity-based recovery training with spinal cord epidural stimulation improves standing performance in cervical spinal cord injury. J Neuroeng Rehabil 2025; 22:101. [PMID: 40301929 PMCID: PMC12042302 DOI: 10.1186/s12984-025-01636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Individuals with a clinically complete spinal cord injury are unable to stand independently without external assistance. Studies have shown the combination of spinal cord epidural stimulation (scES) targeted for standing with activity-based recovery training (ABRT) can promote independence of standing in individuals with spinal cord injury. This cohort study aimed to assess the effects of stand-ABRT with scES in individuals with cervical chronic spinal cord injury. We evaluated the ability of these individuals to stand independently from physical assistance across multiple sessions. METHODS Thirty individuals participated in this study, all unable to stand independently at the start of the intervention. Individuals were participating in a randomized clinical trial and received stand-ABRT in addition to targeted cardiovascular scES or voluntary scES. During the standing intervention, participants were asked to stand 2 h a day, 5 days a week for 80 sessions (Groups 1 and 2) or 160 sessions (Groups 3 and 4). RESULTS A total of 3,524 training days were considered for analysis. Group 1 had 507 days, group 2 with 578 days, and 1152 and 1269 days for groups 3 and 4 respectively. 71% of sessions reached the two-hour standing goal. All individuals achieved outcomes of lower limb independent extension with spinal cord epidural stimulation, with a wide range throughout a training day. Sixteen participants achieved unassisted hip extension while maintaining unassisted bilateral knee and trunk extension. Participants receiving initial voluntary scES training performed better in unassisted bilateral knee and trunk extension than those receiving initial cardiovascular scES. The lower-limb standing activation pattern changes were consistent with the greater standing independence observed by all groups. CONCLUSIONS Individuals with chronic cervical spinal cord injury were able to achieve various levels of extension without manual assistance during standing with balance assist following stand-ABRT with scES. These results provide evidence that scES modulates network excitability of the injured spinal cord to allow for the integration of afferent and supraspinal descending input to promote standing in individuals with spinal cord injury. TRIAL REGISTRATION The study was registered on Clinical Trials.gov (NCT03364660) prior to subject enrollment.
Collapse
Affiliation(s)
- Claudia A Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
| | - Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Udine, Udine, Italy
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Gail F Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA
| | - Katelyn Brockman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Justin Vogt
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Brittany Logsdon
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Katie Fields
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA
| |
Collapse
|
2
|
Stachowski NJ, Wheel JH, Singh S, Atoche SJ, Yao L, Garcia-Ramirez DL, Giszter SF, Dougherty KJ. Activity of spinal RORβ neurons is related to functional improvements following combination treatment after complete SCI. Proc Natl Acad Sci U S A 2025; 122:e2406333122. [PMID: 40198697 PMCID: PMC12012501 DOI: 10.1073/pnas.2406333122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Various strategies targeting spinal locomotor circuitry have been associated with functional improvements after spinal cord injury (SCI). However, the neuronal populations mediating beneficial effects remain largely unknown. Using a combination therapy in a mouse model of complete SCI, we show that virally delivered brain-derived neurotrophic factor (BDNF) (AAV-BDNF) activates hindlimb stepping and causes hyperreflexia, whereas submotor threshold epidural stimulation (ES) reduces BDNF-induced hyperreflexia. Given their role in gating proprioceptive afferents and as a potential convergence point of BDNF and ES, we hypothesized that an enhanced excitability of inhibitory RORβ neurons would be associated with locomotor improvements. Ex vivo spinal slice recordings from mice with a range of locomotor and hyperreflexia scores revealed that the excitability of RORβ neurons was related to functional outcome post-SCI. Mice with poor locomotor function after SCI had less excitable RORβ neurons, but the excitability of RORβ neurons was similar between the uninjured and "best stepping" SCI groups. Further, chemogenetic activation of RORβ neurons reduced BDNF-induced hyperreflexia and improved stepping, similar to ES. Our findings identify inhibitory RORβ neurons as a target population to limit hyperreflexia and enhance locomotor function after SCI.
Collapse
Affiliation(s)
- Nicholas J. Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Jaimena H. Wheel
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Shayna Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sebastian J. Atoche
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lihua Yao
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - D. Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Simon F. Giszter
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Kimberly J. Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
3
|
Doncel-Pérez E, Guízar-Sahagún G, Grijalva-Otero I. From single to combinatorial therapies in spinal cord injuries for structural and functional restoration. Neural Regen Res 2025; 20:660-670. [PMID: 38886932 PMCID: PMC11433899 DOI: 10.4103/nrr.nrr-d-23-01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities; the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
Collapse
Affiliation(s)
- Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos de Toledo, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| | - Gabriel Guízar-Sahagún
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - Israel Grijalva-Otero
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| |
Collapse
|
4
|
Forouzan EJ, Rashid MY, Nasr NF, Abd-Elsayed A, Knezevic NN. The Potential of Spinal Cord Stimulation in Treating Spinal Cord Injury. Curr Pain Headache Rep 2025; 29:35. [PMID: 39869234 DOI: 10.1007/s11916-024-01311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE OF THE REVIEW In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia. SCS, an emerging intervention, has gained attention for its ability to activate paralyzed muscles and enhance the effects of physical therapy. RECENT FINDINGS Our review demonstrates that SCS can lead to significant functional improvements when optimally combined with rehabilitation strategies. The success of SCS depends largely on the precise placement of electrodes with individualized parameters and the integration of stimulation with intensive physical training. This review underscores the considerable potential of SCS to improve motor outcomes in individuals with paraplegia caused by spinal cord injury, emphasizing the need for further research to optimize SCS parameters, electrode placement, and its integration with rehabilitation protocols. This review highlights the potential of SCS as a therapeutic intervention for improving motor function in individuals with paraplegia caused by spinal cord injuries.
Collapse
Affiliation(s)
- Eli Justin Forouzan
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Mohammed Yousif Rashid
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Ned F Nasr
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA.
- Department of Surgery, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Smith AC, Morey C, Thornton WA, Connor JR, Pfyffer D, Weber Ii KA, Will K, Tefertiller C. Responsiveness to transcutaneous spinal stimulation for upper extremity recovery following spinal cord injury: A case series exploration of midsagittal tissue bridges. J Spinal Cord Med 2025:1-7. [PMID: 39819187 DOI: 10.1080/10790268.2024.2448046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
CONTEXT Transcutaneous spinal stimulation (TSS), applied to the cervical spine, is able to improve voluntary upper extremity strength and function in individuals with cervical spinal cord injury (SCI). While most respond and improve in the presence of TSS, others do not respond as favorably. Midsagittal tissue bridges, adjacent to the lesion, can be observed and measured using T2-weighted magnetic resonance imaging (MRI), and both ventral and dorsal tissue bridges are associated with recovery following SCI. Tissue bridges may also be important for responding to neuromodulation such as TSS. The purpose of this case series was to explore potential relationships between the presence of tissue bridges and responsiveness to TSS for recovery of upper extremity strength and function in research participants with cervical-level SCI. METHODS This study involved six research participants who completed a clinical trial of rehabilitation paired with TSS to improve upper extremity strength and function. Ventral and dorsal midsagittal tissue bridges were quantified using T2-weighted MRI. RESULTS Three participants classified as both strength and function responders showed presence of ventral tissue bridges, while the three strength-only responders did not. The same was found for dorsal tissue bridges, except for one strength-only responder that had a dorsal tissue bridge. CONCLUSIONS The findings of this case series shed light onto the potential importance of midsagittal tissue bridges - a proxy for spared sensorimotor tracts - for responsiveness to TSS for upper extremity recovery following SCI.
Collapse
Affiliation(s)
- Andrew C Smith
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Wesley A Thornton
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado, USA
- Craig Hospital, Englewood, Colorado, USA
| | - Jordan R Connor
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado, USA
- Craig Hospital, Englewood, Colorado, USA
| | - Dario Pfyffer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kenneth A Weber Ii
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | |
Collapse
|
6
|
Tharu NS, Suthar A, Gerasimenko Y, Castillo C, Ng A, Ovechkin A. Noninvasive Electrical Modalities to Alleviate Respiratory Deficits Following Spinal Cord Injury. Life (Basel) 2024; 14:1657. [PMID: 39768364 PMCID: PMC11728181 DOI: 10.3390/life14121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
(1) Background: Respiratory dysfunction is a debilitating consequence of cervical and thoracic spinal cord injury (SCI), resulting from the loss of cortico-spinal drive to respiratory motor networks. This impairment affects both central and peripheral nervous systems, disrupting motor control and muscle innervation, which is essential for effective breathing. These deficits significantly impact the health and quality of life of individuals with SCI. Noninvasive stimulation techniques targeting these networks have emerged as a promising strategy to restore respiratory function. This study systematically reviewed the evidence on noninvasive electrical stimulation modalities targeting respiratory motor networks, complemented by previously unpublished data from our research. (2) Methods: A systematic search of five databases (PubMed, Ovid, Embase, Science Direct, and Web of Science) identified studies published through 31 August 2024. A total of 19 studies involving 194 participants with SCI were included. Unpublished data from our research were also analyzed to provide supplementary insights. (3) Results: Among the stimulation modalities reviewed, spinal cord transcutaneous stimulation (scTS) emerged as a particularly promising therapeutic approach for respiratory rehabilitation in individuals with SCI. An exploratory clinical trial conducted by the authors confirmed the effectiveness of scTS in enhancing respiratory motor performance using a bipolar, 5 kHz-modulated, and 1 ms pulse width modality. However, the heterogeneity in SCI populations and stimulation protocols across studies underscores the need for further standardization and individualized optimization to enhance clinical outcomes. (4) Conclusions: Developing standardized and individualized neuromodulatory protocols, addressing both central and peripheral nervous system impairments, is critical to optimizing respiratory recovery and advancing clinical implementation.
