1
|
Morioka K, Tazoe T, Huie JR, Hayakawa K, Okazaki R, Guandique CF, Almeida CA, Haefeli J, Hamanoue M, Endoh T, Tanaka S, Bresnahan JC, Beattie MS, Ogata T, Ferguson AR. Disuse plasticity limits spinal cord injury recovery. iScience 2025; 28:112180. [PMID: 40224010 PMCID: PMC11987634 DOI: 10.1016/j.isci.2025.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Use-dependent plasticity after spinal cord injury (SCI) enhances neuromotor function, however, the optimal timing to initiate rehabilitation remains controversial. To test impacts of early disuse, we established a rodent model of transient hindlimb suspension in acute phase SCI. Early disuse in the first 2-week after SCI undermined recovery on open-field locomotion, kinematics, and swim tests even after 6-week of normal gravity reloading. Early disuse produced chronic spinal circuit hyper-excitability in H-reflex and interlimb reflex tests. Quantitative synaptoneurosome analysis of lumboventral spinal cords revealed shifts in AMPA receptor (AMPAR) subunit GluA1 localization and serine 881 phosphorylation, reflecting enduring synaptic memories of early disuse stored in the spinal cord. Automated confocal analysis of motoneurons revealed persistent shifts toward GluA2-lacking, calcium-permeable AMPARs in disuse subjects. Unsupervised machine learning associated multidimensional synaptic changes with persistent recovery deficits in SCI. The results argue for early aggressive rehabilitation to prevent disuse plasticity that limits SCI recovery.
Collapse
Affiliation(s)
- Kazuhito Morioka
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute (OTI), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toshiki Tazoe
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Neural Prosthesis Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J. Russell Huie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic and Spine Surgery, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Rentaro Okazaki
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | - Cristian F. Guandique
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Carlos A. Almeida
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jenny Haefeli
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Makoto Hamanoue
- Department of Physiology, Advanced Medical Research Center, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Endoh
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Faculty of Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jacqueline C. Bresnahan
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michael S. Beattie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Adam R. Ferguson
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System (SFVAHCS), San Francisco, CA, USA
| |
Collapse
|
2
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
3
|
Badr L, Gagné-Pelletier L, Massé-Alarie H, Mercier C. Effect of Phasic Experimental Pain Applied during Motor Preparation or Execution on Motor Performance and Adaptation in a Reaching Task: A Randomized Trial. Brain Sci 2024; 14:851. [PMID: 39335347 PMCID: PMC11430375 DOI: 10.3390/brainsci14090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Musculoskeletal conditions often involve pain related to specific movements. However, most studies on the impact of experimental pain on motor performance and learning have used tonic pain models. This study aimed to evaluate the effect of experimental phasic pain during the preparation or execution of a reaching task on the acquisition and retention of sensorimotor adaptation. Participants were divided into three groups: no pain, pain during motor preparation, and pain during motor execution. Pain was induced over the scapula with a laser while participants performed a force field adaptation task over two days. To assess the effect of pain on motor performance, two baseline conditions (with or without pain) involving unperturbed pointing movements were also conducted. The results indicated that the timing of the nociceptive stimulus differently affected baseline movement performance. Pain during motor preparation shortened reaction time, while pain during movement execution decreased task performance. However, when these baseline effects were accounted for, no impact of pain on motor adaptation or retention was observed. All groups showed significant improvements in all motor variables for both adaptation and retention. In conclusion, while acute phasic pain during motor preparation or execution can affect the movement itself, it does not interfere with motor acquisition or retention during a motor adaptation task.
Collapse
Affiliation(s)
- Laïla Badr
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Léandre Gagné-Pelletier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Hugo Massé-Alarie
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Machado RR, Palinkas M, de Vasconcelos PB, Gollino S, Arnoni VW, Prandi MVR, Regalo IH, Siéssere S, Regalo SC. Lower limb balance, ankle dorsiflexion, orofacial tissue pressure, and occlusal force of rugby players. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:173-178. [PMID: 38708318 PMCID: PMC11067736 DOI: 10.1016/j.smhs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 05/07/2024] Open
Abstract
This cross-sectional study examined the lower limb balance, ankle dorsiflexion, orofacial tissue pressure, and occlusal strength of rugby players. Twenty-six participants were divided into groups: rugby players (n = 13) and healthy sedentary adults (n = 13). Participants underwent an analysis of lower limb balance using a composite score (Y-Balance Test). Ankle dorsiflexion was measured using the Lunge Test. The Iowa Oral Performance Instrument was employed to measure orofacial tissue pressure. Bite force was measured with a dynamometer, and T-Scan assessed occlusal contact distribution. Data were analyzed using the t-test (p < 0.05) and ANCOVA with age and weight as covariates, where it is possible to verify that these factors did not influence the results obtained. Significant differences were observed in the balance of the right (p = 0.07) and left (p = 0.02) lower limbs, where rugby players had lower composite scores. There were significant differences in the right (p = 0.005) and left (p = 0.004) lunges, with rugby players showing lower values, as well as lower tongue pressure (p = 0.01) and higher lip pressure (p = 0.03), with significant differences to sedentary participants. There was no significant difference in molar bite force and distribution occlusal contacts between groups. Rugby seems to reduce lower limb displacement, cause ankle hypomobility, lead to changes in orofacial tissues, particularly the tongue and lips. This study is significant for identifying significant differences between rugby players and sedentary individuals, providing new insights into the impact of rugby on health and performance, which can benefit sports training and injury prevention.
