1
|
Harutyunyan G, Harutyunyan Jaghatspanyan V, Harutyunyan Jaghatspanyan G, Martirosyan E, Cherkezyan A, Varosyan A, Soghomonyan S. Cerebral capillary oxygen diffusion: exploring the concept of intracapillary hemoglobin conformational changes. Intensive Care Med Exp 2024; 12:110. [PMID: 39609325 PMCID: PMC11604860 DOI: 10.1186/s40635-024-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
The mechanisms of oxygen diffusion in brain capillaries have not been fully clarified to date. According to the laws of physics, the well-documented phenomenon of hyperoxemia-induced excessive increases in brain tissue oxygen pressure (PbtO2) contradicts traditional models of cerebral capillary oxygen diffusion. Circulating models predict a significant drop in oxygen pressure (PO2), and some of them foresee the presence of hypoxic or anoxic corners near the capillary end, regardless of high PbtO2 levels. We propose that the cerebral intracapillary transformation of hemoglobin from the relaxed (R) to the tense (T) quaternary conformational state, driven by deoxygenation and an overload of negative allosteric effectors, and characterized by a lower, more hyperbolic dissociation curve, mitigates the oxygen pressure difference across cerebral capillaries, ensuring a homogeneous pericapillary distribution of oxygen. The hemoglobin R to T state transition is responsible for the high PbtO2 levels observed in viable cerebral tissue during hyperoxemia.
Collapse
Affiliation(s)
- Gurgen Harutyunyan
- Hospital 9 de Octubre, VITHAS, Valle de La Ballestera 59, 46015, Valencia, Spain
| | | | | | - Emma Martirosyan
- Faculty of General Medicine, Yerevan State Medical University, 2 Koryun St, 0025, Yerevan, Armenia
| | - Artur Cherkezyan
- Erebouni Medical Center, Titogradyan St. 14, 0087, Yerevan, Armenia
| | - Armen Varosyan
- Erebouni Medical Center, Titogradyan St. 14, 0087, Yerevan, Armenia
| | - Suren Soghomonyan
- The Ohio State University, Wexner Medical Center N411 Doan Hall, 410 West 10Th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Münz F, Datzmann T, Hoffmann A, Gröger M, Mathieu R, Mayer S, Zink F, Gässler H, Wolfschmitt EM, Hogg M, Calzia E, Asfar P, Radermacher P, Kapapa T, Merz T. The Effect of Targeted Hyperoxemia on Brain Immunohistochemistry after Long-Term, Resuscitated Porcine Acute Subdural Hematoma and Hemorrhagic Shock. Int J Mol Sci 2024; 25:6574. [PMID: 38928283 PMCID: PMC11204264 DOI: 10.3390/ijms25126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-β-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.
Collapse
Affiliation(s)
- Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas Datzmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - René Mathieu
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, 89081 Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, 89081 Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Holger Gässler
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, German Armed Forces Hospital Ulm, 89081 Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Pierre Asfar
- Department of Intensive Care and Hyperbaric Medicine, University Hospital Angers, 49045 Angers, France
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, 89081 Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany (P.R.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
3
|
Datzmann T, Münz F, Hoffmann A, Moehrke E, Binzenhöfer M, Gröger M, Kapapa T, Mathieu R, Mayer S, Zink F, Gässler H, Wolfschmitt EM, Hogg M, Merz T, Calzia E, Radermacher P, Messerer DAC. An exploratory study investigating the effect of targeted hyperoxemia in a randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma and hemorrhagic shock in cardiovascular healthy pigs. Front Immunol 2023; 14:1123196. [PMID: 37114041 PMCID: PMC10126345 DOI: 10.3389/fimmu.2023.1123196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Severe physical injuries and associated traumatic brain injury and/or hemorrhagic shock (HS) remain leading causes of death worldwide, aggravated by accompanying extensive inflammation. Retrospective clinical data indicated an association between mild hyperoxemia and improved survival and outcome. However, corresponding prospective clinical data, including long-term resuscutation, are scarce. Therefore, the present study explored the effect of mild hyperoxemia for 24 hours in a prospective randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma (ASDH) and HS. ASDH was induced by injecting 0.1 ml × kg-1 autologous blood into the subdural space and HS was triggered by passive removal of blood. After 2 hours, the animals received full resuscitation, including retransfusion of the shed blood and vasopressor support. During the first 24 hours, the animals underwent targeted hyperoxemia (PaO2 = 200 - 250 mmHg) or normoxemia (PaO2 = 80 - 120 mmHg) with a total observation period of 55 hours after the initiation of ASDH and HS. Survival, cardiocirculatory stability, and demand for vasopressor support were comparable between both groups. Likewise, humoral markers of brain injury and systemic inflammation were similar. Multimodal brain monitoring, including microdialysis and partial pressure of O2 in brain tissue, did not show significant differences either, despite a significantly better outcome regarding the modified Glasgow Coma Scale 24 hours after shock that favors hyperoxemia. In summary, the present study reports no deleterious and few beneficial effects of mild targeted hyperoxemia in a clinically relevant model of ASDH and HS with long-term resuscitation in otherwise healthy pigs. Further beneficial effects on neurological function were probably missed due to the high mortality in both experimental groups. The present study remains exploratory due to the unavailability of an a priori power calculation resulting from the lack of necessary data.
