1
|
Chen RY, Lee KZ. Therapeutic Efficacy of Hemodynamic Management Using Norepinephrine on Cardiorespiratory Function Following Cervical Spinal Cord Contusion in Rats. J Neurotrauma 2025; 42:197-211. [PMID: 39661956 DOI: 10.1089/neu.2024.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion. Adult male rats underwent cervical spinal cord contusion and the implantation of osmotic pumps filled with saline or norepinephrine (NE) (125 μg/(kg·h) for 1 week). The cardiorespiratory function of unanesthetized rats was examined using a non-invasive blood pressure analyzer and double-chamber plethysmography. Cervical spinal cord contusion caused a long-term reduction in the mean arterial pressure and tidal volume. This hypotensive response was significantly reversed in contused rats receiving NE (1 day: 88 ± 19 mmHg; 2 weeks: 96 ± 13 mmHg) compared with contused rats receiving saline (1 day: 72 ± 15 mmHg; 2 weeks: 82 ± 10 mmHg). NE also significantly improved the tidal volume 1 day post-injury (contused + NE: 0.7 ± 0.2 mL; contused + saline: 0.5 ± 0.1 mL). Immunofluorescence staining results revealed that injury-induced reductions of noradrenergic and glutamatergic fibers within the thoracic spinal cord were significantly improved by NE. These results provided the evidence demonstrating that hemodynamic management using NE significantly improves cardiorespiratory function by alleviating neural pathway damage after cervical spinal cord contusion.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Holmes TC, Penaloza-Aponte JD, Mickle AR, Nosacka RL, Dale EA, Streeter KA. A Simple, Low-Cost Implant for Reliable Diaphragm EMG Recordings in Awake, Behaving Rats. eNeuro 2025; 12:ENEURO.0444-24.2025. [PMID: 39890457 PMCID: PMC11839091 DOI: 10.1523/eneuro.0444-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Breathing is a complex neuromuscular process vital to sustain life. In preclinical animal models, the study of respiratory motor control is primarily accomplished through neurophysiologic recordings and functional measurements of respiratory output. Neurophysiologic recordings that target neural or muscular output via direct nerve recordings or respiratory muscle electromyography (EMG) are commonly collected during anesthetized conditions. While offering tight control of experimental preparations, the use of anesthesia results in respiratory depression, may impact cardiovascular control, eliminates the potential to record volitional nonventilatory behaviors, and can limit translation. Since the diaphragm is a unique muscle which is rhythmically active and difficult to access, placing diaphragm EMGs to collect chronic recordings in awake animals is technically challenging. Here, we describe methods for fabricating and implanting indwelling diaphragm EMG electrodes to enable recordings from awake rodents for longitudinal studies. These electrodes are relatively easy and quick to produce (∼1 h), are affordable, and provide high-quality and reproducible diaphragm signals using a tethered system that allows animals to ad libitum behave. This system is also designed to work in conjunction with whole-body plethysmography to facilitate simultaneous recordings of diaphragm EMG and ventilation. We include detailed instructions and considerations for electrode fabrication and surgical implantation. We also provide a brief discussion on data acquisition, material considerations for implant fabrication, and the physiological implications of the diaphragm EMG signal.