Collapse
Affiliation(s)
- Niraj Singh Tharu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (N.S.T.); (A.S.)
| | - Aastha Suthar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (N.S.T.); (A.S.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Yury Gerasimenko
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA;
- Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Camilo Castillo
- Department of Neurological Surgery, Division of Physical Medicine and Rehabilitation, University of Louisville, Louisville, KY 40202, USA;
| | - Alex Ng
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Alexander Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (N.S.T.); (A.S.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Zhu H, Guest JD, Dunlop S, Xie JX, Gao S, Luo Z, Springer JE, Wu W, Young W, Poon WS, Liu S, Gao H, Yu T, Wang D, Zhou L, Wu S, Zhong L, Niu F, Wang X, Liu Y, So KF, Xu XM. Surgical intervention combined with weight-bearing walking training promotes recovery in patients with chronic spinal cord injury: a randomized controlled study. Neural Regen Res 2024; 19:2773-2784. [PMID: 38595294 PMCID: PMC11168509 DOI: 10.4103/nrr.nrr-d-23-01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00032/figure1/v/2024-04-08T165401Z/r/image-tiff For patients with chronic spinal cord injury, the conventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection, pressure sores, osteoporosis, and deep vein thrombosis. Surgery is rarely performed on spinal cord injury in the chronic phase, and few treatments have been proven effective in chronic spinal cord injury patients. Development of effective therapies for chronic spinal cord injury patients is needed. We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal cord injury to compare intensive rehabilitation (weight-bearing walking training) alone with surgical intervention plus intensive rehabilitation. This clinical trial was registered at ClinicalTrials.gov (NCT02663310). The goal of surgical intervention was spinal cord detethering, restoration of cerebrospinal fluid flow, and elimination of residual spinal cord compression. We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement, reduced spasticity, and more rapid bowel and bladder functional recovery than weight-bearing walking training alone. Overall, the surgical procedures and intensive rehabilitation were safe. American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries. Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.
Collapse
Affiliation(s)
- Hui Zhu
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - James D. Guest
- Neurological Surgery, and the Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sarah Dunlop
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Minderoo Foundation, Perth, WA, Australia
| | - Jia-Xin Xie
- Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Sujuan Gao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhuojing Luo
- Department of Orthopedic Spinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Joe E. Springer
- Spinal Cord and Brain Injury Research Center, Department of Physical Medicine and Rehabilitation, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Wutian Wu
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Wai Sang Poon
- Neurosurgery Department, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administration Region, China
| | - Song Liu
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Hongkun Gao
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Tao Yu
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Dianchun Wang
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Libing Zhou
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Shengping Wu
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Lei Zhong
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Fang Niu
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Xiaomei Wang
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Yansheng Liu
- Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Kwok-Fai So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
ALL AH, Wong KL, Al-Nashash HA. Characterization of Contusive Spinal Cord Injury by Monitoring Motor-Evoked Potential. Biomedicines 2024; 12:2548. [PMID: 39595114 PMCID: PMC11592270 DOI: 10.3390/biomedicines12112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
This study involves longitudinal neuro-electrophysiological analysis using motor-evoked potentials (MEP) and the Basso, Beattie, and Bresnahan behavioral examinations (BBB) to evaluate moderate mid-thoracic contusive spinal cord injury (SCI) in a rat model. OBJECTIVES/BACKGROUND The objective of the study is to characterize the onset and progression of contusive SCI over an eight-week period using a clinically applicable tool in an in vivo model. The background highlights the importance of a reliable and reproducible injury model and assessment tools for SCI. METHODS The methods section describes the experimental setup, including randomly assigned rats in three groups: Sham, Control, and Injury (undergoing a moderate contusive SCI using the NYU-Impactor). MEP monitoring and BBB examinations are conducted at baseline and weekly for eight weeks post-injury. RESULTS The results indicate that the relative MEP power spectral decreased to 11% and 22% in the left and right hindlimbs, respectively, during the first week post-SCI. In the second week, a slight spontaneous recovery was observed, reaching 17% in the left and 31% in the right hindlimbs. Over the following four weeks post-SCI, continuing deterioration of MEP signal power was observed with no detectable recovery. CONCLUSIONS SCI attenuates hindlimb MEP power spectral and reduces locomotion, though the changes in MEP and locomotion exhibit distinct temporal patterns. The MEP monitoring provides valuable insights into the functional integrity of motor pathways following SCI and offer a sensitive and reliable assessment. By implementing MEP monitoring, researchers can track the progression of SCI and evaluate the efficacy of therapeutic interventions quantitatively.
Collapse
Affiliation(s)
- Angelo H. ALL
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Hasan A. Al-Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Rejc E, Zaccaron S, Bowersock C, Pisolkar T, Ugiliweneza B, Forrest GF, Agrawal S, Harkema SJ, Angeli CA. Effects of Robotic Postural Stand Training with Epidural Stimulation on Sitting Postural Control in Individuals with Spinal Cord Injury: A Pilot Study. J Clin Med 2024; 13:4309. [PMID: 39124576 PMCID: PMC11313204 DOI: 10.3390/jcm13154309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background. High-level spinal cord injury (SCI) disrupts trunk control, leading to an impaired performance of upright postural tasks in sitting and standing. We previously showed that a novel robotic postural stand training with spinal cord epidural stimulation targeted at facilitating standing (Stand-scES) largely improved standing trunk control in individuals with high-level motor complete SCI. Here, we aimed at assessing the effects of robotic postural stand training with Stand-scES on sitting postural control in the same population. (2) Methods. Individuals with cervical (n = 5) or high-thoracic (n = 1) motor complete SCI underwent approximately 80 sessions (1 h/day; 5 days/week) of robotic postural stand training with Stand-scES, which was performed with free hands (i.e., without using handlebars) and included periods of standing with steady trunk control, self-initiated trunk and arm movements, and trunk perturbations. Sitting postural control was assessed on a standard therapy mat, with and without scES targeted at facilitating sitting (Sit-scES), before and after robotic postural stand training. Independent sit time and trunk center of mass (CM) displacement were assessed during a 5 min time window to evaluate steady sitting control. Self-initiated antero-posterior and medial-lateral trunk movements were also attempted from a sitting position, with the goal of covering the largest distance in the respective cardinal directions. Finally, the four Neuromuscular Recovery Scale items focused on sitting trunk control (Sit, Sit-up, Trunk extension in sitting, Reverse sit-up) were assessed. (3) Results. In summary, neither statistically significant differences nor large Effect Size were promoted by robotic postural stand training for the sitting outcomes considered for analysis. (4) Conclusions. The findings of the present study, together with previous observations, may suggest that robotic postural stand training with Stand-scES promoted trunk motor learning that was posture- and/or task-specific and, by itself, was not sufficient to significantly impact sitting postural control.
Collapse
Affiliation(s)
- Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; (G.F.F.); (C.A.A.)
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine (UD), Italy;
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
| | - Simone Zaccaron
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine (UD), Italy;
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Collin Bowersock
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
- Biomechatronics Lab, Department of Mechanical Engineering, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, USA
| | - Tanvi Pisolkar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Gail F. Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; (G.F.F.); (C.A.A.)
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Sunil Agrawal
- Department of Mechanical Engineering, Columbia University, 220 S. W. Mudd Building, 500 West 120th Street, New York, NY 10027, USA;
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032, USA
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Claudia A. Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; (G.F.F.); (C.A.A.)
| |
Collapse
|
10
|
Xi P, Yao Q, Liu Y, He J, Tang R, Lang Y. Biomimetic Peripheral Nerve Stimulation Promotes the Rat Hindlimb Motion Modulation in Stepping: An Experimental Analysis. CYBORG AND BIONIC SYSTEMS 2024; 5:0131. [PMID: 38966124 PMCID: PMC11223769 DOI: 10.34133/cbsystems.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 07/06/2024] Open
Abstract
Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke, spinal cord injury, or other diseases. However, most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves. Using the electrical nerve stimulation method, we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing. A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform. Then, characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established. Finally, by testing the selected stimulation parameters in anesthetized rats, we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements. Thus, this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.