Collapse
Affiliation(s)
- Rafael R. Machado
- School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | - Marcelo Palinkas
- School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), Ribeirão Preto, Brazil
| | | | - Sara Gollino
- School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Isabela H. Regalo
- School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | - Selma Siéssere
- School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), Ribeirão Preto, Brazil
| | - Simone C.H. Regalo
- School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Kumar PA, Stallman J, Kharbat Y, Hoppe J, Leonards A, Kerim E, Nguyen B, Adkins RL, Baltazar A, Milligan S, Letchuman S, Hook MA, Dulin JN. Chemogenetic Attenuation of Acute Nociceptive Signaling Enhances Functional Outcomes Following Spinal Cord Injury. J Neurotrauma 2024; 41:1060-1076. [PMID: 37905504 PMCID: PMC11564839 DOI: 10.1089/neu.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Identifying novel therapeutic approaches to promote recovery of neurological functions following spinal cord injury (SCI) remains a great unmet need. Nociceptive signaling in the acute phase of SCI has been shown to inhibit recovery of locomotor function and promote the development of chronic neuropathic pain. We therefore hypothesized that inhibition of nociceptive signaling in the acute phase of SCI might improve long-term functional outcomes in the chronic phase of injury. To test this hypothesis, we took advantage of a selective strategy utilizing AAV6 to deliver inhibitory (hM4Di) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to nociceptors of the L4-L6 dorsal root ganglia to evaluate the effects of transient nociceptor silencing on long-term sensory and motor functional outcomes in a rat thoracic contusion SCI model. Following hM4Di-mediated nociceptor inhibition from 0-14 days post-SCI, we conducted behavioral assessments until 70 days post-SCI, then performed histological assessments of lesion severity and axon plasticity. Our results show highly selective expression of hM4Di within small diameter nociceptors including calcitonin gene-related peptide (CGRP)+ and IB4-binding neurons. Expression of hM4Di in less than 25% of nociceptors was sufficient to increase hindlimb thermal withdrawal latency in naïve rats. Compared with subjects who received AAV-yellow fluorescent protein (YFP; control), subjects who received AAV-hM4Di exhibited attenuated thermal hyperalgesia, greater coordination, and improved hindlimb locomotor function. However, treatment did not impact the development of cold allodynia or mechanical hyperalgesia. Histological assessments of spinal cord tissue suggested trends toward reduced lesion volume, increased neuronal sparing and increased CGRP+ axon sprouting in hM4Di-treated animals. Together, these findings suggest that nociceptor silencing early after SCI may promote beneficial plasticity in the acute phase of injury that can impact long-term functional outcomes, and support previous work highlighting primary nociceptors as possible therapeutic targets for pain management after SCI.
Collapse
Affiliation(s)
| | - Jacob Stallman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Yahya Kharbat
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joseph Hoppe
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Amy Leonards
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ethan Kerim
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Britney Nguyen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Robert L. Adkins
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Angelina Baltazar
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sara Milligan
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sunjay Letchuman
- Mays Business School, Texas A&M University, College Station, Texas, USA
| | - Michelle A. Hook
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
7
|
Rau J, Weise L, Moore R, Terminel M, Brakel K, Cunningham R, Bryan J, Stefanov A, Hook MA. Intrathecal minocycline does not block the adverse effects of repeated, intravenous morphine administration on recovery of function after SCI. Exp Neurol 2023; 359:114255. [PMID: 36279935 DOI: 10.1016/j.expneurol.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symptoms of pain at 42 days post-injury and undermines the recovery of locomotor function in a rodent model. Prior research has implicated microglia/macrophages in opioid-induced hyperalgesia and the development of neuropathic pain. We hypothesized that glial activation may also underlie the development of morphine-induced pain and cell death after SCI. Supporting this hypothesis, our previous studies found that intrathecal and intravenous morphine increase the number of activated microglia and macrophages present at the spinal lesion site, and that the adverse effects of intrathecal morphine can be blocked with intrathecal minocycline. Recognizing that the cellular expression of opioid receptors, and the intracellular signaling pathways engaged, can change with repeated administration of opioids, the current study tested whether minocycline was also protective with repeated intravenous morphine administration, more closely simulating clinical treatment. Using a rat model of SCI, we co-administered intravenous morphine and intrathecal minocycline for the first 7 days post injury and monitored sensory and locomotor recovery. Contrary to our hypothesis and previous findings with intrathecal morphine, we found that minocycline did not prevent the negative effects of morphine. Surprisingly, we also found that intrathecal minocycline alone is detrimental for locomotor recovery after SCI. Using ex vivo cell cultures, we investigated how minocycline and morphine altered microglia/macrophage function. Commensurate with published studies, we found that minocycline blocked the effects of morphine on the release of pro-inflammatory cytokines but, like morphine, it increased glial phagocytosis. While phagocytosis is critical for the removal of cellular and extracellular debris at the spinal injury site, increased phagocytosis after injury has been linked to the clearance of stressed but viable neurons and protracted inflammation. In sum, our data suggest that both morphine and minocycline alter the acute immune response, and reduce locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA.
| | - Robbie Moore
- Department of Microbial Pathogenesis and Immunology, Texas A&M Institute for Neuroscience, Address: 8447 Riverside Parkway, Medical and Research Education Building 2, Bryan, TX 77807, USA.