Collapse
Affiliation(s)
- Taylor C Holmes
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53233
| | - Jesus D Penaloza-Aponte
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Alyssa R Mickle
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Departments of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Erica A Dale
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Kristi A Streeter
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
3
|
Silverstein AL, Lawson KG, Farhadi HF, Alilain WJ. Contrasting Experimental Rodent Aftercare With Human Clinical Treatment for Cervical Spinal Cord Injury: Bridging the Translational "Valley of Death". J Neurotrauma 2023; 40:2469-2486. [PMID: 37772694 PMCID: PMC10698787 DOI: 10.1089/neu.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
More than half of all spinal cord injuries (SCIs) occur at the cervical level and often lead to life-threatening breathing motor dysfunction. The C2 hemisection (C2Hx) and high cervical contusion mouse and rat models of SCI are widely utilized both to understand the pathological effects of SCI and to develop potential therapies. Despite rigorous research effort, pre-clinical therapeutics studied in those animal models of SCI sometimes fail when evaluated in the clinical setting. Differences between standard-of-care treatment for acute SCI administered to clinical populations and experimental animal models of SCI could influence the heterogeneity of outcome between pre-clinical and clinical studies. In this review, we have summarized both the standard clinical interventions used to treat patients with cervical SCI and the various veterinary aftercare protocols used to care for rats and mice after experimentally induced C2Hx and high cervical contusion models of SCI. Through this analysis, we have identified areas of marked dissimilarity between clinical and veterinary protocols and suggest the modification of pre-clinical animal care particularly with respect to analgesia, anticoagulative measures, and stress ulcer prophylaxis. In our discussion, we intend to inspire consideration of potential changes to aftercare for animal subjects of experimental SCI that may help to bridge the translational "Valley of Death" and ultimately contribute more effectively to finding treatments capable of restoring independent breathing function to persons with cervical SCI.
Collapse
Affiliation(s)
- Aaron L. Silverstein
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Katelyn G. Lawson
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - H. Francis Farhadi
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurosurgery, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Warren J. Alilain
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Thakre PP, Rana S, Benevides ES, Fuller DD. Targeting drug or gene delivery to the phrenic motoneuron pool. J Neurophysiol 2023; 129:144-158. [PMID: 36416447 PMCID: PMC9829468 DOI: 10.1152/jn.00432.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| |
Collapse
|
5
|
Lee KZ. Neuropathology of distinct diaphragm areas following mid-cervical spinal cord contusion in the rat. Spine J 2022; 22:1726-1741. [PMID: 35680014 DOI: 10.1016/j.spinee.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND The diaphragm is innervated by phrenic motoneurons distributed from the third to fifth cervical spinal cord. The rostral to caudal phrenic motoneuron pool segmentally innervates the ventral, medial, and dorsal diaphragm. PURPOSE The present study was designed to investigate the physiological and transcriptomic mechanism of neuropathology of distinct diaphragm areas following mid-cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS Electromyograms and transcriptome of the ventral, medial, and dorsal diaphragm were examined in rats that received cervical laminectomy or mid-cervical spinal cord contusion in the acute (ie, 1-3 days) or subchronic (ie, ∼14 days) injury stages. RESULTS Mid-cervical spinal cord contusion significantly attenuated the inspiratory bursting amplitude of the dorsal diaphragm but not the ventral or medial diaphragm. Moreover, the discharge onset of the dorsal diaphragm was significantly delayed compared with that of the ventral and medial diaphragm in contused rats. Transcriptomic analysis revealed a robust change in gene expression in the ventral diaphragm compared with that in the dorsal diaphragm. Specifically, enrichment analysis of differentially expressed genes demonstrated that the cell cycle and immune response were significantly upregulated, whereas several metabolic pathways were downregulated, in the ventral diaphragm of acutely contused rats. However, no significant Kyoto Encyclopedia of Genes and Genomes pathway was altered in the dorsal diaphragm. CONCLUSIONS These results suggest that mid-cervical spinal cord injury has different impacts on the physiological and transcriptomic responses of distinct diaphragm areas. CLINICAL SIGNIFICANCE Future therapeutic strategies can consider applying different therapies to distinct diaphragm areas following cervical spinal cord injury. Additionally, confirmation of activities across different diaphragm areas may provide a critical reference for the placement of diaphragmatic pacing electrodes.