Collapse
Affiliation(s)
- Pengcheng Xi
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Qingyu Yao
- National Engineering Research Center of Neuromodulation,
Tsinghua University, Beijing, People’s Republic of China
| | - Yafei Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Jiping He
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Rongyu Tang
- Institute of Semiconductors,
Chinese Academy of Science, Beijing, People’s Republic of China
| | - Yiran Lang
- School of Life Science,
Beijing Institute of Technology, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Garcia-Ramirez DL, McGrath JR, Ha NT, Wheel JH, Atoche SJ, Yao L, Stachowski NJ, Giszter SF, Dougherty KJ. Covert actions of epidural stimulation on spinal locomotor circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599598. [PMID: 38948733 PMCID: PMC11213016 DOI: 10.1101/2024.06.18.599598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Spinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis. Epidural stimulation (ES) is a promising clinical therapy for motor control recovery and is capable of reactivating the lumbar spinal locomotor networks, yet little is known about the effects of ES on locomotor neurons. Previously, we found that both sensory afferent pathways and serotonin exert mixed excitatory and inhibitory actions on lumbar interneurons involved in the generation of the locomotor rhythm, identified by the transcription factor Shox2. However, after chronic complete SCI, sensory afferent inputs to Shox2 interneurons become almost exclusively excitatory and Shox2 interneurons are supersensitive to serotonin. Here, we investigated the effects of ES on these SCI-induced changes. Inhibitory input from sensory pathways to Shox2 interneurons was maintained and serotonin supersensitivity was not observed in SCI mice that received daily sub-motor threshold ES. Interestingly, the effects of ES were maintained for at least three weeks after the ES was discontinued. In contrast, the effects of ES were not observed in Shox2 interneurons from mice that received ES after the establishment of the SCI-induced changes. Our results demonstrate mechanistic actions of ES at the level of identified spinal locomotor circuit neurons and the effectiveness of early treatment with ES on preservation of spinal locomotor circuitry after SCI, suggesting possible therapeutic benefits prior to the onset of motor rehabilitation.
Collapse
|
12
|
Angeli C, Rejc E, Boakye M, Herrity A, Mesbah S, Hubscher C, Forrest G, Harkema S. Targeted Selection of Stimulation Parameters for Restoration of Motor and Autonomic Function in Individuals With Spinal Cord Injury. Neuromodulation 2024; 27:645-660. [PMID: 37140522 PMCID: PMC10624649 DOI: 10.1016/j.neurom.2023.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
STUDY DESIGN This is a report of methods and tools for selection of task and individual configurations targeted for voluntary movement, standing, stepping, blood pressure stabilization, and facilitation of bladder storage and emptying using tonic-interleaved excitation of the lumbosacral spinal cord. OBJECTIVES This study aimed to present strategies used for selection of stimulation parameters for various motor and autonomic functions. CONCLUSIONS Tonic-interleaved functionally focused neuromodulation targets a myriad of consequences from spinal cord injury with surgical implantation of the epidural electrode at a single location. This approach indicates the sophistication of the human spinal cord circuitry and its important role in the regulation of motor and autonomic functions in humans.
Collapse
Affiliation(s)
- Claudia Angeli
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA; Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA.
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Maxwell Boakye
- Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - April Herrity
- Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Physiology, University of Louisville, Louisville, KY, USA
| | - Samineh Mesbah
- Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA
| | - Charles Hubscher
- Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Center, University of Louisville, Louisville, KY, USA; Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Hoover C, Schuerger W, Balser D, McCracken P, Murray TA, Morse L, Parr A, Samadani U, Netoff TI, Darrow DP. Neuromodulation Through Spinal Cord Stimulation Restores Ability to Voluntarily Cycle After Motor Complete Paraplegia. J Neurotrauma 2024; 41:1163-1171. [PMID: 36719784 DOI: 10.1089/neu.2022.0322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract Epidural spinal cord stimulation (eSCS) of the lower thoracic spinal cord has been shown to partially restore volitional movement in patients with complete chronic spinal cord injury (cSCI). Combining eSCS with intensive locomotor training improves motor function, including standing and stepping, but many patients with cSCI suffer from long-standing muscle atrophy and loss of bone mineral density, which may prohibit safe implementation. Safe, accessible, and effective avenues for pairing neuromodulation with activity-based therapy remain unexplored. Cycling is one such option that can be utilized as an eSCS therapy given its low-risk and low-weight-bearing requirement. We investigated the feasibility and kinematics of motor-assisted and passive cycle-based therapy for cSCI patients with epidural spinal cord stimulation. Seven participants who underwent spinal cord stimulation surgery in the Epidural Stimulation After Neurologic Damage (E-STAND) trial (NCT03026816) participated in a cycling task using the motor assist MOTOmed Muvi 300. A factorial design was used such that participants were asked to cycle with and without conscious effort with and without stimulation. We used mixed effects models assessing maximum power output and time pedaling unassisted to evaluate the interaction between stimulation and conscious effort. Cycling was well-tolerated and we observed no adverse events, including in participants up to 17 years post-initial injury and up to 58 years old. All participants were found to be able to pedal without motor assist, which primarily occurred when stimulation and effort were applied together (p = 0.001). Additionally, the combination of stimulation and intention was significantly associated with higher maximum power production (p < 0.0001) and distance pedaled (p = 0.0001). No association was found between volitional movement and participant factors: age, time since injury, and spinal cord atrophy. With stimulation and conscious effort, all participants were able to achieve active cycling without motor assistance. Thus, our stationary cycling factorial study design demonstrated volitional movement restoration with eSCS in a diverse study population of cSCI participants. Further, motor-assist cycling was well-tolerated without any adverse events. Cycling has the potential to be a safe research assessment and physical therapy modality for cSCI patients utilizing eSCS who have a high risk of injury with weight bearing exercise. The cycling modality in this study was demonstrated to be a straightforward assessment of motor function and safe for all participants regardless of age or time since initial injury.
Collapse
Affiliation(s)
- Caleb Hoover
- University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - Willis Schuerger
- University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - David Balser
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Patricia McCracken
- Department of Physical Medicine and Rehabilitation, Veteran Affairs, Minneapolis, Minnesota, USA
| | - Thomas A Murray
- Department of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Leslie Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Department of Neurosurgery, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - David P Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Al-Nashash H, Wong KL, ALL AH. Hypothermia effects on neuronal plasticity post spinal cord injury. PLoS One 2024; 19:e0301430. [PMID: 38578715 PMCID: PMC10997101 DOI: 10.1371/journal.pone.0301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.
Collapse
Affiliation(s)
- Hasan Al-Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Angelo H. ALL
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
15
|
Rejc E, Bowersock C, Pisolkar T, Omofuma I, Luna T, Khan M, Santamaria V, Ugiliweneza B, Angeli CA, Forrest GF, Stein J, Agrawal S, Harkema SJ. Robotic Postural Training With Epidural Stimulation for the Recovery of Upright Postural Control in Individuals With Motor Complete Spinal Cord Injury: A Pilot Study. Neurotrauma Rep 2024; 5:277-292. [PMID: 38515546 PMCID: PMC10956531 DOI: 10.1089/neur.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Activity-based training and lumbosacral spinal cord epidural stimulation (scES) have the potential to restore standing and walking with self-balance assistance after motor complete spinal cord injury (SCI). However, improvements in upright postural control have not previously been addressed in this population. Here, we implemented a novel robotic postural training with scES, performed with free hands, to restore upright postural control in individuals with chronic, cervical (n = 5) or high-thoracic (n = 1) motor complete SCI, who had previously undergone stand training with scES using a walker or a standing frame for self-balance assistance. Robotic postural training re-enabled and/or largely improved the participants' ability to control steady standing, self-initiated trunk movements and upper limb reaching movements while standing with free hands, receiving only external assistance for pelvic control. These improvements were associated with neuromuscular activation pattern adaptations above and below the lesion. These findings suggest that the human spinal cord below the level of injury can generate meaningful postural responses when its excitability is modulated by scES, and can learn to improve these responses. Upright postural control improvements can enhance functional motor recovery promoted by scES after severe SCI.
Collapse
Affiliation(s)
- Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
- Department of Medicine, University of Udine, Udine, Italy
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Collin Bowersock
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tanvi Pisolkar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Isirame Omofuma
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Tatiana Luna
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Moiz Khan
- Department of Radiology at BWH, Harvard Medical School, Boston, Massachusetts, USA
| | - Victor Santamaria
- Department of Physical Therapy, New York Medical College, Valhalla, New York, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Claudia A Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
| | - Gail F Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| | - Sunil Agrawal
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Alazzam AM, Ballance WB, Smith AC, Rejc E, Weber KA, Trainer R, Gorgey AS. Peak Slope Ratio of the Recruitment Curves Compared to Muscle Evoked Potentials to Optimize Standing Configurations with Percutaneous Epidural Stimulation after Spinal Cord Injury. J Clin Med 2024; 13:1344. [PMID: 38592158 PMCID: PMC10932170 DOI: 10.3390/jcm13051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Percutaneous spinal cord epidural stimulation (pSCES) has effectively restored varying levels of motor control in persons with motor complete spinal cord injury (SCI). Studying and standardizing the pSCES configurations may yield specific motor improvements. Previously, reliance on the amplitude of the SCES-evoked potentials (EPs) was used to determine the correct stimulation configurations. Methods: We, hereby, retrospectively examined the effects of wide and narrow-field configurations on establishing the motor recruitment curves of motor units of three different agonist-antagonist muscle groups. Magnetic resonance imaging was also used to individualize SCI participants (n = 4) according to their lesion characteristics. The slope of the recruitment curves using a six-degree polynomial function was calculated to derive the slope ratio for the agonist-antagonist muscle groups responsible for standing. Results: Axial damage ratios of the spinal cord ranged from 0.80 to 0.92, indicating at least some level of supraspinal connectivity for all participants. Despite the close range of these ratios, standing motor performance was enhanced using different stimulation configurations in the four persons with SCI. A slope ratio of ≥1 was considered for the recommended configurations necessary to achieve standing. The retrospectively identified configurations using the supine slope ratio of the recruitment curves of the motor units agreed with that visually inspected muscle EPs amplitude of the extensor relative to the flexor muscles in two of the four participants. Two participants managed to advance the selected configurations into independent standing performance after using tonic stimulation. The other two participants required different levels of assistance to attain standing performance. Conclusions: The findings suggest that the peak slope ratio of the muscle agonists-antagonists recruitment curves may potentially identify the pSCES configurations necessary to achieve standing in persons with SCI.
