1
|
Gama Sosa MA, De Gasperi R, Lind RH, Pryor D, Vargas DC, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Sowa A, Zhu CW, Janssen WGM, Hof PR, Ahlers ST, Elder GA. Intramural hematomas and astrocytic infiltration precede perivascular inflammation in a rat model of repetitive low-level blast injury. J Neuropathol Exp Neurol 2025; 84:337-352. [PMID: 39868756 PMCID: PMC11923744 DOI: 10.1093/jnen/nlaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures. These lesions resulted in intravascular cell death, cell layer reorganization, and plasma leakage into the intraperiarterial basal membranes that constitute the intraperiarterial drainage system (IPAD). Plasma metalloproteases, including MMP-9, in the IPAD basal membranes may degrade extracellular matrix components compromising normal cerebral interstitial fluid drainage, arterial structure and function leading to chronic vascular degenerative processes. Related subacute effects of blast exposure included increased MMP-9 expression in perivascular reactive astrocytes and the extension of astrocytic processes through the layers of affected vessels. These results, in combination with normal levels of proinflammatory cytokines and the absence of proinflammatory MHC II-expressing microglia, suggest an astrocytic role in the clearing of intravascular hematomas and provide further mechanistic evidence that blast-induced vascular degenerative processes may precede the onset of neurovascular inflammation.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Rachel H Lind
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Danielle C Vargas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carolyn W Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - William G M Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
2
|
Rowland JA, Stapleton-Kotloski JR, Godwin DW, Hamilton CA, Martindale SL. The Functional Connectome and Long-Term Symptom Presentation Associated With Mild Traumatic Brain Injury and Blast Exposure in Combat Veterans. J Neurotrauma 2024; 41:2513-2527. [PMID: 39150013 DOI: 10.1089/neu.2023.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Mild traumatic brain injury (TBI) sustained in a deployment environment (deployment TBI) can be associated with increased severity of long-term symptom presentation, despite the general expectation of full recovery from a single mild TBI. The heterogeneity in the effects of deployment TBI on the brain can be difficult for a case-control design to capture. The functional connectome of the brain is an approach robust to heterogeneity that allows global measurement of effects using a common set of outcomes. The present study evaluates how differences in the functional connectome relate to remote symptom presentation following combat deployment and determines if deployment TBI, blast exposure, or post-traumatic stress disorder (PTSD) are associated with these neurological differences. Participants included 181 Iraq and Afghanistan combat-exposed Veterans, approximately 9.4 years since deployment. Structured clinical interviews provided diagnoses and characterizations of TBI, blast exposure, and PTSD. Self-report measures provided characterization of long-term symptoms (psychiatric, behavioral health, and quality of life). Resting-state magnetoencephalography was used to characterize the functional connectome of the brain individually for each participant. Linear regression identified factors contributing to symptom presentation including relevant covariates, connectome metrics, deployment TBI, blast exposure PTSD, and conditional relationships. Results identified unique contributions of aspects of the connectome to symptom presentation. Furthermore, several conditional relationships were identified, demonstrating that the connectome was related to outcomes in the presence of only deployment-related TBI (including blast-related TBI, primary blast TBI, and blast exposure). No conditional relationships were identified for PTSD; however, the main effect of PTSD on symptom presentation was significant for all models. These results demonstrate that the connectome captures aspects of brain function relevant to long-term symptom presentation, highlighting that deployment-related TBI influences symptom outcomes through a neurological pathway. These findings demonstrate that changes in the functional connectome associated with deployment-related TBI are relevant to symptom presentation over a decade past the injury event, providing a clear demonstration of a brain-based mechanism of influence.
Collapse
Affiliation(s)
- Jared A Rowland
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennifer R Stapleton-Kotloski
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dwayne W Godwin
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Craig A Hamilton
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L Martindale
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Dennis EL, Rowland JA, Esopenko C, Tustison NJ, Newsome MR, Hovenden ES, Avants BB, Gill J, Hinds SR, Kenney K, Lindsey HM, Martindale SL, Pugh MJ, Scheibel RS, Shahim PP, Shih R, Stone JR, Troyanskaya M, Walker WC, Werner K, York GE, Cifu DX, Tate DF, Wilde EA. Differences in Brain Volume in Military Service Members and Veterans After Blast-Related Mild TBI: A LIMBIC-CENC Study. JAMA Netw Open 2024; 7:e2443416. [PMID: 39527059 PMCID: PMC11555548 DOI: 10.1001/jamanetworkopen.2024.43416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Importance Blast-related mild traumatic brain injuries (TBIs), the "signature injury" of post-9/11 conflicts, are associated with clinically relevant, long-term cognitive, psychological, and behavioral dysfunction and disability; however, the underlying neural mechanisms remain unclear. Objective To investigate associations between a history of remote blast-related mild TBI and regional brain volume in a sample of US veterans and active duty service members. Design, Setting, and Participants Prospective cohort study of US veterans and active duty service members from the Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC), which enrolled more than 1500 participants at 5 sites used in this analysis between 2014 and 2023. Participants were recruited from Veterans Affairs medical centers across the US; 774 veterans and active duty service members of the US military met eligibility criteria for this secondary analysis. Assessment dates were from January 6, 2015, to March 31, 2023; processing and analysis dates were from August 1, 2023, to January 15, 2024. Exposure All participants had combat exposure, and 82% had 1 or more lifetime mild TBIs with variable injury mechanisms. Main Outcomes and Measures Regional brain volume was calculated using tensor-based morphometry on 3-dimensional, T1-weighted magnetic resonance imaging scans; history of TBI, including history of blast-related mild TBI, was assessed by structured clinical interview. Cognitive performance and psychiatric symptoms were assessed with a battery of validated instruments. We hypothesized that regional volume would be smaller in the blast-related mild TBI group and that this would be associated with cognitive performance. Results A total of 774 veterans (670 [87%] male; mean [SD] age, 40.1 [9.8] years; 260 [34%] with blast-related TBI) were included in the sample. Individuals with a history of blast-related mild TBI had smaller brain volumes than individuals without a history of blast-related mild TBI (which includes uninjured individuals and those with non-blast-related mild TBI) in several clusters, with the largest centered bilaterally in the superior corona radiata and subcortical gray and white matter (cluster peak Cohen d range, -0.23 to -0.38; mean [SD] Cohen d, 0.28 [0.03]). Additionally, causal mediation analysis revealed that these volume differences significantly mediated the association between blast-related mild TBI and performance on measures of working memory and processing speed. Conclusions and Relevance In this cohort study of 774 veterans and active duty service members, robust volume differences associated with blast-related TBI were identified. Furthermore, these volume differences significantly mediated the association between blast-related mild TBI and cognitive function, indicating that this pattern of brain differences may have implications for daily functioning.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Jared A. Rowland
- W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Mary R. Newsome
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Elizabeth S. Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Brian B. Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland
| | - Sidney R. Hinds
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hannah M. Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Sarah L. Martindale
- W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary Jo Pugh
- Department of Medicine, University of Utah School of Medicine, Salt Lake City
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, Utah
| | - Randall S. Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Pashtun-Poh Shahim
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Robert Shih
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, Maryland
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond
- Richmond Veterans Affairs Medical Center, Central Virginia VA Healthcare System, Richmond
| | - Kent Werner
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | | | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond
| | - David F. Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Rowland JA, Martindale SL. Considerations for the assessment of blast exposure in service members and veterans. Front Neurol 2024; 15:1383710. [PMID: 38685944 PMCID: PMC11056521 DOI: 10.3389/fneur.2024.1383710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Blast exposure is an increasingly present occupational hazard for military service members, particularly in modern warfare scenarios. The study of blast exposure in humans is limited by the lack of a consensus definition for blast exposure and considerable variability in measurement. Research has clearly demonstrated a robust and reliable effect of blast exposure on brain structure and function in the absence of other injury mechanisms. However, the exact mechanisms underlying these outcomes remain unclear. Despite clear contributions from preclinical studies, this knowledge has been slow to translate to clinical applications. The present manuscript empirically demonstrates the consequences of variability in measurement and definition across studies through a re-analysis of previously published data from the Chronic Effects of Neurotrauma Study 34. Methods Definitions of blast exposure used in prior work were examined including Blast TBI, Primary Blast TBI, Pressure Severity, Distance, and Frequency of Exposure. Outcomes included both symptom report and cognitive testing. Results Results demonstrate significant differences in outcomes based on the definition of blast exposure used. In some cases the same definition was strongly related to one type of outcome, but unrelated to another. Discussion The implications of these results for the study of blast exposure are discussed and potential actions to address the major limitations in the field are recommended. These include the development of a consensus definition of blast exposure, further refinement of the assessment of blast exposure, continued work to identify relevant mechanisms leading to long-term negative outcomes in humans, and improved education efforts.