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Malone IG, Kelly MN, Nosacka RL, Nash MA, Yue S, Xue W, Otto KJ, Dale EA. Closed-Loop, Cervical, Epidural Stimulation Elicits Respiratory Neuroplasticity after Spinal Cord Injury in Freely Behaving Rats. eNeuro 2022; 9:ENEURO.0426-21.2021. [PMID: 35058311 PMCID: PMC8856702 DOI: 10.1523/eneuro.0426-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Over half of all spinal cord injuries (SCIs) are cervical, which can lead to paralysis and respiratory compromise, causing significant morbidity and mortality. Effective treatments to restore breathing after severe upper cervical injury are lacking; thus, it is imperative to develop therapies to address this. Epidural stimulation has successfully restored motor function after SCI for stepping, standing, reaching, grasping, and postural control. We hypothesized that closed-loop stimulation triggered via healthy hemidiaphragm EMG activity has the potential to elicit functional neuroplasticity in spinal respiratory pathways after cervical SCI (cSCI). To test this, we delivered closed-loop, electrical, epidural stimulation (CLES) at the level of the phrenic motor nucleus (C4) for 3 d after C2 hemisection (C2HS) in freely behaving rats. A 2 × 2 Latin Square experimental design incorporated two treatments, C2HS injury and CLES therapy resulting in four groups of adult, female Sprague Dawley rats: C2HS + CLES (n = 8), C2HS (n = 6), intact + CLES (n = 6), intact (n = 6). In stimulated groups, CLES was delivered for 12-20 h/d for 3 d. After C2HS, 3 d of CLES robustly facilitated the slope of stimulus-response curves of ipsilesional spinal motor evoked potentials (sMEPs) versus nonstimulated controls. To our knowledge, this is the first demonstration of CLES eliciting respiratory neuroplasticity after C2HS in freely behaving animals. These findings suggest CLES as a promising future therapy to address respiratory deficiency associated with cSCI.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Sijia Yue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Wei Xue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
- Department of Neurology, University of Florida, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL 32611
| | - Erica A Dale
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
7
|
Lee KZ, Liou LM, Vinit S, Ren MY. Rostral-caudal effect of cervical magnetic stimulation on the diaphragm motor evoked potential following cervical spinal cord contusion in the rat. J Neurotrauma 2021; 39:683-700. [PMID: 34937419 DOI: 10.1089/neu.2021.0403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study was designed to investigate the rostro-caudal effect of spinal magnetic stimulation on diaphragmatic motor-evoked potentials following cervical spinal cord injury. The diaphragm electromyogram was recorded in rats that received a laminectomy or a left mid-cervical contusion at the acute (1 day), subchronic (2 weeks), or chronic (8 weeks) injured stages. The center of a figure-eight coil was placed at 30 mm lateral to bregma on the left side, and the effect of magnetic stimulation was evaluated by stimulating the rostral, middle, and caudal cervical regions in spontaneously breathing rats. The results demonstrated that cervical magnetic stimulation induced intensity-dependent motor-evoked potentials in the bilateral diaphragm in both uninjured and contused rats; however, the left diaphragm exhibited a higher amplitude and earlier onset than the right diaphragm. Moreover, the intensity-response curve was shifted upward in the rostral-to-caudal direction of magnetic stimulation, suggesting that caudal cervical magnetic stimulation produced more robust diaphragmatic motor-evoked potentials compared to rostral cervical magnetic stimulation. Interestingly, the diaphragmatic motor-evoked potentials were similar between uninjured and contused rats during cervical magnetic stimulation despite weaker inspiratory diaphragmatic activity in contused rats. Additionally, in contused animals but not uninjured animals, diaphragmatic motor-evoked potential amplitude were greater at the chronic stage than during earlier injured stages. These results demonstrated that cervical magnetic stimulation can excite the residual phrenic motor circuit to activate the diaphragm in the presence of a significant lesion in the cervical spinal cord. These findings indicate that this non-invasive approach is effective for modulating diaphragmatic excitability following cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| | - Li-Min Liou