Collapse
Affiliation(s)
- Ahmad M. Alazzam
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Richmond, VA 23249, USA; (A.M.A.); (W.B.B.)
| | - William B. Ballance
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Richmond, VA 23249, USA; (A.M.A.); (W.B.B.)
| | - Andrew C. Smith
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Enrico Rejc
- Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Kenneth A. Weber
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA;
| | - Robert Trainer
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Physical Medicine and Rehabilitation, Richmond VA Medical Center, Richmond, VA 23249, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Richmond, VA 23249, USA; (A.M.A.); (W.B.B.)
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
17
|
Chalif JI, Chavarro VS, Mensah E, Johnston B, Fields DP, Chalif EJ, Chiang M, Sutton O, Yong R, Trumbower R, Lu Y. Epidural Spinal Cord Stimulation for Spinal Cord Injury in Humans: A Systematic Review. J Clin Med 2024; 13:1090. [PMID: 38398403 PMCID: PMC10889415 DOI: 10.3390/jcm13041090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Spinal cord injury (SCI) represents a major health challenge, often leading to significant and permanent sensorimotor and autonomic dysfunctions. This study reviews the evolving role of epidural spinal cord stimulation (eSCS) in treating chronic SCI, focusing on its efficacy and safety. The objective was to analyze how eSCS contributes to the recovery of neurological functions in SCI patients. (2) Methods: We utilized the PRISMA guidelines and performed a comprehensive search across MEDLINE/PubMed, Embase, Web of Science, and IEEE Xplore databases up until September 2023. We identified studies relevant to eSCS in SCI and extracted assessments of locomotor, cardiovascular, pulmonary, and genitourinary functions. (3) Results: A total of 64 studies encompassing 306 patients were identified. Studies investigated various stimulation devices, parameters, and rehabilitation methods. Results indicated significant improvements in motor function: 44% of patients achieved assisted or independent stepping or standing; 87% showed enhanced muscle activity; 65% experienced faster walking speeds; and 80% improved in overground walking. Additionally, eSCS led to better autonomic function, evidenced by improvements in bladder and sexual functions, airway pressures, and bowel movements. Notable adverse effects included device migration, infections, and post-implant autonomic dysreflexia, although these were infrequent. (4) Conclusion: Epidural spinal cord stimulation is emerging as an effective and generally safe treatment for chronic SCI, particularly when combined with intensive physical rehabilitation. Future research on standardized stimulation parameters and well-defined therapy regimens will optimize benefits for specific patient populations.
Collapse
Affiliation(s)
- J. I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - V. S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - E. Mensah
- Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| | - B. Johnston
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - D. P. Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - E. J. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - M. Chiang
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - O. Sutton
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Yong
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Trumbower
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - Y. Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| |
Collapse
|
18
|
Gorgey AS, Venigalla S, Rehman MU, George B, Rejc E, Gouda JJ. Interleaved configurations of percutaneous epidural stimulation enhanced overground stepping in a person with chronic paraplegia. Front Neurosci 2023; 17:1284581. [PMID: 38144208 PMCID: PMC10740173 DOI: 10.3389/fnins.2023.1284581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Descending motor signals are disrupted after complete spinal cord injury (SCI) resulting in loss of standing and walking. We previously restored standing and trunk control in a person with a T3 complete SCI following implantation of percutaneous spinal cord epidural stimulation (SCES). We, hereby, present a step-by-step procedure on configuring the SCES leads to initiate rhythmic lower limb activation (rhythmic-SCES) resulting in independent overground stepping in parallel bars and using a standard walker. Initially, SCES was examined in supine lying at 2 Hz before initiating stepping-like activity in parallel bars using 20 or 30 Hz; however, single lead configuration (+2, -5) resulted in lower limb adduction and crossing of limbs, impairing the initiation of overground stepping. After 6 months, interleaving the original rhythmic-SCES with an additional configuration (-12, +15) on the opposite lead, resulted in a decrease of the extensive adduction tone and allowed the participant to initiate overground stepping up to 16 consecutive steps. The current paradigm suggests that interleaving two rhythmic-SCES configurations may improve the excitability of the spinal circuitry to better interpret the residual descending supraspinal signals with the ascending proprioceptive inputs, resulting in a stepping-like motor behavior after complete SCI.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Siddharth Venigalla
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Muhammad Uzair Rehman
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Botros George
- ELAGI Center for Physical Therapy and Rehabilitation, Giza, Egypt
| | - Enrico Rejc
- Department of Medicine, University of Udine, Udine, Italy
| | - Jan J. Gouda
- Neurosurgery Department, Louran Hospital, Alexandria, Egypt
- Department of Surgery, Wright State University, Dayton, OH, United States
| |
Collapse
|
19
|
Angeli C, Wagers S, Harkema S, Rejc E. Sensory Information Modulates Voluntary Movement in an Individual with a Clinically Motor- and Sensory-Complete Spinal Cord Injury: A Case Report. J Clin Med 2023; 12:6875. [PMID: 37959340 PMCID: PMC10647542 DOI: 10.3390/jcm12216875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Motor recovery following a complete spinal cord injury is not likely. This is partially due to insurance limitations. Rehabilitation strategies for individuals with this type of severe injury focus on the compensation for the activities of daily living in the home and community and not on the restoration of function. With limited time in therapies, the initial goals must focus on getting the patient home safely without the expectation of recovery of voluntary movement below the level of injury. In this study, we report a case of an individual with a chronic, cervical (C3)-level clinically motor- and sensory-complete injury who was able to perform voluntary movements with both upper and lower extremities when positioned in a sensory-rich environment conducive to the specific motor task. We show how he is able to intentionally perform push-ups, trunk extensions and leg presses only when appropriate sensory information is available to the spinal circuitry. These data show that the human spinal circuitry, even in the absence of clinically detectable supraspinal input, can generate motor patterns effective for the execution of various upper and lower extremity tasks, only when appropriate sensory information is present. Neurorehabilitation in the right sensory-motor environment that can promote partial recovery of voluntary movements below the level of injury, even in individuals diagnosed with a clinically motor-complete spinal cord injury.
Collapse
Affiliation(s)
- Claudia Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ 07052, USA;
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (S.W.); (S.H.)
| | - Sarah Wagers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (S.W.); (S.H.)
- Division of Physical Medicine and Rehabilitation, University of Louisville, Louisville, KY 40292, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (S.W.); (S.H.)
| | - Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ 07052, USA;
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (S.W.); (S.H.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
20
|
Mundra A, Varma Kalidindi K, Chhabra HS, Manghwani J. Spinal cord stimulation for spinal cord injury - Where do we stand? A narrative review. J Clin Orthop Trauma 2023; 43:102210. [PMID: 37663171 PMCID: PMC10470322 DOI: 10.1016/j.jcot.2023.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
Recovery of function following a complete spinal cord injury (SCI) or an incomplete SCI where recovery has plateaued still eludes us despite extensive research. Epidural spinal cord stimulation (SCS) was initially used for managing neuropathic pain. It has subsequently demonstrated improvement in motor function in otherwise non-recovering chronic spinal cord injury in animal and human trials. The mechanisms of how it is precisely effective in doing so will need further research, which would help refine the technology for broader application. Transcutaneous spinal cord stimulation (TSCS) is also emerging as a modality to improve the functional outcome in SCI individuals, especially when coupled with appropriate rehabilitation. Apart from motor recovery, ESCS and TSCS have also shown improvement in autonomic, metabolic, genitourinary, and pulmonary function. Since the literature on this is still in its infancy, with no large-scale randomised trials and different studies using different protocols in a wide range of patients, a review of the present literature is imperative to better understand the latest developments in this field. This article examines the existing literature on the use of SCS for SCI individuals with the purpose of enabling functional recovery. It also examines the voids in the present research, thus providing future directions.