Collapse
Affiliation(s)
- Jared A. Rowland
- Salisbury VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Network (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarah L. Martindale
- Salisbury VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Network (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
5
|
Lange RT, French LM, Lippa SM, Gillow KC, Bailie JM, Turner SM, Hungerford LD, Brickell TA. Convergent and Discriminant Validity of the Blast Exposure Threshold Survey in United States Military Service Members and Veterans. J Neurotrauma 2024; 41:934-941. [PMID: 38032755 PMCID: PMC11005380 DOI: 10.1089/neu.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The Blast Exposure Threshold Survey (BETS) is a recently developed and promising new self-report measure of lifetime blast exposure (LBE). However, there are no studies that have examined the psychometric properties of the BETS, which currently limits its clinical utility. The purpose of this study was to examine the convergent and discriminant validity of the BETS by comparing the BETS Generalized Blast Exposure Value (GBEV) to six variables hypothesized to be associated with LBE (i.e., single-item LBE, combat exposure, years in the military, number of combat deployments, and military occupation specialty [MOS]) and three variables hypothesized not to be associated with LBE (i.e., age at the time of injury, estimated pre-morbid Full-Scale Intelligence Quotient [FSIQ], and resilience). Participants were 202 United States service members and veterans prospectively enrolled from three military medical treatment facilities (68.7%) and via community recruitment initiatives (31.3%). Participants completed the BETS, Combat Exposure Scale (CES), Deployment Risk and Resiliency Inventory-2 Combat Experiences (DRRI-2 CE), Traumatic Brain Injury-Quality of Life Resilience scale, and a brief structured interview. For some analyses, participants were classified into two blast risk MOS groups: high (n = 89) and low (n = 94). The BETS GBEV was not significantly correlated with all three non-blast related variables (rs = 0.01 to rs = -0.12). In contrast, GBEV was significantly (p < 0.001) associated with all blast-related variables; single-item LBE (rs = 0.76), CES (rs = 0.58), number of combat deployments (rs = 0.53), DRRI-2 CE (rs = 0.48), and high blast risk MOS (r = 0.36, medium effect size). However, a stronger relationship was found between the blast-related variables and three modified GBEV scores when excluding some small weapons categories; single-item LBE (rs = 0.80-0.82), CES (rs = 0.64-0.67), number of combat deployments (rs = 0.56), DRRI-2 CE (rs = 0.51-0.53), and high blast risk MOS (r = 0.42-0.49, medium-large effect size). This is the first study to examine the psychometric properties of the BETS. Overall, these results offer support for the convergent and discriminant validity of the BETS. In order to ensure that the BETS can be confidently used as a valid and reliable measure of LBE, more research is needed to further examine the psychometric properties of the test, particularly with regard to the establishment of test-retest reliability.
Collapse
Affiliation(s)
- Rael T. Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Louis M. French
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sara M. Lippa
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kelly C. Gillow
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Contractor, CICONIX, Annapolis, Maryland, USA
| | - Jason M. Bailie
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- 33 Area Branch Clinic Camp, Pendleton, California, USA
| | - Stephanie M. Turner
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
| | - Lars D. Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- Naval Medical Center, San Diego, California, USA
| | - Tracey A. Brickell
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Cherian KN, Keynan JN, Anker L, Faerman A, Brown RE, Shamma A, Keynan O, Coetzee JP, Batail JM, Phillips A, Bassano NJ, Sahlem GL, Inzunza J, Millar T, Dickinson J, Rolle CE, Keller J, Adamson M, Kratter IH, Williams NR. Magnesium-ibogaine therapy in veterans with traumatic brain injuries. Nat Med 2024; 30:373-381. [PMID: 38182784 PMCID: PMC10878970 DOI: 10.1038/s41591-023-02705-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability. Sequelae can include functional impairments and psychiatric syndromes such as post-traumatic stress disorder (PTSD), depression and anxiety. Special Operations Forces (SOF) veterans (SOVs) may be at an elevated risk for these complications, leading some to seek underexplored treatment alternatives such as the oneirogen ibogaine, a plant-derived compound known to interact with multiple neurotransmitter systems that has been studied primarily as a treatment for substance use disorders. Ibogaine has been associated with instances of fatal cardiac arrhythmia, but coadministration of magnesium may mitigate this concern. In the present study, we report a prospective observational study of the Magnesium-Ibogaine: the Stanford Traumatic Injury to the CNS protocol (MISTIC), provided together with complementary treatment modalities, in 30 male SOVs with predominantly mild TBI. We assessed changes in the World Health Organization Disability Assessment Schedule from baseline to immediately (primary outcome) and 1 month (secondary outcome) after treatment. Additional secondary outcomes included changes in PTSD (Clinician-Administered PTSD Scale for DSM-5), depression (Montgomery-Åsberg Depression Rating Scale) and anxiety (Hamilton Anxiety Rating Scale). MISTIC resulted in significant improvements in functioning both immediately (Pcorrected < 0.001, Cohen's d = 0.74) and 1 month (Pcorrected < 0.001, d = 2.20) after treatment and in PTSD (Pcorrected < 0.001, d = 2.54), depression (Pcorrected < 0.001, d = 2.80) and anxiety (Pcorrected < 0.001, d = 2.13) at 1 month after treatment. There were no unexpected or serious adverse events. Controlled clinical trials to assess safety and efficacy are needed to validate these initial open-label findings. ClinicalTrials.gov registration: NCT04313712 .