- Kaohsiung Medical University Hospital, 89234, Neurology, Kaohsiung, Taiwan;
| | - Stéphane Vinit
- Université Paris-Saclay, 27048, UFR des Sciences de la Santé Simone Veil, Saint-Aubin, Île-de-France, France;
| | - Ming-Yue Ren
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| |
Collapse
|
8
|
Chiu TT, Lee KZ. Impact of cervical spinal cord injury on the relationship between the metabolism and ventilation in rats. J Appl Physiol (1985) 2021; 131:1799-1814. [PMID: 34647826 DOI: 10.1152/japplphysiol.00472.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cervical spinal cord injury typically results in respiratory impairments. Clinical and animal studies have demonstrated that respiratory function can spontaneously and partially recover over time after injury. However, it remains unclear whether respiratory recovery is associated with alterations in metabolism. The present study was designed to comprehensively examine ventilation and metabolism in a rat model of spinal cord injury. Adult male rats received sham (i.e., laminectomy) or unilateral mid-cervical contusion injury (height of impact rod: 6.25 or 12.5 mm). Breathing patterns and whole body metabolism (O2 consumption and CO2 production) were measured using a whole body plethysmography system conjugated with flow controllers and gas analyzer at the acute (1 day postinjury), subchronic (2 wk postinjury), and chronic (8 wk postinjury) injury stages. The results demonstrated that mid-cervical contusion caused a significant reduction in the tidal volume. Although the tidal volume of contused animals can gradually recover, it remains lower than that of uninjured animals at the chronic injury stage. Although O2 consumption and CO2 production were similar between uninjured and contused animals at the acute injury stage, these two metabolic parameters were significantly reduced in contused animals at the subchronic to chronic injury stages. Additionally, the relationships between ventilation, metabolism, and body temperature were altered by cervical spinal cord injury. These results suggest that cervical spinal cord injury causes a complicated reconfiguration of ventilation and metabolism that may enable injured animals to maintain a suitable homeostasis for adapting to the pathophysiological consequences of injury.NEW & NOTEWORTHY Ventilation and metabolism are tightly coupled to maintain appropriate energy expenditure under physiological conditions. Our findings demonstrate that cervical spinal cord injury results in the differential reduction of ventilation and metabolism at the various injury stages and leads to alterations in the relationship between ventilation and metabolism. These results from an animal model provide fundamental knowledge for understanding how cervical spinal cord injury impacts energy homeostasis.
Collapse
Affiliation(s)
- Tzu-Ting Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Gonzalez-Rothi EJ, Lee KZ. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury. Exp Neurol 2021; 342:113751. [PMID: 33974878 DOI: 10.1016/j.expneurol.2021.113751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Impaired respiratory function is a common and devastating consequence of cervical spinal cord injury. Accordingly, the development of safe and effective treatments to restore breathing function is critical. Acute intermittent hypoxia has emerged as a promising therapeutic strategy to treat respiratory insufficiency in individuals with spinal cord injury. Since the original report by Bach and Mitchell (1996) concerning long-term facilitation of phrenic motor output elicited by brief, episodic exposure to reduced oxygen, a series of studies in animal models have led to the realization that acute intermittent hypoxia may have tremendous potential for inducing neuroplasticity and functional recovery in the injured spinal cord. Advances in our understanding of the neurobiology of acute intermittent hypoxia have prompted us to begin to explore its effects in human clinical studies. Here, we review the basic neurobiology of the control of breathing and the pathophysiology and respiratory consequences of two common experimental models of incomplete cervical spinal cord injury (i.e., high cervical hemisection and mid-cervical contusion). We then discuss the impact of acute intermittent hypoxia on respiratory motor function in these models: work that has laid the foundation for translation of this promising therapeutic strategy to clinical populations. Lastly, we examine the limitations of these animal models and intermittent hypoxia and discuss how future work in animal models may further advance the translation and therapeutic efficacy of this treatment.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Michel-Flutot P, Mansart A, Deramaudt TB, Jesus I, Lee KZ, Bonay M, Vinit S. Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury. Respir Physiol Neurobiol 2021; 284:103568. [DOI: 10.1016/j.resp.2020.103568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022]