Collapse
Affiliation(s)
- Anuj Mundra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | | | - Harvinder Singh Chhabra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | - Jitesh Manghwani
- Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, 110070, India
| |
Collapse
|
21
|
Calvert JS, Darie R, Parker SR, Shaaya E, Syed S, McLaughlin BL, Fridley JS, Borton DA. Spatiotemporal Distribution of Electrically Evoked Spinal Compound Action Potentials During Spinal Cord Stimulation. Neuromodulation 2023; 26:961-974. [PMID: 35551869 PMCID: PMC9643656 DOI: 10.1016/j.neurom.2022.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent studies using epidural spinal cord stimulation (SCS) have demonstrated restoration of motor function in individuals previously diagnosed with chronic spinal cord injury (SCI). In parallel, the spinal evoked compound action potentials (ECAPs) induced by SCS have been used to gain insight into the mechanisms of SCS-based chronic pain therapy and to titrate closed-loop delivery of stimulation. However, the previous characterization of ECAPs recorded during SCS was performed with one-dimensional, cylindrical electrode leads. Herein, we describe the unique spatiotemporal distribution of ECAPs induced by SCS across the medial-lateral and rostral-caudal axes of the spinal cord, and their relationship to polysynaptic lower-extremity motor activation. MATERIALS AND METHODS In each of four sheep, two 24-contact epidural SCS arrays were placed on the lumbosacral spinal cord, spanning the L3 to L6 vertebrae. Spinal ECAPs were recorded during SCS from nonstimulating contacts of the epidural arrays, which were synchronized to bilateral electromyography (EMG) recordings from six back and lower-extremity muscles. RESULTS We observed a triphasic P1, N1, P2 peak morphology and propagation in the ECAPs during midline and lateral stimulation. Distinct regions of lateral stimulation resulted in simultaneously increased ECAP and EMG responses compared with stimulation at adjacent lateral contacts. Although EMG responses decreased during repetitive stimulation bursts, spinal ECAP amplitude did not significantly change. Both spinal ECAP responses and EMG responses demonstrated preferential ipsilateral recruitment during lateral stimulation compared with midline stimulation. Furthermore, EMG responses were correlated with stimulation that resulted in increased ECAP amplitude on the ipsilateral side of the electrode array. CONCLUSIONS These results suggest that ECAPs can be used to investigate the effects of SCS on spinal sensorimotor networks and to inform stimulation strategies that optimize the clinical benefit of SCS in the context of managing chronic pain and the restoration of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Jonathan S Calvert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Radu Darie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Samuel R Parker
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Sohail Syed
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | | | - Jared S Fridley
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - David A Borton
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA; Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Thorogood NP, Waheed Z, Chernesky J, Burkhart I, Smith J, Sweeney S, Wudlick R, Douglas S, Wang D, Noonan VK. Spinal Cord Injury Community Personal Opinions and Perspectives on Spinal Cord Stimulation. Top Spinal Cord Inj Rehabil 2023; 29:1-11. [PMID: 37235197 PMCID: PMC10208255 DOI: 10.46292/sci22-00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Background Spinal cord stimulation (SCS) clinical trials are evaluating its efficacy and safety for motor, sensory, and autonomic recovery following spinal cord injury (SCI). The perspectives of people living with SCI are not well known and can inform the planning, delivery, and translation of SCS. Objectives To obtain input from people living with SCI on the top priorities for recovery, expected meaningful benefits, risk tolerance, clinical trial design, and overall interest in SCS. Methods Data were collected anonymously from an online survey between February and May 2020. Results A total of 223 respondents living with SCI completed the survey. The majority of respondents identified their gender as male (64%), were 10+ years post SCI (63%), and had a mean age of 50.8 years. Most individuals had a traumatic SCI (81%), and 45% classified themselves as having tetraplegia. Priorities for improved outcome for those with complete or incomplete tetraplegia included fine motor skills and upper body function, whereas priorities for complete or incomplete paraplegia included standing and walking, and bowel function. The meaningful benefits that are important to achieve are bowel and bladder care, less reliance on caregivers, and maintaining physical health. Perceived potential risks include further loss of function, neuropathic pain, and complications. Barriers to participation in clinical trials include inability to relocate, out-of-pocket expenses, and awareness of therapy. Respondents were more interested in transcutaneous SCS than epidural SCS (80% and 61%, respectively). Conclusion SCS clinical trial design, participant recruitment, and translation of the technology can be improved by better reflecting the priorities and preferences of those living with SCI identified from this study.
Collapse
Affiliation(s)
| | - Zeina Waheed
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | - John Chernesky
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | - Ian Burkhart
- North American Spinal Cord Injury Consortium, Niagara Falls, New York
| | - Judith Smith
- North American Spinal Cord Injury Consortium, Niagara Falls, New York
| | - Shannon Sweeney
- North American Spinal Cord Injury Consortium, Niagara Falls, New York
| | - Rob Wudlick
- North American Spinal Cord Injury Consortium, Niagara Falls, New York
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sam Douglas
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | - Di Wang
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | | |
Collapse
|
23
|
Luz A, Rupp R, Ahmadi R, Weidner N. Beyond treatment of chronic pain: a scoping review about epidural electrical spinal cord stimulation to restore sensorimotor and autonomic function after spinal cord injury. Neurol Res Pract 2023; 5:14. [PMID: 37055819 PMCID: PMC10103526 DOI: 10.1186/s42466-023-00241-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Epidural electrical epinal cord stimulation (ESCS) is an established therapeutic option in various chronic pain conditions. In the last decade, proof-of-concept studies have demonstrated that ESCS in combination with task-oriented rehabilitative interventions can partially restore motor function and neurological recovery after spinal cord injury (SCI). In addition to the ESCS applications for improvement of upper and lower extremity function, ESCS has been investigated for treatment of autonomic dysfunction after SCI such as orthostatic hypotension. The aim of this overview is to present the background of ESCS, emerging concepts and its readiness to become a routine therapy in SCI beyond treatment of chronic pain conditions.
Collapse
Affiliation(s)
- Antonia Luz
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Rezvan Ahmadi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
24
|
Boakye M, Ball T, Dietz N, Sharma M, Angeli C, Rejc E, Kirshblum S, Forrest G, Arnold FW, Harkema S. Spinal cord epidural stimulation for motor and autonomic function recovery after chronic spinal cord injury: A case series and technical note. Surg Neurol Int 2023; 14:87. [PMID: 37025529 PMCID: PMC10070319 DOI: 10.25259/sni_1074_2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background:
Traumatic spinal cord injury (tSCI) is a debilitating condition, leading to chronic morbidity and mortality. In recent peer-reviewed studies, spinal cord epidural stimulation (scES) enabled voluntary movement and return of over-ground walking in a small number of patients with motor complete SCI. Using the most extensive case series (n = 25) for chronic SCI, the present report describes our motor and cardiovascular and functional outcomes, surgical and training complication rates, quality of life (QOL) improvements, and patient satisfaction results after scES.
Methods:
This prospective study occurred at the University of Louisville from 2009 to 2020. scES interventions began 2–3 weeks after surgical implantation of the scES device. Perioperative complications were recorded as well as long-term complications during training and device related events. QOL outcomes and patient satisfaction were evaluated using the impairment domains model and a global patient satisfaction scale, respectively.
Results:
Twenty-five patients (80% male, mean age of 30.9 ± 9.4 years) with chronic motor complete tSCI underwent scES using an epidural paddle electrode and internal pulse generator. The interval from SCI to scES implantation was 5.9 ± 3.4 years. Two participants (8%) developed infections, and three additional patients required washouts (12%). All participants achieved voluntary movement after implantation. A total of 17 research participants (85%) reported that the procedure either met (n = 9) or exceeded (n = 8) their expectations, and 100% would undergo the operation again.
Conclusion:
scES in this series was safe and achieved numerous benefits on motor and cardiovascular regulation and improved patient-reported QOL in multiple domains, with a high degree of patient satisfaction. The multiple previously unreported benefits beyond improvements in motor function render scES a promising option for improving QOL after motor complete SCI. Further studies may quantify these other benefits and clarify scES’s role in SCI patients.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Tyler Ball
- Department of Neurosurgery, Vanderbilt University, Nashville,
| | - Nicholas Dietz
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Mayur Sharma
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Claudia Angeli
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Enrico Rejc
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Steven Kirshblum
- Department of Physical Medicine Rehabilitation, Rutgers, Newark, New Jersey,
| | - Gail Forrest
- Department of Physical Medicine Rehabilitation, Rutgers, Newark, New Jersey,
| | - Forest W. Arnold
- Department of Infectious Diseases, University of Louisville, Louisville, United States
| | - Susan Harkema
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| |
Collapse
|
25
|
García-Alén L, Kumru H, Castillo-Escario Y, Benito-Penalva J, Medina-Casanovas J, Gerasimenko YP, Edgerton VR, García-Alías G, Vidal J. Transcutaneous Cervical Spinal Cord Stimulation Combined with Robotic Exoskeleton Rehabilitation for the Upper Limbs in Subjects with Cervical SCI: Clinical Trial. Biomedicines 2023; 11:589. [PMID: 36831125 PMCID: PMC9953486 DOI: 10.3390/biomedicines11020589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
(1) Background: Restoring arm and hand function is a priority for individuals with cervical spinal cord injury (cSCI) for independence and quality of life. Transcutaneous spinal cord stimulation (tSCS) promotes the upper extremity (UE) motor function when applied at the cervical region. The aim of the study was to determine the effects of cervical tSCS, combined with an exoskeleton, on motor strength and functionality of UE in subjects with cSCI. (2) Methods: twenty-two subjects participated in the randomized mix of parallel-group and crossover clinical trial, consisting of an intervention group (n = 15; tSCS exoskeleton) and a control group (n = 14; exoskeleton). The assessment was carried out at baseline, after the last session, and two weeks after the last session. We assessed graded redefined assessment of strength, sensibility, and prehension (GRASSP), box and block test (BBT), spinal cord independence measure III (SCIM-III), maximal voluntary contraction (MVC), ASIA impairment scale (AIS), and WhoQol-Bref; (3) Results: GRASSP, BBT, SCIM III, cylindrical grip force and AIS motor score showed significant improvement in both groups (p ≤ 0.05), however, it was significantly higher in the intervention group than the control group for GRASSP strength, and GRASSP prehension ability (p ≤ 0.05); (4) Conclusion: our findings show potential advantages of the combination of cervical tSCS with an exoskeleton to optimize the outcome for UE.