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA
| | - Jessica Bryan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Rau J, Hemphill A, Araguz K, Cunningham R, Stefanov A, Weise L, Hook MA. Adverse Effects of Repeated, Intravenous Morphine on Recovery after Spinal Cord Injury in Young, Male Rats Are Blocked by a Kappa Opioid Receptor Antagonist. J Neurotrauma 2022; 39:1741-1755. [PMID: 35996351 PMCID: PMC10039279 DOI: 10.1089/neu.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immediately following spinal cord injury (SCI) patients experience pain associated with injury to the spinal cord and nerves as well as with accompanying peripheral injuries. This pain is usually treated with opioids, and most commonly with morphine. However, in a rodent model we have shown that, irrespective of the route of administration, morphine administered in the acute phase of SCI undermines long-term locomotor recovery. Our previous data suggest that activation of kappa opioid receptors (KORs) mediates these negative effects. Blocking KORs with norbinaltorphimine (norBNI), prior to a single dose of epidural morphine, prevented the morphine-induced attenuation of locomotor recovery. Because numerous cellular changes occur with chronic opioid administration compared with a single dose, the current study tested whether norBNI was also effective in a more clinically relevant paradigm of repeated, intravenous morphine administration after SCI. We hypothesized that blocking KOR activation during repeated, intravenous morphine administration would also protect recovery. Supporting this hypothesis, we found that blocking KOR activation in young, male rats prevented the negative effects of morphine on locomotor recovery, although neither norBNI nor morphine had an effect on long-term pain at the doses used. We also found that norBNI treatment blocked the adverse effects of morphine on lesion size. These data suggest that a KOR antagonist given in conjunction with morphine may provide a clinical strategy for effective analgesia without compromising locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| |
Collapse
|
9
|
Grau JW, Hudson KE, Tarbet MM, Strain MM. Behavioral studies of spinal conditioning: The spinal cord is smarter than you think it is. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2022; 48:435-457. [PMID: 35901417 PMCID: PMC10391333 DOI: 10.1037/xan0000332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 1988 Robert Rescorla published an article in the Annual Review of Neuroscience that addressed the circumstances under which learning occurs, some key methodological issues, and what constitutes an example of learning. The article has inspired a generation of neuroscientists, opening the door to a wider range of learning phenomena. After reviewing the historical context for his article, its key points are briefly reviewed. The perspective outlined enabled the study of learning in simpler preparations, such as the spinal cord. The period after 1988 revealed that pain (nociceptive) stimuli can induce a lasting sensitization of spinal cord circuits, laying down a kind of memory mediated by signal pathways analogous to those implicated in brain dependent learning and memory. Evidence suggests that the spinal cord is sensitive to instrumental response-outcome (R-O) relations, that learning can induce a peripheral modification (muscle memory) that helps maintain the learned response, and that learning can promote adaptive plasticity (a form of metaplasticity). Conversely, exposure to uncontrollable stimulation disables the capacity to learn. Spinal cord neurons can also abstract that stimuli occur in a regular (predictable) manner, a capacity that appears linked to a neural oscillator (central pattern generator). Disrupting communication with the brain has been shown to transform how GABA affects neuronal function (an example of ionic plasticity), releasing a brake that enables plasticity. We conclude by presenting a framework for understanding these findings and the implications for the broader study of learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- James W. Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX, 77843 USA
| | - Kelsey E. Hudson
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX, 77843 USA
| | - Megan M. Tarbet
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Misty M. Strain
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229
| |
Collapse
|
10
|
Hudson KE, Grau JW. Ionic Plasticity: Common Mechanistic Underpinnings of Pathology in Spinal Cord Injury and the Brain. Cells 2022; 11:2910. [PMID: 36139484 PMCID: PMC9496934 DOI: 10.3390/cells11182910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter GABA is normally characterized as having an inhibitory effect on neural activity in the adult central nervous system (CNS), which quells over-excitation and limits neural plasticity. Spinal cord injury (SCI) can bring about a modification that weakens the inhibitory effect of GABA in the central gray caudal to injury. This change is linked to the downregulation of the potassium/chloride cotransporter (KCC2) and the consequent rise in intracellular Cl- in the postsynaptic neuron. As the intracellular concentration increases, the inward flow of Cl- through an ionotropic GABA-A receptor is reduced, which decreases its hyperpolarizing (inhibitory) effect, a modulatory effect known as ionic plasticity. The loss of GABA-dependent inhibition enables a state of over-excitation within the spinal cord that fosters aberrant motor activity (spasticity) and chronic pain. A downregulation of KCC2 also contributes to the development of a number of brain-dependent pathologies linked to states of neural over-excitation, including epilepsy, addiction, and developmental disorders, along with other diseases such as hypertension, asthma, and irritable bowel syndrome. Pharmacological treatments that target ionic plasticity have been shown to bring therapeutic benefits.
Collapse
Affiliation(s)
- Kelsey E. Hudson
- Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - James W. Grau
- Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Seidel MF, Hügle T, Morlion B, Koltzenburg M, Chapman V, MaassenVanDenBrink A, Lane NE, Perrot S, Zieglgänsberger W. Neurogenic inflammation as a novel treatment target for chronic pain syndromes. Exp Neurol 2022; 356:114108. [PMID: 35551902 DOI: 10.1016/j.expneurol.2022.114108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Chronic pain syndrome is a heterogeneous group of diseases characterized by several pathological mechanisms. One in five adults in Europe may experience chronic pain. In addition to the individual burden, chronic pain has a significant societal impact because of work and school absences, loss of work, early retirement, and high social and healthcare costs. Several anti-inflammatory treatments are available for patients with inflammatory or autoimmune diseases to control their symptoms, including pain. However, patients with degenerative chronic pain conditions, some with 10-fold or more elevated incidence relative to these manageable diseases, have few long-term pharmacological treatment options, limited mainly to non-steroidal anti-inflammatory drugs or opioids. For this review, we performed multiple PubMed searches using keywords such as "pain," "neurogenic inflammation," "NGF," "substance P," "nociception," "BDNF," "inflammation," "CGRP," "osteoarthritis," and "migraine." Many treatments, most with limited scientific evidence of efficacy, are available for the management of chronic pain through a trial-and-error approach. Although basic science and pre-clinical pain research have elucidated many biomolecular mechanisms of pain and identified promising novel targets, little of this work has translated into better clinical management of these conditions. This state-of-the-art review summarizes concepts of chronic pain syndromes and describes potential novel treatment strategies.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum Biel-Centre Hospitalier Bienne, 2501 Biel-Bienne, Switzerland.
| | - Thomas Hügle
- Department of Rheumatology, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Barton Morlion
- The Leuven Center for Algology and Pain Management, University of Leuven, Leuven, Belgium
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Serge Perrot
- Unité INSERM U987, Hôpital Ambroise Paré, Paris Descartes University, Boulogne Billancourt, France; Centre d'Evaluation et Traitement de la Douleur, Hôpital Cochin, Paris Descartes University, Paris, France
| | | |
Collapse
|
12
|
Bazzari AH, Bazzari FH. Advances in targeting central sensitization and brain plasticity in chronic pain. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00472-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractMaladaptation in sensory neural plasticity of nociceptive pathways is associated with various types of chronic pain through central sensitization and remodeling of brain connectivity. Within this context, extensive research has been conducted to evaluate the mechanisms and efficacy of certain non-pharmacological pain treatment modalities. These include neurostimulation, virtual reality, cognitive therapy and rehabilitation. Here, we summarize the involved mechanisms and review novel findings in relation to nociceptive desensitization and modulation of plasticity for the management of intractable chronic pain and prevention of acute-to-chronic pain transition.