|
11
|
Wu MJ, Vinit S, Chen CL, Lee KZ. 5-HT7 Receptor Inhibition Transiently Improves Respiratory Function Following Daily Acute Intermittent Hypercapnic-Hypoxia in Rats With Chronic Midcervical Spinal Cord Contusion. Neurorehabil Neural Repair 2020; 34:333-343. [DOI: 10.1177/1545968320905806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Intermittent hypoxia can induce respiratory neuroplasticity to enhance respiratory motor outputs following hypoxic treatment. This type of respiratory neuroplasticity is primarily mediated by the activation of Gq-protein-coupled 5-HT2 receptors and constrained by Gs-protein-coupled 5-HT7 receptors. Objective. The present study hypothesized that the blockade of 5-HT7 receptors can potentiate the effect of intermittent hypercapnic-hypoxia on respiratory function after cervical spinal cord contusion injury. Methods. The ventilatory behaviors of unanesthetized rats with midcervical spinal cord contusions were measured before, during, and after daily acute intermittent hypercapnic-hypoxia (10 episodes of 5 minutes of hypoxia [10% O2, 4% CO2, 86% N2] with 5 minutes of normoxia intervals for 5 days) at 8 weeks postinjury. On a daily basis, 5 minutes before intermittent hypercapnic-hypoxia, rats received either a 5-HT7 receptor antagonist (SB269970, 4 mg/kg, intraperitoneal) or a vehicle (dimethyl sulfoxide). Results. Treatment with intermittent hypercapnic-hypoxia induced a similar increase in tidal volume between rats that received SB269970 and those that received dimethyl sulfoxide within 60 minutes post-hypoxia on the first day. However, after 2 to 3 days of daily acute intermittent hypercapnic-hypoxia, the baseline tidal volumes of rats treated with SB269970 increased significantly. Conclusions. These results suggest that inhibiting the 5-HT7 receptor can transiently improve daily intermittent hypercapnic-hypoxia–induced tidal volume increase in midcervical spinal contused animals. Therefore, combining pharmacological treatment with rehabilitative intermittent hypercapnic-hypoxia training may be an effective strategy for synergistically enhancing respiratory neuroplasticity to improve respiratory function following chronic cervical spinal cord injury.
Collapse
Affiliation(s)
- Ming-Jane Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Stéphane Vinit
- Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Wen MH, Wu MJ, Vinit S, Lee KZ. Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat. J Neurotrauma 2019; 36:2991-3004. [PMID: 31099299 DOI: 10.1089/neu.2018.6371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The present study was designed to evaluate the therapeutic effectiveness and mechanism of acute intermittent hypoxia on respiratory function at distinct injury stages following mid-cervical spinal contusion. In the first experiment, adult male rats received laminectomy or unilateral contusion at 3rd-4th cervical spinal cord at 9 weeks of age. The ventilatory behavior in response to mild acute intermittent hypercapnic-hypoxia (10 episodes of 5 min of hypoxia [10% O2, 4% CO2, 86% N2] with 5 min of normoxia intervals) was measured by whole-body plethysmography at the acute (∼3 days), subchronic (∼2 weeks), and chronic (∼8 weeks) injury stages. The minute ventilation of contused animals is significantly enhanced following acute intermittent hypercapnic-hypoxia due to an augmentation of the tidal volume at all time-points post-injury. However, acute intermittent hypercapnia-hypoxia-induced ventilatory long-term facilitation was only observed in uninjured animals at the acute stage. During the second experiment, the effect of acute intermittent hypercapnic-hypoxia on respiration was examined in contused animals after a blockade of serotonin receptors, or adenosine 2A receptors. The results demonstrated that acute intermittent hypercapnic-hypoxia-induced enhancement of minute ventilation was attenuated by a serotonin receptor antagonist (methysergide) but enhanced by an adenosine 2A receptor antagonist (KW6002) at the subchronic and chronic injury stages. These results suggested that acute intermittent hypercapnic-hypoxia can induce respiratory recovery from acute to chronic injury stages. The therapeutic effectiveness of intermittent hypercapnic-hypoxia is dampened by the inhibition of serotonin receptors, but a blockade of adenosine 2A receptors enhanced respiratory recovery induced by intermittent hypercapnic-hypoxia.