Collapse
Affiliation(s)
- Loreto García-Alén
- Fundación Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, 08916 Badalona, Spain
- Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, 08916 Badalona, Spain
- Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciéncies de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Yolanda Castillo-Escario
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Automatic Control, Universitat Politécnica de Catalunya-Barcelona Tech (UPC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Jesús Benito-Penalva
- Fundación Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, 08916 Badalona, Spain
- Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciéncies de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Josep Medina-Casanovas
- Fundación Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, 08916 Badalona, Spain
- Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciéncies de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology, St. Petersburg 199034, Russia
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | - Victor Reggie Edgerton
- Rancho Research Institute, Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Guillermo García-Alías
- Fundación Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, 08916 Badalona, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia & Insititute of Neuroscience, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Joan Vidal
- Fundación Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, 08916 Badalona, Spain
- Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciéncies de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| |
Collapse
|
26
|
Angeli CA, Gerasimenko Y. Combined cervical transcutaneous with lumbosacral epidural stimulation improves voluntary control of stepping movements in spinal cord injured individuals. Front Bioeng Biotechnol 2023; 11:1073716. [PMID: 36815892 PMCID: PMC9932494 DOI: 10.3389/fbioe.2023.1073716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Lumbosacral spinal cord neuromodulation has shown the ability to restore voluntary control and stepping in individuals with chronic spinal cord injury. Methods: We combined cervical transcutaneous and lumbar epidural stimulation to explore the brain-spinal connectomes and their influence in spinal excitability and interlimb coupling. Four individuals with a prior implanted lumbosacral spinal cord epidural stimulator participated in the study. We assessed lower extremity muscle activity and kinematics during intentional stepping in both non-weight bearing and weight-bearing environments. Results: Our results showed an inhibition of motor evoked potentials generated by spinal cord epidural stimulation when cervical transcutaneous stimulation is applied. In contrast, when intentional stepping is performed in a non-weight bearing setting, range of motion, motor output amplitude, and coordination are improved when cervical transcutaneous and lumbar epidural stimulations are combined. Similarly, with both stimulations applied, coordination is improved and motor output variability is decreased when intentional stepping is performed on a treadmill with body weight support. Discussion: Combined transcutaneous cervical and epidural lumbar stimulation demonstrated an improvement of voluntary control of stepping in individuals with chronic motor complete paralysis. The immediate functional improvement promoted by the combination of cervical and lumbar stimulation adds to the body of evidence for increasing spinal excitability and improvement of function that is possible in individuals with chronic paralysis.
Collapse
Affiliation(s)
- Claudia A. Angeli
- Bioengineering Department, J. B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
- Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
27
|
Bao Y, Xie Q, Sun XP, Shi JJ, Zhang J, Pan HJ, Li DY, Liang Y. Safety and effectiveness of electromyography-induced rehabilitation treatment after epidural electrical stimulation for spinal cord injury: study protocol for a prospective, randomized, controlled trial. Neural Regen Res 2023; 18:819-824. [DOI: 10.4103/1673-5374.353507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Younger DS. Spinal cord motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:3-42. [PMID: 37620076 DOI: 10.1016/b978-0-323-98817-9.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Spinal cord diseases are frequently devastating due to the precipitous and often permanently debilitating nature of the deficits. Spastic or flaccid paraparesis accompanied by dermatomal and myotomal signatures complementary to the incurred deficits facilitates localization of the insult within the cord. However, laboratory studies often employing disease-specific serology, neuroradiology, neurophysiology, and cerebrospinal fluid analysis aid in the etiologic diagnosis. While many spinal cord diseases are reversible and treatable, especially when recognized early, more than ever, neuroscientists are being called to investigate endogenous mechanisms of neural plasticity. This chapter is a review of the embryology, neuroanatomy, clinical localization, evaluation, and management of adult and childhood spinal cord motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
29
|
Shackleton C, Hodgkiss D, Samejima S, Miller T, Perez MA, Nightingale TE, Sachdeva R, Krassioukov AV. When the whole is greater than the sum of its parts: a scoping review of activity-based therapy paired with spinal cord stimulation following spinal cord injury. J Neurophysiol 2022; 128:1292-1306. [PMID: 36222423 DOI: 10.1152/jn.00367.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in both motor and autonomic impairments, which can negatively affect independence and quality of life and increase morbidity and mortality. Despite emerging evidence supporting the benefits of activity-based training and spinal cord stimulation as two distinct interventions for sensorimotor and autonomic recovery, the combined effects of these modalities are currently uncertain. This scoping review evaluated the effectiveness of paired interventions (exercise + spinal neuromodulation) for improving sensorimotor and autonomic functions in individuals with SCI. Four electronic databases were searched for peer-reviewed manuscripts (Medline, Embase, CINAHL, and EI-compedex Engineering Village) and data were independently extracted by two reviewers using pre-established extraction tables. A total of 15 studies representing 79 participants were included in the review, of which 73% were conducted within the past 5 years. Only two of the studies were randomized controlled studies, while the other 13 studies were case or case-series designs. Compared with activity-based training alone, spinal cord stimulation combined with activity-based training improved walking and voluntary muscle activation, and augmented improvements in lower urinary tract, bowel, resting metabolic rate, peak oxygen consumption, and thermoregulatory function. Spinal neuromodulation in combination with use-dependent therapies may provide greater neurorecovery and induce long-term benefits for both motor and autonomic function beyond the capacity of traditional activity-based therapies. However, evidence for combinational approaches is limited and there is no consensus for outcome measures or optimal protocol parameters, including stimulation settings. Future large-scale randomized trials into paired interventions are warranted to further investigate these preliminary findings.
Collapse
Affiliation(s)
- Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Monica A Perez
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Shirley Ryan Ability Laboratory, Chicago, Illinois
- Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Thomas E Nightingale
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, United Kingdom
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Program, GF Strong Rehabilitation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Hofer AS, Scheuber MI, Sartori AM, Good N, Stalder SA, Hammer N, Fricke K, Schalbetter SM, Engmann AK, Weber RZ, Rust R, Schneider MP, Russi N, Favre G, Schwab ME. Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury. Brain 2022; 145:3681-3697. [PMID: 35583160 PMCID: PMC9586551 DOI: 10.1093/brain/awac184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability.
Collapse
Affiliation(s)
- Anna-Sophie Hofer
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Myriam I Scheuber
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Andrea M Sartori
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicolas Good
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Stephanie A Stalder
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicole Hammer
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Kai Fricke
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sina M Schalbetter
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anne K Engmann
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Rebecca Z Weber
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Ruslan Rust
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Natalie Russi
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Giacomin Favre
- Department of Economics, University of Zurich, 8032 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
31
|
Lin A, Shaaya E, Calvert JS, Parker SR, Borton DA, Fridley JS. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine 2022; 19:703-734. [PMID: 36203296 PMCID: PMC9537842 DOI: 10.14245/ns.2244652.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury often leads to loss of sensory, motor, and autonomic function below the level of injury. Recent advancements in spinal cord electrical stimulation (SCS) for spinal cord injury have provided potential avenues for restoration of neurologic function in affected patients. This review aims to assess the efficacy of spinal cord stimulation, both epidural (eSCS) and transcutaneous (tSCS), on the return of function in individuals with chronic spinal cord injury. The current literature on human clinical eSCS and tSCS for spinal cord injury was reviewed. Seventy-one relevant studies were included for review, specifically examining changes in volitional movement, changes in muscle activity or spasticity, or return of cardiovascular pulmonary, or genitourinary autonomic function. The total participant sample comprised of 327 patients with spinal cord injury, each evaluated using different stimulation protocols, some for sensorimotor function and others for various autonomic functions. One hundred eight of 127 patients saw improvement in sensorimotor function, 51 of 70 patients saw improvement in autonomic genitourinary function, 32 of 32 patients saw improvement in autonomic pulmonary function, and 32 of 36 patients saw improvement in autonomic cardiovascular function. Although this review highlights SCS as a promising therapeutic neuromodulatory technique to improve rehabilitation in patients with SCI, further mechanistic studies and stimulus parameter optimization are necessary before clinical translation.
Collapse
Affiliation(s)
- Alice Lin
- Warren Alpert Medical School, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA
| | | | | | - David A. Borton
- School of Engineering, Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI, USA,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jared S. Fridley
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA,Corresponding Author Jared S. Fridley Department of Neurosurgery, Brown University, Rhode Island Hospital, 593 Eddy St # 1, Providence, RI 02903, USA
| |
Collapse
|
32
|
Mansour NM, Peña Pino I, Freeman D, Carrabre K, Venkatesh S, Darrow D, Samadani U, Parr AM. Advances in Epidural Spinal Cord Stimulation to Restore Function after Spinal Cord Injury: History and Systematic Review. J Neurotrauma 2022; 39:1015-1029. [PMID: 35403432 DOI: 10.1089/neu.2022.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.