Collapse
|
13
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
14
|
Zhao R, Guo X, Wang Y, Song Y, Su Q, Sun H, Liang M, Xue Y. Functional MRI evidence for primary motor cortex plasticity contributes to the disease's severity and prognosis of cervical spondylotic myelopathy patients. Eur Radiol 2022; 32:3693-3704. [PMID: 35029735 DOI: 10.1007/s00330-021-08488-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the brain mechanism of non-correspondence between diseases severity and compression degree of the spinal cord in cervical spondylotic myelopathy (CSM) patients and to test the utility of brain imaging biomarkers for predicting prognosis of CSM. METHODS We calculated voxel-wise zALFF from 54 CSM patients and 50 healthy controls using resting-state fMRI data. In analysis 1, we identified the brain regions exhibited significant differences of zALFF between CSM patients and healthy controls. In analyses 2 through 3, we investigated the zALFF differences between light-symptom CSM patients and severe-symptom CSM patients while carefully matching the degree of compression between these two groups. In analysis 4, we tested the utility of zALFF within the primary motor cortex (M1) for predicting the prognosis of CSM. RESULTS We found that (1) compared with the healthy controls, CSM patients exhibited higher ALFF within left M1, bilateral superior frontal gyrus, and lower zALFF within right precuneus and calcarine, suggesting altered brain neural activity in CSM patients; (2) after matching the compression degree, the CSM patients with more severe clinical symptoms exhibited higher zALFF within M1, indicating cortical function contributes to disease's severity of CSM; (3) taking the M1 zALFF as features in the prognosis prediction model improves the prediction accuracy, indicating that the M1 zALFF provide additional value for predicting the prognosis of CSM patients following decompression surgery. CONCLUSION The functional state of M1 contributes to the disease's severity of CSM and can provide complementary information for predicting the prognosis of CSM following decompression surgery. KEY POINTS • Cervical spondylotic myelopathy (CSM) patients exhibited increased zALFF within the primary motor cortex (M1), bilateral superior frontal gyrus, and decreased zALFF within the right precuneus and calcarine. • After matching the compression degree, the CSM patients with more severe clinical symptoms exhibited higher zALFF within M1, indicating cortical function contributes to disease severity of CSM. • zALFF within M1 provided additional value for predicting the prognosis of CSM patients.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xing Guo
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yang Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - YingChao Song
- School of Medical Imaging, Tianjin Medical University and Tianjin Key Laboratory of Functional Imaging, Tianjin, 300203, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China
| | - HaoRan Sun
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University and Tianjin Key Laboratory of Functional Imaging, Tianjin, 300203, China.
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China.
| | - Yuan Xue
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
15
|
Baine RE, Johnston DT, Strain MM, Henwood MK, Davis JA, Reynolds JA, Giles ED, Grau JW. Noxious Stimulation Induces Acute Hemorrhage and Impairs Long-Term Recovery after Spinal Cord Injury (SCI) in Female Rats: Evidence Estrous Cycle May Have a Modulatory Effect. Neurotrauma Rep 2022; 3:70-86. [PMID: 35112109 PMCID: PMC8804264 DOI: 10.1089/neur.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injuries (SCIs) are often the result of traumatic accidents, which also produce multiple other injuries (polytrauma). Nociceptive input from associated injuries has been shown to significantly impair recovery post-SCI. Historically, work in our laboratory has focused exclusively on male animals; however, increasing incidence of SCI in females requires research to determine whether pain (nociceptive) input poses the same risk to their recovery. Some animal studies have shown that females demonstrate greater tissue preservation and better locomotor recovery post-SCI. Given this, we examined the effect of sex on SCI recovery in two pain models—intermittent electrical stimulation (shock) to the tail or capsaicin injection to the hindpaw. Female rats received a lower thoracic contusion injury and were exposed to noxious stimulation the next day. The acute effect of noxious input on cardiovascular function, locomotor performance, and hemorrhage were assessed. Treatment with capsaicin or noxious electrical stimulation disrupted locomotor performance, increased blood pressure, and disrupted stepping. Additional experiments examined the long-term consequences of noxious input, demonstrating that both noxious electrical stimulation and capsaicin impair long-term recovery in female rats. Interestingly, injury had a greater effect on behavioral performance when progesterone and estrogen were low (metestrus). Conversely, nociceptive input led to a greater disruption in locomotor performance and produced a greater rise in blood pressure in animals injured during estrus.