Collapse
Affiliation(s)
- Kirsten N Cherian
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Jackob N Keynan
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Lauren Anker
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Afik Faerman
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | | | - Ahmed Shamma
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Or Keynan
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - John P Coetzee
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
- Polytrauma Division, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jean-Marie Batail
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Angela Phillips
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicholas J Bassano
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Gregory L Sahlem
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Jose Inzunza
- Ambio Life Sciences, Vancouver, British Columbia, Canada
| | - Trevor Millar
- Ambio Life Sciences, Vancouver, British Columbia, Canada
| | | | - C E Rolle
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Jennifer Keller
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Maheen Adamson
- WRIISC-WOMEN & Department of Rehabilitation, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, USA
| | - Ian H Kratter
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nolan R Williams
- Brain Stimulation Lab, Department of Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Miller AR, Martindale SL, Rowland JA, Walton S, Talmy T, Walker WC. Blast-related mild TBI: LIMBIC-CENC focused review with implications commentary. NeuroRehabilitation 2024; 55:329-345. [PMID: 39093081 PMCID: PMC11612977 DOI: 10.3233/nre-230268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND A significant factor for the high prevalence of traumatic brain injury (TBI) among U.S. service members is their exposure to explosive munitions leading to blast-related TBI. Our understanding of the specific clinical effects of mild TBI having a component of blast mechanism remains limited compared to pure blunt mechanisms. OBJECTIVE The purpose of this review is to provide a synopsis of clinical research findings on the long-term effects of blast-related mild TBI derived to date from the Long-Term Impact of Military-Relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC). METHODS Publications on blast-related mild TBI from LIMBIC-CENC and the LIMBIC-CENC prospective longitudinal study (PLS) cohort were reviewed and their findings summarized. Findings from the broader literature on blast-related mild TBI that evaluate similar outcomes are additionally reviewed for a perspective on the state of the literature. RESULTS The most consistent and compelling evidence for long-term effects of blast-related TBI is for poorer psychological health, greater healthcare utilization and disability levels, neuroimaging impacts on brain structure and function, and greater headache impact on daily life. To date, evidence for chronic cognitive performance deficits from blast-related mild TBI is limited, but futher research including crucial longitudinal data is needed. CONCLUSION Commentary is provided on: how LIMBIC-CENC findings assimilate with the broader literature; ongoing research gaps alongside future research needs and priorities; how the scientific community can utilize the LIMBIC-CENC database for independent or collaborative research; and how the evidence from the clinical research should be assimilated into clinical practice.
Collapse
Affiliation(s)
| | - Sarah L. Martindale
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jared A. Rowland
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel Walton
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tomer Talmy
- Israel Defense Forces, Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA, USA
| |
Collapse
|
8
|
Lippa SM, Yeh PH, Kennedy JE, Bailie JM, Ollinger J, Brickell TA, French LM, Lange RT. Lifetime Blast Exposure Is Not Related to White Matter Integrity in Service Members and Veterans With and Without Uncomplicated Mild Traumatic Brain Injury. Neurotrauma Rep 2023; 4:827-837. [PMID: 38156076 PMCID: PMC10754347 DOI: 10.1089/neur.2023.0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
This study examines the impact of lifetime blast exposure on white matter integrity in service members and veterans (SMVs). Participants were 227 SMVs, including those with a history of mild traumatic brain injury (mTBI; n = 124), orthopedic injury controls (n = 58), and non-injured controls (n = 45), prospectively enrolled in a Defense and Veterans Brain Injury Center (DVBIC)/Traumatic Brain Injury Center of Excellence (TBICoE) study. Participants were divided into three groups based on number of self-reported lifetime blast exposures: none (n = 53); low (i.e., 1-9 blasts; n = 81); and high (i.e., ≥10 blasts; n = 93). All participants underwent diffusion tensor imaging (DTI) at least 11 months post-injury. Tract-of-interest (TOI) analysis was applied to investigate fractional anisotropy and mean, radial, and axial diffusivity (AD) in left and right total cerebral white matter as well as 24 tracts. Benjamini-Hochberg false discovery rate (FDR) correction was used. Regressions investigating blast exposure and mTBI on white matter integrity, controlling for age, revealed that the presence of mTBI history was associated with lower AD in the bilateral superior longitudinal fasciculus and arcuate fasciculus and left cingulum (βs = -0.255 to -0.174; ps < 0.01); however, when non-injured controls were removed from the sample (but orthopedic injury controls remained), these relationships were attenuated and did not survive FDR correction. Regression models were rerun with modified post-traumatic stress disorder (PTSD) diagnosis added as a predictor. After FDR correction, PTSD was not significantly associated with white matter integrity in any of the models. Overall, there was no relationship between white matter integrity and self-reported lifetime blast exposure or PTSD.
Collapse
Affiliation(s)
- Sara M. Lippa
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ping-Hong Yeh
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
| | - Jan E. Kennedy
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- Brooke Army Medical Center, Joint Base, San Antonio, Texas, USA
| | - Jason M. Bailie
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- 33 Area Branch Clinic, Camp Pendleton, California, USA
| | - John Ollinger
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
| | - Tracey A. Brickell
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
| | - Louis M. French
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rael T. Lange
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- University of British Columbia, Vancouver, British Columbia, USA
| |
Collapse
|
9
|
Martindale SL, Belding JN, Crawford CD, Rowland JA. Validation of Military Occupational Specialty as a Proxy for Blast Exposure Using the Salisbury Blast Interview. J Neurotrauma 2023; 40:2321-2329. [PMID: 37058360 DOI: 10.1089/neu.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Abstract Evaluating large data sets precludes the ability to directly measure individual experiences, instead relying on proxies to infer certain constructs. Blast exposure is a construct of study currently in its infancy, resulting in diverse definitions and measurements across studies. The purpose of the present study was to validate military occupational specialty (MOS) as a proxy for blast exposure in combat veterans. A total of 256 veterans (86.33% male) completed the Salisbury Blast Interview (SBI) and Mid-Atlantic Mental Illness Research Education and Clinical Center (MIRECC) Assessment of Traumatic Brain Injury (MMA-TBI). MOS was collected through record review and categorized into low and high risk for blast exposure. Chi-square analyses and t tests compared SBI metrics between MOS categories. Receiver operating characteristic (ROC) analyses evaluated the diagnostic accuracy of MOS category in determining blast exposure severity. Veterans in high-risk MOS were more likely to have experienced blast and deployment TBI (ps < 0.001) than were those in low-risk MOS. ROC analyses indicated good specificity (81.29-88.00) for blast and deployment TBI outcomes, suggesting that low-risk MOS is generally associated with an absence of blast and deployment TBI outcomes. Sensitivity was low (36.46-51.14), indicating that MOS risk level was not a good predictor of the presence of these outcomes. Results demonstrate that high-risk MOSs will identify individuals with blast exposure and deployment TBI history whereas low-risk MOSs will capture a highly variable group. Accuracy of MOS categorization was not acceptable for diagnostic-level tests; however, results support its use as a screening measure for a history of exposure to blast, use in epidemiological studies, and considerations for military policy.