Collapse
Affiliation(s)
- Nadine M Mansour
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kailey Carrabre
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, VA Healthcare System, Minneapolis, Minnesota, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
33
|
Harkema S, Angeli C, Gerasimenko Y. Historical development and contemporary use of neuromodulation in human spinal cord injury. Curr Opin Neurol 2022; 35:536-543. [PMID: 35856918 DOI: 10.1097/wco.0000000000001080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There is a long history of neuromodulation of the spinal cord after injury in humans with recent momentum of studies showing evidence for therapeutic potential. Nonrandomized, mechanistic, hypothesis-driven, small cohort, epidural stimulation proof of principle studies provide insight into the human spinal circuitry functionality and support the pathway toward clinical treatments. RECENT FINDINGS Individuals living with spinal cord injury can recover motor, cardiovascular, and bladder function even years after injury using neuromodulation. Integration of continuous feedback from sensory information, task-specific training, and optimized excitability state of human spinal circuitry are critical spinal mechanisms. Neuromodulation activates previously undetectable residual supraspinal pathways to allow intentional (voluntary) control of motor movements. Further discovery unveiled the human spinal circuitry integrated regulatory control of motor and autonomic systems indicating the realistic potential of neuromodulation to improve the capacity incrementally, but significantly for recovery after severe spinal cord injury. SUMMARY The discovery that both motor and autonomic function recovers with lumbosacral spinal cord placement of the electrode reveals exciting avenues for a synergistic overall improvement in function, health, and quality of life for those who have been living with the consequences of spinal cord injury even for decades.
Collapse
Affiliation(s)
- Susan Harkema
- Department of Neurological Surgery, University of Louisville
- Frazier Rehabilitation Institute, University of Louisville Health
- Kentucky Spinal Cord Injury Research Center, University of Louisville
| | - Claudia Angeli
- Frazier Rehabilitation Institute, University of Louisville Health
- Kentucky Spinal Cord Injury Research Center, University of Louisville
- Department of Bioengineering
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
34
|
Darrow DP, Balser DY, Freeman D, Pelrine E, Krassioukov A, Phillips A, Netoff T, Parr A, Samadani U. Effect of epidural spinal cord stimulation after chronic spinal cord injury on volitional movement and cardiovascular function: study protocol for the phase II open label controlled E-STAND trial. BMJ Open 2022; 12:e059126. [PMID: 35851008 PMCID: PMC9297213 DOI: 10.1136/bmjopen-2021-059126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) leads to significant changes in morbidity, mortality and quality of life (QOL). Currently, there are no effective therapies to restore function after chronic SCI. Preliminary studies have indicated that epidural spinal cord stimulation (eSCS) is a promising therapy to improve motor control and autonomic function for patients with chronic SCI. The aim of this study is to assess the effects of tonic eSCS after chronic SCI on quantitative outcomes of volitional movement and cardiovascular function. Our secondary objective is to optimise spinal cord stimulation parameters for volitional movement. METHODS AND ANALYSIS The Epidural Stimulation After Neurologic Damage (ESTAND) trial is a phase II single-site self-controlled trial of epidural stimulation with the goal of restoring volitional movement and autonomic function after motor complete SCI. Participants undergo epidural stimulator implantation and are followed up over 15 months while completing at-home, mobile application-based movement testing. The primary outcome measure integrates quantity of volitional movement and similarity to normal controls using the volitional response index (VRI) and the modified Brain Motor Control Assessment. The mobile application is a custom-designed platform to support participant response and a kinematic task to optimise the settings for each participant. The application optimises stimulation settings by evaluating the parameter space using movement data collected from the tablet application and accelerometers. A subgroup of participants with cardiovascular dysautonomia are included for optimisation of blood pressure stabilisation. Indirect effects of stimulation on cardiovascular function, pain, sexual function, bowel/bladder, QOL and psychiatric measures are analysed to assess generalisability of this targeted intervention. ETHICS AND DISSEMINATION This study has been approved after full review by the Minneapolis Medical Research Foundation Institutional Review Board and by the Minneapolis VA Health Care System. This project has received Food and Drug Administration investigational device exemption approval. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars. TRIAL REGISTRATION NUMBER NCT03026816.
Collapse
Affiliation(s)
- David P Darrow
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - David Young Balser
- Rehabilitation Medicine, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - David Freeman
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - Eliza Pelrine
- Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Andrei Krassioukov
- Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Phillips
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Theoden Netoff
- Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Ann Parr
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Surgery, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
35
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clin Neurophysiol 2022; 138:61-73. [PMID: 35364465 DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Surface electromyography (sEMG) is a common electrophysiological assessment used in clinical trials in individuals with spinal cord injury (SCI). This scoping review summarizes the most common sEMG techniques used to address clinically relevant neurorehabilitation questions. We focused on the role of sEMG assessments in the clinical practice and research studies on neurorehabilitation after SCI, and how sEMG reflects the changes observed with rehabilitation. Additionally, this review emphasizes the limitations and pitfalls of the sEMG assessments in the field of neurorehabilitation after SCI. METHODS A comprehensive search of Medline (Ovid), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase, Emcare, Cumulative Index to Nursing & Allied Health Literature, and PubMed was conducted to find peer-reviewed journal articles that included individuals post-SCI that participated in neurorehabilitation interventions using sEMG assessments. This is a scoping review using a systematic search (hybrid review). RESULTS Of 4522 references captured in the primary database searches, 100 references were selected and included in the scoping review. The main focus of the studies was on neurorehabilitation using sEMG biofeedback, brain stimulation, locomotor training, neuromuscular electrical stimulation (NMES), paired-pulse stimulation, pharmacology, posture and balance training, spinal cord stimulation, upper limb training, vibration, and photobiomodulation. CONCLUSIONS Most studies employed sEMG amplitude to understand the effects of neurorehabilitation on muscle activation during volitional efforts or reduction of spontaneous muscle activity (e.g., spasms, spasticity, and hypertonia). Further studies are needed to understand the long-term reliability of sEMG amplitude, to circumvent normalization issues, and to provide a deeper physiological background to the different sEMG analyses. SIGNIFICANCE This scoping review reveals the potential of sEMG in exploring promising neurorehabilitation strategies following SCI and discusses the barriers limiting its widespread use in the clinic.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.
| | - Matheus Joner Wiest
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Guijin Li
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Canada
| | - Julio Cesar Furlan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Canada; Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Physical Therapy, University of Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
36
|
Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Exp Neurol 2022; 355:114138. [DOI: 10.1016/j.expneurol.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
37
|
Shin HE, Kim M, Lee D, Jang JY, Soh Y, Yun DH, Kim S, Yang J, Kim MK, Lee H, Won CW. Therapeutic effects of functional electrical stimulation on physical performance and muscle strength in post-stroke older adults: a review. Ann Geriatr Med Res 2022; 26:16-24. [PMID: 35313099 PMCID: PMC8984173 DOI: 10.4235/agmr.22.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Stroke-related disabilities cause poor physical performance, especially among older adults, and can lead to sarcopenia. Functional electrical stimulation (FES) has been used to improve physical performance in individuals with neurological disorders and increase muscle mass and strength to counteract muscle atrophy. This review covers the principles, underlying mechanisms, and therapeutic effects of FES on physical performance and skeletal muscle function in post-stroke older adults. We found that FES restored weakened dorsiflexor and hip abductor strength during the swing and stance phases of gait, respectively, to help support weight-bearing and upright posture and facilitate static and dynamic balance in this population. FES may also be effective in improving muscle mass and strength to prevent muscle atrophy. However, previous studies on this topic in post-stroke older adults are scarce, and further studies are needed to confirm this supposition.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Miji Kim
- Department of Biomedical Science and Technology, East-West Medical Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
| | - Daehyun Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jae Young Jang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yunsoo Soh
- Department of Physical Medicine & Rehabilitation Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Dong Hwan Yun
- Department of Physical Medicine & Rehabilitation Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Jisoo Yang
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Maeng Kyu Kim
- Sports Medicine Lab., Department of Physical Education, Kyungpook National University, Daegu, Korea
| | | | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Corresponding Authors: Chang Won Won, MD, PhD Department of Family Medicine, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea E-mail:
| |
Collapse
|
38
|
Williams PT, Truong DQ, Seifert AC, Xu J, Bikson M, Martin JH. Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat. Brain Stimul 2022; 15:624-634. [DOI: 10.1016/j.brs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
|
39
|