Collapse
Affiliation(s)
- Rachel E. Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - David T. Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Misty M. Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science, San Antonio, Texas, USA
| | - Melissa K. Henwood
- Department of Neuroscience, Cell Biology, Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob A. Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Joshua A. Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin D. Giles
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
16
|
Tang JJ, Feng S, Chen XD, Huang H, Mao M, Wang HY, Li S, Lu XM, Wang YT. The Effects of P75NTR on Learning Memory Mediated by Hippocampal Apoptosis and Synaptic Plasticity. Curr Pharm Des 2021; 27:531-539. [PMID: 32938344 DOI: 10.2174/1381612826666200916145142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Neurological diseases bring great mental and physical torture to the patients, and have long-term and sustained negative effects on families and society. The attention to neurological diseases is increasing, and the improvement of the material level is accompanied by an increase in the demand for mental level. The p75 neurotrophin receptor (p75NTR) is a low-affinity neurotrophin receptor and involved in diverse and pleiotropic effects in the developmental and adult central nervous system (CNS). Since neurological diseases are usually accompanied by the regression of memory, the pathogenesis of p75NTR also activates and inhibits other signaling pathways, which has a serious impact on the learning and memory of patients. The results of studies shown that p75NTR is associated with LTP/LTD-induced synaptic enhancement and inhibition, suggest that p75NTR may be involved in the progression of synaptic plasticity. And its proapoptotic effect is associated with activation of proBDNF and inhibition of proNGF, and TrkA/p75NTR imbalance leads to pro-survival or proapoptotic phenomena. It can be inferred that p75NTR mediates apoptosis in the hippocampus and amygdale, which may affect learning and memory behavior. This article mainly discusses the relationship between p75NTR and learning memory and associated mechanisms, which may provide some new ideas for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Jun-Jie Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shuang Feng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xing-Dong Chen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hua Huang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Min Mao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
17
|
Hogan MK, Hamilton GF, Horner PJ. Neural Stimulation and Molecular Mechanisms of Plasticity and Regeneration: A Review. Front Cell Neurosci 2020; 14:271. [PMID: 33173465 PMCID: PMC7591397 DOI: 10.3389/fncel.2020.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
Neural stimulation modulates the depolarization of neurons, thereby triggering activity-associated mechanisms of neuronal plasticity. Activity-associated mechanisms in turn play a major role in post-mitotic structure and function of adult neurons. Our understanding of the interactions between neuronal behavior, patterns of neural activity, and the surrounding environment is evolving at a rapid pace. Brain derived neurotrophic factor is a critical mediator of activity-associated plasticity, while multiple immediate early genes mediate plasticity of neurons following bouts of neural activity. New research has uncovered genetic mechanisms that govern the expression of DNA following changes in neural activity patterns, including RNAPII pause-release and activity-associated double stranded breaks. Discovery of novel mechanisms governing activity-associated plasticity of neurons hints at a layered and complex molecular control of neuronal response to depolarization. Importantly, patterns of depolarization in neurons are shown to be important mediators of genetic expression patterns and molecular responses. More research is needed to fully uncover the molecular response of different types of neurons-to-activity patterns; however, known responses might be leveraged to facilitate recovery after neural damage. Physical rehabilitation through passive or active exercise modulates neurotrophic factor expression in the brain and spinal cord and can initiate cortical plasticity commensurate with functional recovery. Rehabilitation likely relies on activity-associated mechanisms; however, it may be limited in its application. Electrical and magnetic stimulation direct specific activity patterns not accessible through passive or active exercise and work synergistically to improve standing, walking, and forelimb use after injury. Here, we review emerging concepts in the molecular mechanisms of activity-derived plasticity in order to highlight opportunities that could add value to therapeutic protocols for promoting recovery of function after trauma, disease, or age-related functional decline.
Collapse
Affiliation(s)
- Matthew K Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Gillian F Hamilton
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Philip J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
18
|
Cappoli N, Tabolacci E, Aceto P, Dello Russo C. The emerging role of the BDNF-TrkB signaling pathway in the modulation of pain perception. J Neuroimmunol 2020; 349:577406. [PMID: 33002723 DOI: 10.1016/j.jneuroim.2020.577406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The brain derived neurotrophic factor (BDNF) is a crucial neuromodulator in pain transmission both in peripheral and central nervous system (CNS). Despite evidence of a pro-nociceptive role of BDNF, recent studies have reported contrasting results, including anti-nociceptive and anti-inflammatory activities. Moreover, BDNF polymorphisms can interfere with BDNF role in pain perception. In Val66Met carriers, the Met allele may have a dual role, with anti-nociceptive actions in normal condition and pro-nociceptive effects during chronic pain. In order to elucidate the main effects of BDNF in nociception, we reviewed the main characteristics of this neurotrophin, focusing on its involvement in pain.
Collapse
Affiliation(s)
- Natalia Cappoli
- Università Cattolica del Sacro Cuore, Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Rome, Italy
| | - Elisabetta Tabolacci
- Università Cattolica del Sacro Cuore, Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Aceto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Rome, Italy; Università Cattolica del Sacro Cuore, Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Rome, Italy.
| | - Cinzia Dello Russo
- Università Cattolica del Sacro Cuore, Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
19
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
20
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Kanno H, Ozawa H, Handa K, Murakami T, Itoi E. Changes in Expression of Receptor-Interacting Protein Kinase 1 in Secondary Neural Tissue Damage Following Spinal Cord Injury. Neurosci Insights 2020; 15:2633105520906402. [PMID: 32524089 PMCID: PMC7236572 DOI: 10.1177/2633105520906402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/23/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction: Necroptosis is a form of programmed cell death that is different from apoptotic cell death. Receptor-interacting protein kinase 1 (RIPK1) plays a particularly important function in necroptosis execution. This study investigated changes in expression of RIPK1 in secondary neural tissue damage following spinal cord injury in mice. The time course of the RIPK1 expression was also compared with that of apoptotic cell death in the lesion site. Methods and Materials: Immunostaining for RIPK1 was performed at different time points after spinal cord injury. The protein expressions of RIPK1 were determined by western blot. The RIPK1 expressions in various neural cells were investigated using immunohistochemistry. To investigate the time course of apoptotic cell death, TUNEL-positive cells were counted at the different time points. To compare the incidence of necroptosis and apoptosis, the RIPK1-labeled sections were co-stained with TUNEL. Results: The RIPK1 expression was significantly upregulated in the injured spinal cord. The upregulation of RIPK1 expression was observed in neurons, astrocytes, and oligodendrocytes. The increase in RIPK1 expression started at 4 hours and peaked at 3 days after injury. Time course of the RIPK1 expression was similar to that of apoptosis detected by TUNEL. Interestingly, the increased expression of RIPK1 was rarely observed in the TUNEL-positive cells. Furthermore, the number of RIPK1-positive cells was significantly higher than that of TUNEL-positive cells. Conclusions: This study demonstrated that the expression of RIPK1 increased in various neural cells and peaked at 3 days following spinal cord injury. The temporal change of the RIPK1 expression was analogous to that of apoptosis at the lesion site. However, the increase in RIPK1 expression was barely seen in the apoptotic cells. These findings suggested that the RIPK1 might contribute to the pathological mechanism of the secondary neural tissue damage after spinal cord injury.