Collapse
Affiliation(s)
- Sarah L Martindale
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research and Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Cameron D Crawford
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research and Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
| | - Jared A Rowland
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research and Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Saar-Ashkenazy R, Naparstek S, Dizitzer Y, Zimhoni N, Friedman A, Shelef I, Cohen H, Shalev H, Oxman L, Novack V, Ifergane G. Neuro-psychiatric symptoms in directly and indirectly blast exposed civilian survivors of urban missile attacks. BMC Psychiatry 2023; 23:423. [PMID: 37312064 DOI: 10.1186/s12888-023-04943-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Blast-explosion may cause traumatic brain injury (TBI), leading to post-concussion syndrome (PCS). In studies on military personnel, PCS symptoms are highly similar to those occurring in post-traumatic stress disorder (PTSD), questioning the overlap between these syndromes. In the current study we assessed PCS and PTSD in civilians following exposure to rocket attacks. We hypothesized that PCS symptomatology and brain connectivity will be associated with the objective physical exposure, while PTSD symptomatology will be associated with the subjective mental experience. METHODS Two hundred eighty nine residents of explosion sites have participated in the current study. Participants completed self-report of PCS and PTSD. The association between objective and subjective factors of blast and clinical outcomes was assessed using multivariate analysis. White-matter (WM) alterations and cognitive abilities were assessed in a sub-group of participants (n = 46) and non-exposed controls (n = 16). Non-parametric analysis was used to compare connectivity and cognition between the groups. RESULTS Blast-exposed individuals reported higher PTSD and PCS symptomatology. Among exposed individuals, those who were directly exposed to blast, reported higher levels of subjective feeling of danger and presented WM hypoconnectivity. Cognitive abilities did not differ between groups. Several risk factors for the development of PCS and PTSD were identified. CONCLUSIONS Civilians exposed to blast present higher PCS/PTSD symptomatology as well as WM hypoconnectivity. Although symptoms are sub-clinical, they might lead to the future development of a full-blown syndrome and should be considered carefully. The similarities between PCS and PTSD suggest that despite the different etiology, namely, the physical trauma in PCS and the emotional trauma in PTSD, these are not distinct syndromes, but rather represent a combined biopsychological disorder with a wide spectrum of behavioral, emotional, cognitive and neurological symptoms.
Collapse
Affiliation(s)
- R Saar-Ashkenazy
- Faculty of Social-Work, Ashkelon Academic College, 12 Ben Tzvi St, PO Box 9071, 78211, Ashkelon, Israel.
- Department of Cognitive-Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - S Naparstek
- Department of Psychology Ben-Gurion, University of the Negev, Beer-Sheva, Israel
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Y Dizitzer
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - N Zimhoni
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - A Friedman
- Department of Cognitive-Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - I Shelef
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Faculty of Health Sciences, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - H Shalev
- Department of Psychiatry, Soroka University Medical Center, Beer-Sheva, Israel
| | - L Oxman
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - V Novack
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - G Ifergane
- Department of Neurology, Soroka University Medical Center, Beer-Sheva, Israel
| |
Collapse
|
11
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Sowa A, Tetreault T, Varghese M, Cook DG, Zhu CW, Tappan SJ, Janssen WGM, Hof PR, Ahlers ST, Elder GA. Late chronic local inflammation, synaptic alterations, vascular remodeling and arteriovenous malformations in the brains of male rats exposed to repetitive low-level blast overpressures. Acta Neuropathol Commun 2023; 11:81. [PMID: 37173747 PMCID: PMC10176873 DOI: 10.1186/s40478-023-01553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Merina Varghese
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Carolyn W Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - William G M Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
12
|
Barczak-Scarboro NE, Hernández LM, Taylor MK. Military Exposures Predict Mental Health Symptoms in Explosives Personnel but Not Always as Expected. Mil Med 2023; 188:e646-e652. [PMID: 34520546 DOI: 10.1093/milmed/usab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the unique and combined associations of various military stress exposures with positive and negative mental health symptoms in active duty service members. MATERIALS AND METHODS We investigated 87 male U.S. Navy Explosive Ordnance Disposal (EOD) technicians (age M ± SE, range 33.7 ± 0.6, 22-47 years). Those who endorsed a positive traumatic brain injury diagnosis were excluded to eliminate the confounding effects on mental health symptoms. Using a survey platform on a computer tablet, EOD technicians self-reported combat exposure, deployment frequency (total number of deployments), blast exposure (vehicle crash/blast or 50-m blast involvement), depression, anxiety, posttraumatic stress, perceived stress, and life satisfaction during an in-person laboratory session. RESULTS When controlling for other military stressors, EOD technicians with previous involvement in a vehicle crash/blast endorsed worse mental health than their nonexposed counterparts. The interactions of vehicle crash/blast with deployment frequency and combat exposure had moderate effect sizes, and combat and deployment exposures demonstrated protective, rather than catalytic, effects on negative mental health scores. CONCLUSIONS Military stressors may adversely influence self-reported symptoms of negative mental health, but deployment experience and combat exposure may confer stress inoculation.
Collapse
Affiliation(s)
- Nikki E Barczak-Scarboro
- Leidos Inc., San Diego, CA 92121, USA
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92106, USA
| | - Lisa M Hernández
- Leidos Inc., San Diego, CA 92121, USA
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92106, USA
| | - Marcus K Taylor
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92106, USA
| |
Collapse
|
13
|
Plasma biomarkers associated with deployment trauma and its consequences in post-9/11 era veterans: initial findings from the TRACTS longitudinal cohort. Transl Psychiatry 2022; 12:80. [PMID: 35217643 PMCID: PMC8881445 DOI: 10.1038/s41398-022-01853-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is among the most common injuries sustained by post-9/11 veterans; however, these injuries often occur within the context of psychological trauma. Blast exposure, even in the absence of a diagnosable TBI, leads to changes in neural connectivity and congitive functioning. Therefore, considering clinical comorbidities and injury characteristics is critical to understanding the long-term effects of mTBI. Research is moving towards identifying diagnostic and prognostic blood-based biomarkers for TBI; however, few studies include other prevalent clinical and medical comorbidities related to deployment. Here, we present the initial cross-sectional relationships between plasma biomarkers, clinical, and medical comorbidities in a well-characterized longitudinal sample of 550 post-9/11 veteran men and women. We examined biomarkers associated with inflammation (interleukin 6 and 10, tumor necrosis factor α, and eotaxin) and neurodegeneration (neurofilament light, glial fibrillary acidic protein (GFAP), tau, brain derived neurotrophic factor, amyloid ß 40 and 42, phosphorylated neurofilament heavy chain, and neuron specific enolase). Univariate analyses of covariance (ANCOVA) were conducted to determine mean level differences between close blast (blasts that occur within 0-10 meters) and mTBI groups. Our primary findings were twofold: (1) Inflammatory markers were consistently higher in participants exposed to close blasts and were strongly related to deployment-related psychopathology. (2) GFAP was consistently lower in participants exposed to blast and mTBI and lower GFAP was associated with more severe psychological symptoms. More research is clearly needed; however, our findings indicate that chronic increased inflammation and decreased GFAP may be related to close blast exposure.