Hoey RF, Medina-Aguiñaga D, Khalifa F, Ugiliweneza B, Wang D, Zdunowski S, Fell J, Naglah A, El-Baz AS, Herrity AN, Harkema SJ, Hubscher CH. Thoracolumbar epidural stimulation effects on bladder and bowel function in uninjured and chronic transected anesthetized rats. Sci Rep 2022; 12:2137. [PMID: 35136100 PMCID: PMC8826941 DOI: 10.1038/s41598-022-06011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Pre-clinical studies have shown that spinal cord epidural stimulation (scES) at the level of pelvic and pudendal nerve inputs/outputs (L5-S1) alters storage and/or emptying functions of both the bladder and bowel. The current mapping experiments were conducted to investigate scES efficacy at the level of hypogastric nerve inputs/outputs (T13-L2) in male and female rats under urethane anesthesia. As found with L5-S1 scES, T13-L2 scES at select frequencies and intensities of stimulation produced an increase in inter-contraction interval (ICI) in non-injured female rats but a short-latency void in chronic T9 transected rats, as well as reduced rectal activity in all groups. However, the detrusor pressure during the lengthened ICI (i.e., urinary hold) remained at a low pressure and was not elevated as seen with L5-S1 scES, an effect that's critical for translation to the clinic as high fill pressures can damage the kidneys. Furthermore, T13-L2 scES was shown to stimulate voiding post-transection by increasing bladder activity while also directly inhibiting the external urethral sphincter, a pattern necessary to overcome detrusor-sphincter dyssynergia. Additionally, select scES parameters at T13-L2 also increased distal colon activity in all groups. Together, the current findings suggest that optimization of scES for bladder and bowel will likely require multiple electrode cohorts at different locations that target circuitries coordinating sympathetic, parasympathetic and somatic outputs.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA.,Physical Medicine and Rehabilitation Department, MetroHealth Rehabilitation Institute of Ohio, Cleveland, OH, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Fahmi Khalifa
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Health Management and Systems Science, School of Public Health and Information Science, University of Louisville, Louisville, KY, USA
| | - Dengzhi Wang
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Sharon Zdunowski
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Jason Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ahmed Naglah
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Ayman S El-Baz
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - April N Herrity
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA. .,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
40
|
Abstract
The sudden loss of movement after spinal cord injury (SCI) is life-changing and is a major impetus to study spinal cord motor system plasticity and devise novel repair strategies. This review focuses on the motor cortex and the corticospinal tract, which are key to producing voluntary movements. The motor cortex projects directly to the spinal cord, via the corticospinal tract, and indirectly, via relays in the brain stem. With loss of the corticospinal tract after SCI, the indirect paths may bypass the injury and play an important role in voluntary control. In health and after injury, the spinal cord is a key site for activity-dependent neuroplasticity of the corticospinal system. Three kinds of activity-dependent plasticity have been identified: (1) corticospinal tract axon sprouting after electrical stimulation of the motor cortex; (2) synaptic competition between corticospinal tract and proprioceptive afferent fiber terminations; and (3) long-term potentiation (LTP) at the corticospinal tract-spinal interneuron synapse. SCI damages descending motor pathway connections and, in turn, triggers a loss of down-stream activity-dependent processes. This activity loss produces spinal interneuron degeneration and several activity-dependent maladaptive changes that underly hyperreflexia, spasticity, and spasms. Animal studies show that phasic electrical and tonic direct current stimulation can be used to supplement activity after SCI to reduce the activity-dependent degenerative and maladaptive changes. Importantly, when applied chronically neuromodulation recruits spinal neuroplasticity to improve function after SCI by promoting activity-dependent corticospinal axon sprouting and synapse formation. This helps establish new functional connections and strengthens spared connections. Combining neuromodulation to promote repair and motor rehabilitation to train circuits can most effectively promote motor recovery.
Collapse
Affiliation(s)
- John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, United States; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States.
| |
Collapse
|
41
|
Spinal cord imaging markers and recovery of standing with epidural stimulation in individuals with clinically motor complete spinal cord injury. Exp Brain Res 2021; 240:279-288. [PMID: 34854934 DOI: 10.1007/s00221-021-06272-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/20/2021] [Indexed: 02/04/2023]
Abstract
Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.
Collapse
|
42
|
Hachmann JT, Yousak A, Wallner JJ, Gad PN, Edgerton VR, Gorgey AS. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol 2021; 126:1843-1859. [PMID: 34669485 DOI: 10.1152/jn.00020.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.
Collapse
Affiliation(s)
- Jan T Hachmann
- Department of Neurological Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Yousak
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Josephine J Wallner
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Badalona, Barcelona, Spain
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
43
|
Invasive and Non-Invasive Approaches of Electrical Stimulation to Improve Physical Functioning after Spinal Cord Injury. J Clin Med 2021; 10:jcm10225356. [PMID: 34830637 PMCID: PMC8625266 DOI: 10.3390/jcm10225356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
This review of literature provides the latest evidence involving invasive and non-invasive uses of electrical stimulation therapies that assist in restoring functional abilities and the enhancement of quality of life in those with spinal cord injuries. The review includes neuromuscular electrical stimulation and functional electrical stimulation activities that promote improved body composition changes and increased muscular strength, which have been shown to improve abilities in activities of daily living. Recommendations for optimizing electrical stimulation parameters are also reported. Electrical stimulation is also used to enhance the skills of reaching, grasping, standing, and walking, among other activities of daily living. Additionally, we report on the use of invasive and non-invasive neuromodulation techniques targeting improved mobility, including standing, postural control, and assisted walking. We attempt to summarize the effects of epidural stimulation on cardiovascular performance and provide a mechanistic explanation to the current research findings. Future trends such as the combination of epidural stimulation and exoskeletal-assisted walking are also discussed.
Collapse
|
44
|
Momeni K, Pilkar R, Ravi M, Forrest GF. Isolating Transcutaneous Spinal Cord Stimulation Artifact to Identify Motor Response during Walking. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6569-6572. [PMID: 34892614 DOI: 10.1109/embc46164.2021.9630099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The objective of this investigation was to demonstrate the applicability of a custom-developed EMD-Notch filtering algorithm to isolate the scTS-induced artifact from sEMG signals during walking in an individual with motor-incomplete SCI. Overall, the EMD-Notch filtering algorithm provides an effective approach to isolate the scTS artifact, extract the sEMG data, and further study the modulation of the spinal neuronal networks during dynamic activities.Clinical Relevance- This investigation will help with the modification of individualized scTS parameters to achieve task-specific neuromodulatory effects.
Collapse
|
45
|
Calvert JS, Gill ML, Linde MB, Veith DD, Thoreson AR, Lopez C, Lee KH, Gerasimenko YP, Edgerton VR, Lavrov IA, Zhao KD, Grahn PJ, Sayenko DG. Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. J Clin Med 2021; 10:jcm10214898. [PMID: 34768418 PMCID: PMC8584516 DOI: 10.3390/jcm10214898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Andrew R. Thoreson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Kendall H. Lee
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | - Victor R. Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Peter J. Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-363-7949
| |
Collapse
|
46
|
Jervis Rademeyer H, Gauthier C, Masani K, Pakosh M, Musselman KE. The effects of epidural stimulation on individuals living with spinal cord injury or disease: a scoping review. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1962051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hope Jervis Rademeyer
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | - Cindy Gauthier
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Maureen Pakosh
- Library and Information Services, University Health Network - Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Kristin E. Musselman
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
McHugh C, Taylor C, Mockler D, Fleming N. Epidural spinal cord stimulation for motor recovery in spinal cord injury: A systematic review. NeuroRehabilitation 2021; 49:1-22. [PMID: 33967072 DOI: 10.3233/nre-210093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epidural spinal cord stimulation (ESCS) emerged as a technology for eliciting motor function in the 1990's and was subsequently employed therapeutically in the population with spinal cord injury (SCI). Despite a considerable number of ESCS studies, a comprehensive systematic review of ESCS remains unpublished. OBJECTIVE The current review of the existing literature evaluated the efficacy of ESCS for improving motor function in individuals with SCI. METHODS A search for ESCS studies was performed using the following databases: Medline (Ovid), Web of Science and Embase. Furthermore, to maximize results, an inverse manual search of references cited by identified articles was also performed. Studies published between January 1995 and June 2020 were included. The search was constructed around the following key terms: Spinal cord stimulation, SCI and motor response generation. RESULTS A total of 3435 articles were initially screened, of which 18 met the inclusion criteria. The total sample comprised of 24 participants with SCI. All studies reported some measure of improvement in motor activity with ESCS, with 17 reporting altered EMG responses. Functional improvements were reported in stepping (n = 11) or muscle force (n = 4). Only 5 studies assessed ASIA scale pre- and post-intervention, documenting improved classification in 4 of 11 participants. Appraisal using the modified Downs and Black quality checklist determined that reviewed studies were of poor quality. Due to heterogeneity of outcome measures utilized in studies reviewed, a meta-analysis of data was not possible. CONCLUSION While the basic science is encouraging, the therapeutic efficacy of ESCS remains inconclusive.
Collapse
Affiliation(s)
- Conor McHugh
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Clare Taylor
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James's Hospital, Dublin, Ireland
| | - Neil Fleming
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Ibáñez J, Angeli CA, Harkema SJ, Farina D, Rejc E. Recruitment order of motor neurons promoted by epidural stimulation in individuals with spinal cord injury. J Appl Physiol (1985) 2021; 131:1100-1110. [PMID: 34382840 PMCID: PMC8461808 DOI: 10.1152/japplphysiol.00293.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with a scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle, and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, while stimulation parameters and standing condition remained constant, with average values ranging between 3.0±0.1 and 4.4±0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI.
Collapse
Affiliation(s)
- Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, United Kingdom.,Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States.,Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States.,Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, United States.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
49
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
50
|
Herrity AN, Hubscher CH, Angeli CA, Boakye M, Harkema SJ. Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans. J Spinal Cord Med 2021; 44:513-514. [PMID: 34270394 PMCID: PMC8288117 DOI: 10.1080/10790268.2021.1918967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- April N. Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA,Correspondence to: April N. Herrity. E-mail:
| | - Charles H. Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|