Collapse
Affiliation(s)
- Haruo Kanno
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kyoichi Handa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taishi Murakami
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Strain MM, Hook MA, Reynolds JD, Huang YJ, Henwood MK, Grau JW. A brief period of moderate noxious stimulation induces hemorrhage and impairs locomotor recovery after spinal cord injury. Physiol Behav 2019; 212:112695. [PMID: 31647990 DOI: 10.1016/j.physbeh.2019.112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that provides a source of pain input. Our studies suggest that this pain input may be detrimental to long-term recovery. In a rodent model, we have shown that engaging pain (nociceptive) fibers caudal to a lower thoracic contusion SCI impairs recovery of locomotor function and increases tissue loss (secondary injury) and hemorrhage at the site of injury. In these studies, nociceptive fibers were activated using intermittent electrical stimulation. The stimulation parameters were derived from earlier studies demonstrating that 6 min of noxious stimulation, at an intensity (1.5 mA) that engages unmyelinated C (pain) fibers, induces a form of maladaptive plasticity within the lumbosacral spinal cord. We hypothesized that both shorter bouts of nociceptive input and lower intensities of stimulation will decrease locomotor function and increase spinal cord hemorrhage when rats have a spinal cord contusion. To test this, the present study exposed rats to electrical stimulation 24 h after a moderate lower thoracic contusion SCI. One group of rats received 1.5 mA stimulation for 0, 14.4, 72, or 180 s. Another group received six minutes of stimulation at 0, 0.17, 0.5, and 1.5 mA. Just 72 s of stimulation induced an acute disruption in motor performance, increased hemorrhage, and undermined the recovery of locomotor function. Likewise, less intense (0.5 mA) stimulation produced an acute disruption in motor performance, fueled hemorrhage, and impaired long-term recovery. The results imply that a brief period of moderate pain input can trigger hemorrhage after SCI and undermine long-term recovery. This highlights the importance of managing nociceptive signals after concurrent peripheral and central nervous system injuries.
Collapse
Affiliation(s)
- Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Michelle A Hook
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joshua D Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Yung-Jen Huang
- ChemPartner, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203 China
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Reynolds JA, Henwood MK, Turtle JD, Baine RE, Johnston DT, Grau JW. Brain-Dependent Processes Fuel Pain-Induced Hemorrhage After Spinal Cord Injury. Front Syst Neurosci 2019; 13:44. [PMID: 31551720 PMCID: PMC6746957 DOI: 10.3389/fnsys.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury can undermine long-term recovery and increase tissue loss (secondary injury). Prior work suggests that nociceptive stimulation has this effect because it fosters the breakdown of the blood-spinal cord barrier (BSCB) at the site of injury, allowing blood to infiltrate the tissue. The present study examined whether these effects impact tissue rostral and caudal to the site of injury. In addition, the study evaluated whether cutting communication with the brain, by means of a rostral transection, affects the development of hemorrhage. Eighteen hours after rats received a lower thoracic (T11-12) contusion injury, half underwent a spinal transection at T2. Noxious electrical stimulation (shock) was applied 6 h later. Cellular assays showed that, in non-transected rats, nociceptive stimulation increased hemoglobin content, activated pro-inflammatory cytokines and engaged signals related to cell death at the site of injury. These effects were not observed in transected animals. In the next experiment, the spinal transection was performed at the time of contusion injury. Nociceptive stimulation was applied 24 h later and tissue was sectioned for microscopy. In non-transected rats, nociceptive stimulation increased the area of hemorrhage and this effect was blocked by spinal transection. These findings imply that the adverse effect of noxious stimulation depends upon spared ascending fibers and the activation of rostral (brain) systems. If true, stimulation should induce less hemorrhage after a severe contusion injury that blocks transmission to the brain. To test this, rats were given a mild, moderate, or severe, injury and electrical stimulation was applied 24 h later. Histological analyses of longitudinal sections showed that nociceptive stimulation triggered less hemorrhage after a severe contusion injury. The results suggest that brain-dependent processes drive pain-induced hemorrhage after spinal cord injury (SCI).
Collapse
Affiliation(s)
- Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel E Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - David T Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Dickson RG, Lall VK, Ichiyama RM. Enhancing plasticity in spinal sensorimotor circuits following injuries to facilitate recovery of motor control. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Keller AV, Hainline C, Rees K, Krupp S, Prince D, Wood BD, Shum-Siu A, Burke DA, Petruska JC, Magnuson DSK. Nociceptor-dependent locomotor dysfunction after clinically-modeled hindlimb muscle stretching in adult rats with spinal cord injury. Exp Neurol 2019; 318:267-276. [PMID: 30880143 DOI: 10.1016/j.expneurol.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/10/2023]
Abstract
In the course of investigating how common clinical treatments and adaptive technologies affect recovery after spinal cord injury (SCI), we discovered that a clinically-modeled hindlimb stretching protocol dramatically, but transiently, reduces locomotor function. Nociceptive sensory input is capable of altering motor output at the spinal level, and nociceptive neurons are sensitized after SCI. Here we tested the hypotheses that stretch-induced locomotor deficits are dependent on nociceptive afferents by depleting TRPV1+ sensory afferents using capsaicin injections in neonatal rats. Following maturation, animals received 25g-cm contusive SCI at T10. After plateau of locomotor recovery at 6 weeks, daily stretching was performed for 3 weeks, followed by 2 weeks without stretch, and again for two additional weeks. Animals were sacrificed 2 h after the last stretching session for histological assessments. Consistent with previous findings, stretch-induced drops in locomotor function were observed in nociceptor-intact animals but were nearly absent in nociceptor-depleted animals. These functional changes were accompanied by corresponding increases in the number of c-Fos+ nuclei throughout the lumbar enlargement. As expected, nociceptor-depleted animals had very little CGRP+ axonal innervation of the dorsal horn. Nociceptor-intact stretched animals had significantly higher levels of CGRP+ as compared to non-stretched SCI rats, suggesting that stretching promoted intraspinal CGRP+ sprouting. These results indicate that stretch-induced locomotor dysfunction in animals with incomplete SCI involves C-fibers, adding a negative post-SCI role to their adaptive roles (e.g., bladder control), and suggesting that the clinical use of muscle stretching to combat contractures and spasticity may be unintentionally detrimental to locomotor function.