Collapse
|
14
|
Rowland JA, Stapleton-Kotloski JR, Martindale SL, Rogers EE, Ord AS, Godwin DW, Taber KH. Alterations in the Topology of Functional Connectomes Are Associated with Post-Traumatic Stress Disorder and Blast-Related Mild Traumatic Brain Injury in Combat Veterans. J Neurotrauma 2021; 38:3086-3096. [PMID: 34435885 DOI: 10.1089/neu.2020.7450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common condition in post-deployment service members (SM). SMs of the conflicts in Iraq and Afghanistan also frequently experience traumatic brain injury (TBI) and exposure to blasts during deployments. This study evaluated the effect of these conditions and experiences on functional brain connectomes in post-deployment, combat-exposed veterans. Functional brain connectomes were created using 5-min resting-state magnetoencephalography data. Well-established clinical interviews determined current PTSD diagnosis, as well as deployment-acquired mild TBI and history of exposure to blast. Linear regression examined the effect of these conditions on functional brain connectomes beyond covariates. There were significant interactions between blast-related mild TBI and PTSD after correction for multiple comparisons including number of nodes (non-standardized parameter estimate [PE] = -12.47), average degree (PE = 0.05), and connection strength (PE = 0.05). A main effect of blast-related mild TBI was observed on the threshold level. These results demonstrate a distinct functional connectome presentation associated with the presence of both blast-related mild TBI and PTSD. These findings suggest the possibility that blast-related mild TBI alterations in functional brain connectomes affect the presentation or progression of recovery from PTSD. The current results offer mixed support for hyper-connectivity in the chronic phase of deployment TBI.
Collapse
Affiliation(s)
- Jared A Rowland
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennifer R Stapleton-Kotloski
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L Martindale
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily E Rogers
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anna S Ord
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dwayne W Godwin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katherine H Taber
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Division of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
15
|
Martindale SL, Ord AS, Rule LG, Rowland JA. Effects of blast exposure on psychiatric and health symptoms in combat veterans. J Psychiatr Res 2021; 143:189-195. [PMID: 34500348 DOI: 10.1016/j.jpsychires.2021.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Blast exposure is common among service members, but the chronic psychiatric effects associated with blast exposure are not well-characterized independent of a resulting mild traumatic brain injury (TBI). This analysis evaluated whether blast exposure severity was independently associated with or exacerbated symptom report beyond posttraumatic stress disorder (PTSD) and mild TBI. Participants were Iraq and Afghanistan combat veterans (N = 275; 86.55% male), 71.27% with history of blast exposure, 29.82% current diagnosis of PTSD, and 45.45% with mild TBI. All participants completed diagnostic interviews for PTSD, lifetime TBI, and lifetime blast exposure. Self-reported psychiatric and health outcomes included posttraumatic stress symptoms, depressive symptoms, neurobehavioral symptoms, sleep quality, pain interference, and quality of life. Blast severity was associated with PTSD (B = 2.00), depressive (B = 0.76), and neurobehavioral (B = 1.69) symptoms beyond PTSD diagnosis and mild TBI history. Further, blast severity accounted entirely (i.e., indirect/mediation effect) for the association between TBI and posttraumatic stress (B = 1.62), depressive (B = 0.61), and neurobehavioral (B = 1.38) symptoms. No interaction effects were present. Exposure to blast is an independent factor influencing psychiatric symptoms in veterans beyond PTSD and mild TBI. Results highlight that blast exposure severity may be a more relevant risk factor than deployment mild TBI in combat veterans and should be considered in the etiology of psychiatric symptom presentation and complaints. Further, severity of psychological distress due to the combat environment may be an explanatory mechanism by which blast exposure mediates the relationship between mild TBI and symptom outcomes.
Collapse
Affiliation(s)
- Sarah L Martindale
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, NC, USA; Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Anna S Ord
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, NC, USA; Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lakeysha G Rule
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, NC, USA
| | - Jared A Rowland
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, NC, USA; Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Janssen WG, Sowa A, Tetreault T, Cook DG, Tappan SJ, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun 2021; 9:167. [PMID: 34654480 PMCID: PMC8518227 DOI: 10.1186/s40478-021-01269-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - William G Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
17
|
Clausen AN, Bouchard HC, Welsh-Bohmer KA, Morey RA. Assessment of Neuropsychological Function in Veterans With Blast-Related Mild Traumatic Brain Injury and Subconcussive Blast Exposure. Front Psychol 2021; 12:686330. [PMID: 34262512 PMCID: PMC8273541 DOI: 10.3389/fpsyg.2021.686330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: The majority of combat-related head injuries are associated with blast exposure. While Veterans with mild traumatic brain injury (mTBI) report cognitive complaints and exhibit poorer neuropsychological performance, there is little evidence examining the effects of subconcussive blast exposure, which does not meet clinical symptom criteria for mTBI during the acute period following exposure. We compared chronic effects of combat-related blast mTBI and combat-related subconcussive blast exposure on neuropsychological performance in Veterans. Methods: Post-9/11 Veterans with combat-related subconcussive blast exposure (n = 33), combat-related blast mTBI (n = 26), and controls (n = 33) without combat-related blast exposure, completed neuropsychological assessments of intellectual and executive functioning, processing speed, and working memory via NIH toolbox, assessment of clinical psychopathology, a retrospective account of blast exposures and non-blast-related head injuries, and self-reported current medication. Huber Robust Regressions were employed to compare neuropsychological performance across groups. Results: Veterans with combat-related blast mTBI and subconcussive blast exposure displayed significantly slower processing speed compared with controls. After adjusting for post-traumatic stress disorder and depressive symptoms, those with combat-related mTBI exhibited slower processing speed than controls. Conclusion: Veterans in the combat-related blast mTBI group exhibited slower processing speed relative to controls even when controlling for PTSD and depression. Cognition did not significantly differ between subconcussive and control groups or subconcussive and combat-related blast mTBI groups. Results suggest neurocognitive assessment may not be sensitive enough to detect long-term effects of subconcussive blast exposure, or that psychiatric symptoms may better account for cognitive sequelae following combat-related subconcussive blast exposure or combat-related blast mTBI.