Collapse
Affiliation(s)
- Ming-Han Wen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Jane Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Stéphane Vinit
- Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179 END-ICAP, UFR des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Wu H, Lv Q, Zhang H, Qin Y, Fang F, Sun H, Wei Y. The reduction of apnea–hypopnea duration ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in a rat model of obstructive sleep apnea. Sleep Breath 2019; 23:1187-1196. [DOI: 10.1007/s11325-019-01798-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
|
14
|
Lee KZ, Xu KJ. The Impact of Cervical Spinal Cord Contusion on the Laryngeal Resistance in the Rat. J Neurotrauma 2019; 36:448-459. [DOI: 10.1089/neu.2018.5798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
| | - Ke-Jun Xu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Seven YB, Mitchell GS. Mechanisms of compensatory plasticity for respiratory motor neuron death. Respir Physiol Neurobiol 2019; 265:32-39. [PMID: 30625378 DOI: 10.1016/j.resp.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Respiratory motor neuron death arises from multiple neurodegenerative and traumatic neuromuscular disorders. Despite motor neuron death, compensatory mechanisms minimize its functional impact by harnessing intrinsic mechanisms of compensatory respiratory plasticity. However, the capacity for compensation eventually reaches limits and pathology ensues. Initially, challenges to the system such as increased metabolic demand reveal sub-clinical pathology. With greater motor neuron loss, the eventual result is de-compensation, ventilatory failure, ventilator dependence and then death. In this brief review, we discuss recent advances in our understanding of mechanisms giving rise to compensatory respiratory plasticity in response to respiratory motor neuron death including: 1) increased central respiratory drive, 2) plasticity in synapses on spared phrenic motor neurons, 3) enhanced neuromuscular transmission and 4) shifts in respiratory muscle utilization from more affected to less affected motor pools. Some of these compensatory mechanisms may prolong breathing function, but hasten the demise of surviving motor neurons. Improved understanding of these mechanisms and their impact on survival of spared motor neurons will guide future efforts to develop therapeutic interventions that preserve respiratory function with neuromuscular injury/disease.
Collapse
Affiliation(s)
- Yasin B Seven
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
Lee KZ. Impact of cervical spinal cord contusion on the breathing pattern across the sleep-wake cycle in the rat. J Appl Physiol (1985) 2019; 126:111-123. [DOI: 10.1152/japplphysiol.00853.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study was designed to investigate breathing patterns across the sleep-wake state following a high cervical spinal injury in rats. The breathing patterns (e.g., respiratory frequency, tidal volume, and minute ventilation), neck electromyogram, and electroencephalography of unanesthetized adult male rats were measured at the acute (i.e., 1 day), subchronic (i.e., 2 wk), and/or chronic (i.e., 6 wk) injured stages after unilateral contusion of the second cervical spinal cord. Cervical spinal cord injury caused a long-term reduction in the tidal volume but did not influence the sleep-wake cycle duration. The minute ventilation during sleep was usually lower than that during the wake period in uninjured animals due to a decrease in respiratory frequency. However, this sleep-induced reduction in respiratory frequency was not observed in contused animals at the acute injured stage. By contrast, the tidal volume was significantly lower during sleep in contused animals but not uninjured animals from the acute to the chronic injured stage. Moreover, the frequency of sigh and postsigh apnea was elevated in acutely contused animals. These results indicated that high cervical spinal contusion is associated with exacerbated sleep-induced attenuation of the tidal volume and higher occurrence of sleep apnea, which may be detrimental to respiratory functional recovery after cervical spinal cord injury. NEW & NOTEWORTHY Cervical spinal injury is usually associated with sleep-disordered breathing. The present study investigated breathing patterns across sleep-wake state following cervical spinal injury in the rat. Unilateral cervical spinal contusion significantly impacted sleep-induced alteration of breathing patterns, showing a blunted frequency response and exacerbated attenuated tidal volume and occurrence of sleep apnea. The result enables us to investigate effects of cervical spinal injury on the pathogenesis of sleep-disordered breathing and evaluate potential therapies to improve respiration.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