Collapse
Affiliation(s)
- Anastasia V Keller
- Department of Physiology, University of Louisville, School of Medicine, HSC A 1115, 500 South Preston Street, Louisville, KY 40292, USA
| | - Casey Hainline
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Kathleen Rees
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Sarah Krupp
- Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 511 South Floyd, Room 111, Louisville, KY 40202, USA
| | - Daniella Prince
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Brittney D Wood
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Jeffrey C Petruska
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 511 South Floyd, Room 111, Louisville, KY 40202, USA
| | - David S K Magnuson
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 511 South Floyd, Room 111, Louisville, KY 40202, USA; Department of Physiology, University of Louisville, School of Medicine, HSC A 1115, 500 South Preston Street, Louisville, KY 40292, USA.
| |
Collapse
|
26
|
Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Exp Neurol 2018; 311:115-124. [PMID: 30268767 DOI: 10.1016/j.expneurol.2018.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
In humans, spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that can engage pain (nociceptive) fibers. Prior work has shown that this nociceptive input can expand the area of tissue damage (secondary injury), undermine behavioral recovery, and enhance the development of chronic pain. Here, it is shown that nociceptive input given a day after a lower thoracic contusion injury in rats enhances the infiltration of red blood cells at the site of injury, producing an area of hemorrhage that expands secondary injury. Peripheral nociceptive fibers were engaged 24 h after injury by means of electrical stimulation (shock) applied at an intensity that engages unmyelinated pain (C) fibers or through the application of the irritant capsaicin. Convergent western immunoblot and cyanmethemoglobin colorimetric assays showed that both forms of stimulation increased the concentration of hemoglobin at the site of injury, with a robust effect observed 3-24 h after stimulation. Histopathology confirmed that shock treatment increased the area of hemorrhage and the infiltration of red blood cells. SCI can lead to hemorrhage by engaging the sulfonylurea receptor 1 (SUR1) transient receptor potential melastatin 4 (TRPM4) channel complex in neurovascular endothelial cells, which leads to cell death and capillary fragmentation. Histopathology confirmed that areas of hemorrhage showed capillary fragmentation. Co-immunoprecipitation of the SUR1-TRPM4 complex showed that it was up-regulated by noxious stimulation. Shock-induced hemorrhage was associated with an acute disruption in locomotor performance. These results imply that noxious stimulation impairs long-term recovery because it amplifies the breakdown of the blood spinal cord barrier (BSCB) and the infiltration of red blood cells, which expands the area of secondary injury.
Collapse
|
27
|
Huang YJ, Grau JW. Ionic plasticity and pain: The loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain. Exp Neurol 2018; 306:105-116. [PMID: 29729247 PMCID: PMC5994379 DOI: 10.1016/j.expneurol.2018.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Activation of pain (nociceptive) fibers can sensitize neural circuits within the spinal cord, inducing an increase in excitability (central sensitization) that can foster chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. In adult animals, the co-transporter KCC2 maintains a low intracellular concentration of the anion Cl-. As a result, when the GABA-A receptor is engaged, Cl- flows in the neuron which has a hyperpolarizing (inhibitory) effect. Spinal cord injury (SCI) can down-regulate KCC2 and reverse the flow of Cl-. Under these conditions, engaging the GABA-A receptor can have a depolarizing (excitatory) effect that fosters the development of nociceptive sensitization. The present paper explores how SCI alters GABA function and provides evidence that the loss of descending fibers alters pain transmission to the brain. Prior work has shown that, after SCI, administration of a GABA-A antagonist blocks the development of capsaicin-induced nociceptive sensitization, implying that GABA release plays an essential role. This excitatory effect is linked to serotonergic (5HT) fibers that descend through the dorsolateral funiculus (DLF) and impact spinal function via the 5HT-1A receptor. Supporting this, blocking the 5HT-1A receptor, or lesioning the DLF, emulated the effect of SCI. Conversely, spinal application of a 5HT-1A agonist up-regulated KCC2 and reversed the effect of bicuculline treatment. Finally, lesioning the DLF reversed how a GABA-A antagonist affects a capsaicin-induced aversion in a place conditioning task; in sham operated animals, bicuculline enhanced aversion whereas in DLF-lesioned rats biciculline had an antinociceptive effect.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
28
|
Hergenroeder GW, Redell JB, Choi HA, Schmitt L, Donovan W, Francisco GE, Schmitt K, Moore AN, Dash PK. Increased Levels of Circulating Glial Fibrillary Acidic Protein and Collapsin Response Mediator Protein-2 Autoantibodies in the Acute Stage of Spinal Cord Injury Predict the Subsequent Development of Neuropathic Pain. J Neurotrauma 2018; 35:2530-2539. [PMID: 29774780 DOI: 10.1089/neu.2018.5675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuropathic pain develops in 40-70% of spinal cord injury (SCI) patients and markedly compromises quality of life. We examined plasma from SCI patients for autoantibodies to glial fibrillary acidic protein (GFAP) and collapsin response mediator protein-2 (CRMP2) and evaluated their relationship to the development of neuropathic pain. In study 1, plasma samples and clinical data from 80 chronic SCI patients (1-41 years post-SCI) were collected and screened for GFAP autoantibodies (GFAPab). Results from study 1 indicated that GFAPab were present in 34 of 80 (42.5%) patients, but circulating levels did not correlate with the occurrence of neuropathic pain. In study 2, longitudinal plasma samples and clinical data were collected from 38 acute SCI patients. The level of GFAPab measured at 16 ± 7 days post-SCI was found to be significantly higher in patients that subsequently developed neuropathic pain (within 6 months post-SCI) than patients who did not (T = 219; p = 0.02). In study 3, we identified CRMP2 as an autoantibody target (CRMP2ab) in 23% of acute SCI patients. The presence of GFAPab and/or CRMP2ab increased the odds of subsequently developing neuropathic pain within 6 months of injury by 9.5 times (p = 0.006). Our results suggest that if a causal link can be established between these autoantibodies and the development of neuropathic pain, strategies aimed at reducing the circulating levels of these autoantibodies may have therapeutic value.