Collapse
Affiliation(s)
- Ashley N. Clausen
- Kansas City VA Medical Center, Kansas City, MO, United States
- Duke-University of North Carolina at Chapel Hill Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham Veteran Affairs Healthcare System, Durham, NC, United States
| | - Heather C. Bouchard
- Duke-University of North Carolina at Chapel Hill Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham Veteran Affairs Healthcare System, Durham, NC, United States
| | | | | | - Rajendra A. Morey
- Duke-University of North Carolina at Chapel Hill Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham Veteran Affairs Healthcare System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
18
|
Sullivan DR, Miller MW, Wolf EJ, Logue MW, Robinson ME, Fortier CB, Fonda JR, Wang DJ, Milberg WP, McGlinchey RE, Salat DH. Cerebral perfusion is associated with blast exposure in military personnel without moderate or severe TBI. J Cereb Blood Flow Metab 2021; 41:886-900. [PMID: 32580671 PMCID: PMC7983507 DOI: 10.1177/0271678x20935190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the use of improvised explosive devices, blast exposure and mild traumatic brain injury (mTBI) have become hallmark injuries of the Iraq and Afghanistan wars. Although the mechanisms of the effects of blast on human neurobiology remain active areas of investigation, research suggests that the cerebrovasculature may be particularly vulnerable to blast via molecular processes that impact cerebral blood flow. Given that recent work suggests that blast exposure, even without a subsequent TBI, may have negative consequences on brain structure and function, the current study sought to further understand the effects of blast exposure on perfusion. One hundred and eighty military personnel underwent pseudo-continuous arterial spin labeling (pCASL) imaging and completed diagnostic and clinical interviews. Whole-brain analyses revealed that with an increasing number of total blast exposures, there was significantly increased perfusion in the right middle/superior frontal gyri, supramarginal gyrus, lateral occipital cortex, and posterior cingulate cortex as well as bilateral anterior cingulate cortex, insulae, middle/superior temporal gyri and occipital poles. Examination of other neurotrauma and clinical variables such as close-range blast exposures, mTBI, and PTSD yielded no significant effects. These results raise the possibility that perfusion may be an important neural marker of brain health in blast exposure.
Collapse
Affiliation(s)
- Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Medicine, Boston, MA, USA
| | - Meghan E Robinson
- Core for Advanced MRI and Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Danny Jj Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
19
|
Tate DF, Dennis EL, Adams JT, Adamson MM, Belanger HG, Bigler ED, Bouchard HC, Clark AL, Delano-Wood LM, Disner SG, Eapen BC, Franz CE, Geuze E, Goodrich-Hunsaker NJ, Han K, Hayes JP, Hinds SR, Hodges CB, Hovenden ES, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Lindsey HM, Morey RA, Newsome MR, Ollinger J, Pugh MJ, Scheibel RS, Shenton ME, Sullivan DR, Taylor BA, Troyanskaya M, Velez C, Wade BS, Wang X, Ware AL, Zafonte R, Thompson PM, Wilde EA. Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging Behav 2021; 15:585-613. [PMID: 33409819 PMCID: PMC8035292 DOI: 10.1007/s11682-020-00423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - John T Adams
- Western University of Health Sciences, Pomona, CA, USA
| | - Maheen M Adamson
- Defense and Veterans Brain Injury Center, VA Palo Alto, Palo Alto, CA, USA
- Neurosurgery, Stanford School of Medicine, Stanford, CA, USA
| | - Heather G Belanger
- United States Special Operations Command (USSOCOM), Tampa, FL, USA
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
- St Michaels Inc, Tampa, FL, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Heather C Bouchard
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Alexandra L Clark
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa M Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Seth G Disner
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Blessen C Eapen
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- University Medical Center Utrecht, Utrecht, Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Naomi J Goodrich-Hunsaker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kihwan Han
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Sidney R Hinds
- Department of Defense/United States Army Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Elizabeth S Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Mary Jo Pugh
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randall S Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Brockton Division, VA Boston Healthcare System, Brockton, MA, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Brian A Taylor
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Benjamin Sc Wade
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, USC, Los Angeles, CA, USA
- Department of Pediatrics, USC, Los Angeles, CA, USA
- Department of Psychiatry, USC, Los Angeles, CA, USA
- Department of Radiology, USC, Los Angeles, CA, USA
- Department of Engineering, USC, Los Angeles, CA, USA
- Department of Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Neurovascular Coupling in Special Operations Forces Combat Soldiers. Ann Biomed Eng 2020; 49:793-801. [PMID: 32944852 DOI: 10.1007/s10439-020-02604-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to investigate how concussion history affects neurovascular coupling in Special Operations Forces (SOF) combat Soldiers. We studied 100 SOF combat Soldiers [age = 33.5 ± 4.3 years; height = 180.4 ± 6.0 cm; 55 (55.0%) with self-reported concussion history]. We employed transcranial Doppler (TCD) ultrasound to assess neurovascular coupling (NVC) via changes in posterior cerebral artery (PCA) velocity in response to a reading and a visual search task. Baseline TCD data were collected for 2 min. NVC was quantified by the percent change in overall PCA response curves. We employed linear mixed effect models using a linear spline with one knot to assess group differences in percent change observed in the PCA velocity response curves between SOF combat Soldiers with and without a concussion history. Baseline PCA velocity did not significantly differ (t98 = 1.28, p = 0.20) between those with and without concussion history. Relative PCA velocity response curves did not differ between those with and without a concussion history during the reading task (F1,98 = 0.80, p = 0.37) or the visual search task (F1,98 = 0.52, p = 0.47). When assessing only SOF combat Soldiers with a concussion history, differential response to task was significantly greater in those with 3 or more concussions (F1,4341 = 27.24, p < 0.0001) relative to those with 1-2 concussions. Despite no main effect of concussion history on neurovascular coupling response in SOF combat Soldiers, we observed a dose-response based on lifetime concussion incidence. While long-term neurophysiological effects associated with head impact and blast-related injury are currently unknown, assessing NVC response may provide further insight into cerebrovascular function and overall physiological health.