| |
Collapse
|
17
|
Stamegna JC, Sadelli K, Escoffier G, Girard SD, Veron AD, Bonnet A, Khrestchatisky M, Gauthier P, Roman FS. Grafts of Olfactory Stem Cells Restore Breathing and Motor Functions after Rat Spinal Cord Injury. J Neurotrauma 2018; 35:1765-1780. [PMID: 29357739 DOI: 10.1089/neu.2017.5383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transplantation of olfactory ecto-mesenchymal stem cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemidiaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuroelectrophysiological recordings of phrenic nerves (innervating the diaphragm). Locomotor function was evaluated using the ladder-walking locomotor test. Cellular reorganization in the injured area was also studied using immunohistochemical and microscopic techniques. We report a substantial improvement in breathing movements, in activities of the ipsilateral phrenic nerve and ipsilateral diaphragm, and also in locomotor abilities four months post-transplantation with nasal OEMSCs. Moreover, in the grafted spinal cord, axonal disorganization and inflammation were reduced. Some grafted stem cells adopted a neuronal phenotype, and axonal sparing was observed in the injury site. The therapeutic effect on the supraspinal command is presumably because of both neuronal replacements and beneficial paracrine effects on the injury area. Our study provides evidence that nasal OEMSCs could be a first step in clinical application, particularly in patients with reduced breathing/locomotor movements.
Collapse
Affiliation(s)
- Jean-Claude Stamegna
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Kevin Sadelli
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Guy Escoffier
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Stéphane D Girard
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Antoine D Veron
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France .,2 IRSEA, Research Institute in Semiochemistry and Applied Ethology , Apt, France
| | - Amandine Bonnet
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | | | - Patrick Gauthier
- 3 Laboratoire de Neurosciences et Cognitives, Aix-Marseille Université , Marseille, France
| | - François S Roman
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| |
Collapse
|
18
|
Wen MH, Lee KZ. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat. J Neurotrauma 2018; 35:533-547. [DOI: 10.1089/neu.2017.5128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ming-Han Wen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Lee KZ, Gonzalez-Rothi EJ. Contribution of 5-HT 2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury. Respir Physiol Neurobiol 2017; 244:51-55. [PMID: 28711602 DOI: 10.1016/j.resp.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Unilateral C2 spinal cord hemisection (C2Hx) interrupts bulbospinal respiratory pathways innervating ipsilateral phrenic motoneurons, resulting in cessation of ipsilateral diaphragm motor output. Plasticity within the spinal neural circuitry controlling the diaphragm can induce partial recovery of phrenic bursting which correlates with the time-dependent return of spinal serotonin (5-HT) immunoreactivity in the vicinity of phrenic motoneurons. The 5-HT2A receptor subtype is present on phrenic motoneurons and its expression is up-regulated after cervical spinal cord injury; however the functional role of these receptors following injury has not been clearly defined. The present study evaluated the functional role of 5-HT2A receptors by testing the hypothesis that pharmacologic blockade would attenuate diaphragm activity in rats with chronic cervical spinal cord injury. Bilateral diaphragm electromyography (EMG) was performed in vagal-intact and spontaneously breathing rats before and after intravenous administration of the 5-HT2A receptor antagonist Ketanserin (1mg/kg). Intravenous ketanserin significantly attenuated ipsilateral diaphragm EMG activity in C2Hx animals but had no impact on diaphragm output in uninjured animals. We conclude that 5-HT2A receptor activation contributes to the recovery of ipsilateral phrenic motor output after chronic cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Taiwan.
| | | |
Collapse
|
20
|
Abstract
The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the "crossed phrenic phenomenon", wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury.
Collapse
|