Collapse
Affiliation(s)
- Georgene W Hergenroeder
- 1 The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,2 Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,3 Memorial Hermann Hospital-Texas Medical Center , Houston, Texas
| | - John B Redell
- 2 Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas
| | - H Alex Choi
- 1 The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,3 Memorial Hermann Hospital-Texas Medical Center , Houston, Texas
| | - Lisa Schmitt
- 1 The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,3 Memorial Hermann Hospital-Texas Medical Center , Houston, Texas
| | - William Donovan
- 3 Memorial Hermann Hospital-Texas Medical Center , Houston, Texas.,4 Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,5 TIRR-Memorial Hermann , Houston, Texas
| | - Gerard E Francisco
- 3 Memorial Hermann Hospital-Texas Medical Center , Houston, Texas.,4 Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,5 TIRR-Memorial Hermann , Houston, Texas
| | - Karl Schmitt
- 1 The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,3 Memorial Hermann Hospital-Texas Medical Center , Houston, Texas.,5 TIRR-Memorial Hermann , Houston, Texas
| | - Anthony N Moore
- 2 Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas
| | - Pramod K Dash
- 1 The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas.,2 Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) , Houston, Texas
| |
Collapse
|
29
|
Turtle JD, Strain MM, Reynolds JA, Huang YJ, Lee KH, Henwood MK, Garraway SM, Grau JW. Pain Input After Spinal Cord Injury (SCI) Undermines Long-Term Recovery and Engages Signal Pathways That Promote Cell Death. Front Syst Neurosci 2018; 12:27. [PMID: 29977195 PMCID: PMC6021528 DOI: 10.3389/fnsys.2018.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury increases tissue loss and impairs long-term recovery. It was hypothesized that noxious stimulation has this effect because it engages unmyelinated pain (C) fibers that produce a state of over-excitation in central pathways. The present article explored this issue by assessing the effect of capsaicin, which activates C-fibers that express the transient receptor potential vanilloid receptor-1 (TRPV1). Rats received a lower thoracic (T11) contusion injury and capsaicin was applied to one hind paw the next day. For comparison, other animals received noxious electrical stimulation at an intensity that engages C fibers. Both forms of stimulation elicited similar levels of c-fos mRNA expression, a cellular marker of nociceptive activation, and impaired long-term behavioral recovery. Cellular assays were then performed to compare the acute effect of shock and capsaicin treatment. Both forms of noxious stimulation increased expression of tumor necrosis factor (TNF) and caspase-3, which promotes apoptotic cell death. Shock, but not capsaicin, enhanced expression of signals related to pyroptotic cell death [caspase-1, inteleukin-1 beta (IL-1ß)]. Pyroptosis has been linked to the activation of the P2X7 receptor and the outward flow of adenosine triphosphate (ATP) through the pannexin-1 channel. Blocking the P2X7 receptor with Brilliant Blue G (BBG) reduced the expression of signals related to pyroptotic cell death in contused rats that had received shock. Blocking the pannexin-1 channel with probenecid paradoxically had the opposite effect. BBG enhanced long-term recovery and lowered reactivity to mechanical stimulation applied to the girdle region (an index of chronic pain), but did not block the adverse effect of nociceptive stimulation. The results suggest that C-fiber input after injury impairs long-term recovery and that this effect may arise because it induces apoptotic cell death.
Collapse
Affiliation(s)
- Joel D Turtle
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Misty M Strain
- United States Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX, United States
| | - Joshua A Reynolds
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Yung-Jen Huang
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Kuan H Lee
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - James W Grau
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
30
|
Rink S, Bendella H, Alsolivany K, Meyer C, Woehler A, Jansen R, Isik Z, Stein G, Wennmachers S, Nakamura M, Angelov DN. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain. Restor Neurol Neurosci 2018; 36:397-416. [DOI: 10.3233/rnn-170789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | | | - Carolin Meyer
- Department of Orthopedics and Traumatology, University of Cologne, Germany
| | | | - Ramona Jansen
- Department of Anatomy I, University of Cologne, Germany
| | - Zeynep Isik
- Department of Anatomy I, University of Cologne, Germany
| | - Gregor Stein
- Department of Orthopaedics and Trauma Surgery, Helios Klinikum Siegburg, Germany
| | | | - Makoto Nakamura
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | | |
Collapse
|
31
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
32
|
Magerl W, Hansen N, Treede RD, Klein T. The human pain system exhibits higher-order plasticity (metaplasticity). Neurobiol Learn Mem 2018; 154:112-120. [PMID: 29631001 DOI: 10.1016/j.nlm.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
The human pain system can be bidirectionally modulated by high-frequency (HFS; 100 Hz) and low-frequency (LFS; 1 Hz) electrical stimulation of nociceptors leading to long-term potentiation or depression of pain perception (pain-LTP or pain-LTD). Here we show that priming a test site by very low-frequency stimulation (VLFS; 0.05 Hz) prevented pain-LTP probably by elevating the threshold (set point) for pain-LTP induction. Conversely, prior HFS-induced pain-LTP was substantially reversed by subsequent VLFS, suggesting that preceding HFS had primed the human nociceptive system for pain-LTD induction by VLFS. In contrast, the pain elicited by the pain-LTP-precipitating conditioning HFS stimulation remained unaffected. In aggregate these experiments demonstrate that the human pain system expresses two forms of higher-order plasticity (metaplasticity) acting in either direction along the pain-LTD to pain-LTP continuum with similar shifts in thresholds for LTD and LTP as in synaptic plasticity, indicating intriguing new mechanisms for the prevention of pain memory and the erasure of hyperalgesia related to an already established pain memory trace. There were no apparent gender differences in either pain-LTP or metaplasticity of pain-LTP. However, individual subjects appeared to present with an individual balance of pain-LTD to pain-LTP (a pain plasticity "fingerprint").
Collapse
Affiliation(s)
- Walter Magerl
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany.
| | - Niels Hansen
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany; Department of Psychiatry and Psychotherapy & Department of Epileptology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Thomas Klein
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany
| |
Collapse
|
33
|
Neurosurgical untethering with or without syrinx drainage results in high patient satisfaction and favorable clinical outcome in post-traumatic myelopathy patients. Spinal Cord 2018; 56:873-882. [DOI: 10.1038/s41393-018-0094-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
|
34
|
Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats. Neural Plast 2017; 2017:7351238. [PMID: 28744378 PMCID: PMC5506460 DOI: 10.1155/2017/7351238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.
Collapse
|