Collapse
|
21
|
Martindale SL, Ord AS, Rowland JA. Influence of blast exposure on cognitive functioning in combat veterans. Neuropsychology 2020; 34:735-743. [PMID: 32673000 DOI: 10.1037/neu0000672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We evaluated the contribution of blast-pressure severity to cognitive functioning beyond posttraumatic stress disorder (PTSD) severity and traumatic brain injury (TBI). METHOD Post-9/11 veterans (N = 254, 86.22% male) completed the Wechsler Adult Intelligence Scale (WAIS-IV) and Trail Making Test (TMT). The Clinician-Administered PTSD Scale (CAPS-5), Mid-Atlantic MIRECC Assessment of TBI, and the Salisbury Blast Interview evaluated PTSD diagnosis/severity, deployment TBI history/severity, and blast-exposure history/severity, respectively. RESULTS Veterans with mild deployment TBI had overall significantly lower T scores on the WAIS-IV Verbal Comprehension Index (d = .13), Working Memory Index (d = .30), and Processing Speed Index (d = .25); the Trail Making Test A (TMT-A; d = .50); and the Trail Making Test B (TMT-B; d = .37). Mild deployment TBI was significantly associated with TMT-A (ΔR² = .05, p < .001) and TMT-B (ΔR² = .03, p = .001) performance. Blast-pressure severity moderated the association between mild deployment TBI and TMT-A (ΔR² = .02, p = .039, B = -2.01). CONCLUSION Blast-pressure severity exacerbated the effects of mild TBI on a simple attention task, such that participants with TBI had gradual decrements in attention as blast severity increased. Veterans who incur a TBI and are exposed to blasts during deployment may experience persisting difficulties with cognitive functioning as a result of alterations in basic attention abilities. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Sarah L Martindale
- Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MA-MIRECC), Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System
| | - Anna S Ord
- MA-MIRECC, Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System
| | - Jared A Rowland
- MA-MIRECC, Research & Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System
| |
Collapse
|
22
|
Roby PR, Chandran A, Barczak-Scarboro NE, DeLellis SM, Ford CB, Healy ML, Means GE, Kane SF, Lynch JH, Mihalik JP. Cerebrovascular Reactivity in Special Operations Forces Combat Soldiers. Ann Biomed Eng 2020; 48:1651-1660. [DOI: 10.1007/s10439-020-02514-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/11/2020] [Indexed: 01/19/2023]
|
23
|
Rowland JA, Martindale SL, Spengler KM, Shura RD, Taber KH. Sequelae of Blast Events in Iraq and Afghanistan War Veterans using the Salisbury Blast Interview: A CENC Study. Brain Inj 2020; 34:642-652. [PMID: 32096666 PMCID: PMC9007162 DOI: 10.1080/02699052.2020.1729418] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 01/19/2023]
Abstract
Objective: To comprehensively characterize blast exposure across the lifespan and relationship to TBI.Participants: Post-deployment veterans and service members (N = 287).Design: Prospective cohort recruitment.Main Measures: Salisbury Blast Interview (SBI).Results: 94.4% of participants reported at least one blast event, 75% reported a pressure gradient during a blast event. Participants reported an average of 337.7 (SD = 984.0) blast events (range 0-4857), 64.8% occurring during combat. Across participants, 19.7% reported experiencing a traumatic brain injury (TBI) during a blast event. Subjective ratings of blast characteristics (wind, debris, ground shaking, pressure, temperature, sound) were significantly higher when TBI was experienced and significantly lower when behind cover. Pressure had the strongest association with resulting TBI (AUC = 0.751). Pressure rating of 3 had the best sensitivity (.54)/specificity (.87) with TBI. Logistic regression demonstrated pressure, temperature and distance were the best predictors of TBI, and pressure was the best predictor of primary blast TBI.Conclusion: Results demonstrate the ubiquitous nature of blast events and provide insight into blast characteristics most associated with resulting TBI (pressure, temperature, distance). The SBI provides comprehensive characterization of blast events across the lifespan including the environment, protective factors, blast characteristics and estimates of distance and munition.
Collapse
Affiliation(s)
- Jared A. Rowland
- Research & Academic Affairs Service Line, Salisbury VA Medical Center, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L. Martindale
- Research & Academic Affairs Service Line, Salisbury VA Medical Center, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem,North Carolina, USA
| | - Kayla M. Spengler
- Research & Academic Affairs Service Line, Salisbury VA Medical Center, Salisbury, North Carolina, USA
| | - Robert D. Shura
- Research & Academic Affairs Service Line, Salisbury VA Medical Center, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katherine H. Taber
- Research & Academic Affairs Service Line, Salisbury VA Medical Center, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Sydnor VJ, Bouix S, Pasternak O, Hartl E, Levin-Gleba L, Reid B, Tripodis Y, Guenette JP, Kaufmann D, Makris N, Fortier C, Salat DH, Rathi Y, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. Neuroimage Clin 2020; 26:102190. [PMID: 32070813 PMCID: PMC7026283 DOI: 10.1016/j.nicl.2020.102190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals, yet the neuropathological mechanisms that contribute to this disorder remain to be fully determined. Moreover, it is unclear how exposure to mild traumatic brain injury (mTBI), a condition that is often comorbid with PTSD, particularly among military personnel, affects the clinical and neurological presentation of PTSD. To address these issues, the present study explores relationships between PTSD symptom severity and the microstructure of limbic and paralimbic gray matter brain regions, as well as the impact of mTBI comorbidity on these relationships. METHODS Structural and diffusion MRI data were acquired from 102 male veterans who were diagnosed with current PTSD. Diffusion data were analyzed with free-water imaging to quantify average CSF-corrected fractional anisotropy (FA) and mean diffusivity (MD) in 18 limbic and paralimbic gray matter regions. Associations between PTSD symptom severity and regional average dMRI measures were examined with repeated measures linear mixed models. Associations were studied separately in veterans with PTSD only, and in veterans with PTSD and a history of military mTBI. RESULTS Analyses revealed that in the PTSD only cohort, more severe symptoms were associated with higher FA in the right amygdala-hippocampus complex, lower FA in the right cingulate cortex, and lower MD in the left medial orbitofrontal cortex. In the PTSD and mTBI cohort, more severe PTSD symptoms were associated with higher FA bilaterally in the amygdala-hippocampus complex, with higher FA bilaterally in the nucleus accumbens, with lower FA bilaterally in the cingulate cortex, and with higher MD in the right amygdala-hippocampus complex. CONCLUSIONS These findings suggest that the microstructure of limbic and paralimbic brain regions may influence PTSD symptomatology. Further, given the additional associations observed between microstructure and symptom severity in veterans with head trauma, we speculate that mTBI may exacerbate the impact of brain microstructure on PTSD symptoms, especially within regions of the brain known to be vulnerable to chronic stress. A heightened sensitivity to the microstructural environment of the brain could partially explain why individuals with PTSD and mTBI comorbidity experience more severe symptoms and poorer illness prognoses than those without a history of brain injury. The relevance of these microstructural findings to the conceptualization of PTSD as being a disorder of stress-induced neuronal connectivity loss is discussed.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth Hartl
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Levin-Gleba
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States
| | - Benjamin Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yorghos Tripodis
- Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Jeffrey P Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Catherine Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
25
|
Ryan-Gonzalez C, Kimbrel NA, Meyer EC, Gordon EM, DeBeer BB, Gulliver SB, Elliott TR, Morissette SB. Differences in Post-Traumatic Stress Disorder Symptoms among Post-9/11 Veterans with Blast- and Non-Blast Mild Traumatic Brain Injury. J Neurotrauma 2019; 36:1584-1590. [PMID: 30511882 DOI: 10.1089/neu.2017.5590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) has been difficult to disentangle, in part due to the commonality of incidents that can cause both conditions, as well as high rates of comorbidity between the two conditions. Inconsistent findings may be related to different study characteristics and types of mild TBI (mTBI) sustained (e.g., blast, non-blast). The objective of this study was to determine the association of blast- versus non-blast-related TBIs with long-term PTSD symptoms after controlling for demographic variables and trauma exposure. The sample included 230 post-9/11 veterans who experienced a blast-related mTBI (n = 29), non-blast mTBI (n = 74), combined blast and non-blast mTBI (n = 40), or no TBI (n = 87). As hypothesized, a between-groups analysis of covariance (ANCOVA) revealed that, after controlling for demographics, combat exposure, and prior trauma, PTSD symptoms among individuals with blast-related mTBI and combined blast and non-blast mTBI were significantly higher compared with non-blast-related mTBI and no TBI. These data suggest that blast-related mTBI is associated with more severe long-term PTSD symptoms.
Collapse
Affiliation(s)
- Clark Ryan-Gonzalez
- 1 Department of Psychology, The University of Texas at San Antonio, San Antonio, Texas
| | - Nathan A Kimbrel
- 2 Department of Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and Duke University Medical Center, Durham, North Carolina
| | - Eric C Meyer
- 3 Department of Veterans Affairs VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Healthcare System, Texas A&M University Health Science Center, and Warriors Research Institute at Baylor Scott & White Health, Waco, Texas
| | - Evan M Gordon
- 4 Department of Veterans Affairs VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Healthcare System, and University of Texas at Dallas, Dallas, Texas
| | - Bryann B DeBeer
- 5 Department of Veterans Affairs VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Healthcare System, and Texas A&M University Health Science Center, College Station, Texas
| | - Suzy Bird Gulliver
- 6 Warriors Research Institute at Baylor Scott & White Health and Texas A&M University Health Science Center, College Station, Texas
| | - Timothy R Elliott
- 7 Department of Psychology, Texas A&M University, College Station, Texas
| | - Sandra B Morissette
- 1 Department of Psychology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
26
|
Clark AL, Merritt VC, Bigler ED, Bangen KJ, Werhane M, Sorg SF, Bondi MW, Schiehser DM, Delano-Wood L. Blast-Exposed Veterans With Mild Traumatic Brain Injury Show Greater Frontal Cortical Thinning and Poorer Executive Functioning. Front Neurol 2018; 9:873. [PMID: 30473678 PMCID: PMC6237912 DOI: 10.3389/fneur.2018.00873] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Blast exposure (BE) and mild traumatic brain injury (mTBI) have been independently linked to pathological brain changes. However, the combined effects of BE and mTBI on brain structure have yet to be characterized. Therefore, we investigated whether regional differences in cortical thickness exist between mTBI Veterans with and without BE while on deployment. We also examined whether cortical thickness (CT) and cognitive performance differed among mTBI Veterans with low vs. high levels of cumulative BE. Methods: 80 Veterans with mTBI underwent neuroimaging and completed neuropsychological testing and self-report symptom rating scales. Analyses of covariance (ANCOVA) were used to compare blast-exposed Veterans (mTBI+BE, n = 51) to those without BE (mTBI-BE, n = 29) on CT of frontal and temporal a priori regions of interest (ROIs). Next, multiple regression analyses were used to examine whether CT and performance on an executive functions composite differed among mTBI Veterans with low (mTBI+BE Low, n = 22) vs. high (mTBI+BE High, n = 26) levels of cumulative BE. Results: Adjusting for age, numer of TBIs, and PTSD symptoms, the mTBI+BE group showed significant cortical thinning in frontal regions (i.e., left orbitofrontal cortex [p = 0.045], left middle frontal gyrus [p = 0.023], and right inferior frontal gyrus [p = 0.034]) compared to the mTBI-BE group. No significant group differences in CT were observed for temporal regions (p's > 0.05). Multiple regression analyses revealed a significant cumulative BE × CT interaction for the left orbitofrontal cortex (p = 0.001) and left middle frontal gyrus (p = 0.020); reduced CT was associated with worse cognitive performance in the mTBI+BE High group but not the mTBI+BE Low group. Conclusions: Findings show that Veterans with mTBI and BE may be at risk for cortical thinning post-deployment. Moreover, our results demonstrate that reductions in CT are associated with worse executive functioning among Veterans with high levels of cumulative BE. Future longitudinal studies are needed to determine whether BE exacerbates mTBI-related cortical thinning or independently negatively influences gray matter structure.
Collapse
Affiliation(s)
- Alexandra L. Clark
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | - Erin D. Bigler
- Department of Psychology and the Neuroscience Center, Brigham and Young University, San Diego, CA, United States
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Madeleine Werhane
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Scott F. Sorg
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mark W. Bondi
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Dawn M. Schiehser
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
27
|
Gordon EM, Scheibel RS, Zambrano-Vazquez L, Jia-Richards M, May GJ, Meyer EC, Nelson SM. High-Fidelity Measures of Whole-Brain Functional Connectivity and White Matter Integrity Mediate Relationships between Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. J Neurotrauma 2018; 35:767-779. [PMID: 29179667 PMCID: PMC8117405 DOI: 10.1089/neu.2017.5428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) disrupts brain communication and increases risk for post-traumatic stress disorder (PTSD). However, mechanisms by which TBI-related disruption of brain communication confers PTSD risk have not been successfully elucidated in humans. This may be in part because functional MRI (fMRI), the most common technique for measuring functional brain communication, is unreliable for characterizing individual patients. However, this unreliability can be overcome with sufficient within-individual data. Here, we examined whether relationships could be observed among TBI, structural and functional brain connectivity, and PTSD severity by collecting ∼3.5 hours of resting-state fMRI and diffusion tensor imaging (DTI) data in each of 26 United States military veterans. We observed that a TBI history was associated with decreased whole-brain resting-state functional connectivity (RSFC), while the number of lifetime TBIs was associated with reduced whole-brain fractional anisotropy (FA). Both RSFC and FA explained independent variance in PTSD severity, with RSFC mediating the TBI-PTSD relationship. Finally, we showed that large amounts of per-individual data produced highly reliable RSFC measures, and that relationships among TBI, RSFC/FA, and PTSD could not be observed with typical data quantities. These results demonstrate links among TBI, brain connectivity, and PTSD severity, and illustrate the need for precise characterization of individual patients using high-data fMRI scanning.
Collapse
Affiliation(s)
- Evan M. Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
| | - Randall S. Scheibel
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX
| | | | | | - Geoffrey J. May
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, College Station, TX
| | - Eric C. Meyer
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, College Station, TX
| | - Steven M. Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
| |
Collapse
|