Collapse
Affiliation(s)
- Thomas Datzmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Elena Moehrke
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Martha Binzenhöfer
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Holger Gässler
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, German Armed Forces Hospital Ulm, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Svedung Wettervik T, Lewén A, Enblad P. Fine tuning of neurointensive care in aneurysmal subarachnoid hemorrhage: From one-size-fits-all towards individualized care. World Neurosurg X 2023; 18:100160. [PMID: 36818739 PMCID: PMC9932216 DOI: 10.1016/j.wnsx.2023.100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of acute brain injury with high mortality and burden of neurological sequelae. General management aims at early aneurysm occlusion to prevent re-bleeding, cerebrospinal fluid drainage in case of increased intracranial pressure and/or acute hydrocephalus, and cerebral blood flow augmentation in case of delayed ischemic neurological deficits. In addition, the brain is vulnerable to physiological insults in the acute phase and neurointensive care (NIC) is important to optimize the cerebral physiology to avoid secondary brain injury. NIC has led to significantly better neurological recovery following aSAH, but there is still great room for further improvements. First, current aSAH NIC management protocols are to some extent extrapolated from those in traumatic brain injury, notwithstanding important disease-specific differences. Second, the same NIC management protocols are applied to all aSAH patients, despite great patient heterogeneity. Third, the main variables of interest, intracranial pressure and cerebral perfusion pressure, may be too superficial to fully detect and treat several important pathomechanisms. Fourth, there is a lack of understanding not only regarding physiological, but also cellular and molecular pathomechanisms and there is a need to better monitor and treat these processes. This narrative review aims to discuss current state-of-the-art NIC of aSAH, knowledge gaps in the field, and future directions towards a more individualized care in the future.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
5
|
Datzmann T, Messerer DAC, Münz F, Hoffmann A, Gröger M, Mathieu R, Mayer S, Gässler H, Zink F, McCook O, Merz T, Scheuerle A, Wolfschmitt EM, Thebrath T, Zuech S, Calzia E, Asfar P, Radermacher P, Kapapa T. The effect of targeted hyperoxemia in a randomized controlled trial employing a long-term resuscitated, model of combined acute subdural hematoma and hemorrhagic shock in swine with coronary artery disease: An exploratory, hypothesis-generating study. Front Med (Lausanne) 2022; 9:971882. [PMID: 36072939 PMCID: PMC9442904 DOI: 10.3389/fmed.2022.971882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Controversial evidence is available regarding suitable targets for the arterial O2 tension (PaO2) after traumatic brain injury and/or hemorrhagic shock (HS). We previously demonstrated that hyperoxia during resuscitation from hemorrhagic shock attenuated cardiac injury and renal dysfunction in swine with coronary artery disease. Therefore, this study investigated the impact of targeted hyperoxemia in a long-term, resuscitated model of combined acute subdural hematoma (ASDH)-induced brain injury and HS. The prospective randomized, controlled, resuscitated animal investigation consisted of 15 adult pigs. Combined ASDH plus HS was induced by injection of 0.1 ml/kg autologous blood into the subdural space followed by controlled passive removal of blood. Two hours later, resuscitation was initiated comprising re-transfusion of shed blood, fluids, continuous i.v. noradrenaline, and either hyperoxemia (target PaO2 200 – 250 mmHg) or normoxemia (target PaO2 80 – 120 mmHg) during the first 24 h of the total of 54 h of intensive care. Systemic hemodynamics, intracranial and cerebral perfusion pressures, parameters of brain microdialysis and blood biomarkers of brain injury did not significantly differ between the two groups. According to the experimental protocol, PaO2 was significantly higher in the hyperoxemia group at the end of the intervention period, i.e., at 24 h of resuscitation, which coincided with a higher brain tissue PO2. The latter persisted until the end of observation period. While neurological function as assessed using the veterinary Modified Glasgow Coma Score progressively deteriorated in the control group, it remained unaffected in the hyperoxemia animals, however, without significant intergroup difference. Survival times did not significantly differ in the hyperoxemia and control groups either. Despite being associated with higher brain tissue PO2 levels, which were sustained beyond the intervention period, targeted hyperoxemia exerted neither significantly beneficial nor deleterious effects after combined ASDH and HS in swine with pre-existing coronary artery disease. The unavailability of a power calculation and, thus, the limited number of animals included, are the limitations of the study.
Collapse
Affiliation(s)
- Thomas Datzmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
- *Correspondence: Thomas Datzmann,
| | - David Alexander Christian Messerer
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Münz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - René Mathieu
- Klinik fuür Neurochirurgie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Simon Mayer
- Klinik fuür Neurochirurgie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Holger Gässler
- Klinik fuür Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Fabian Zink
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Angelika Scheuerle
- Sektion Neuropathologie, Institut für Pathologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Timo Thebrath
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Stefan Zuech
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Pierre Asfar
- Département de Médecine Intensive – Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas Kapapa
- Klinik für Neurochirurgie, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
6
|
The Impact of Short-Term Hyperoxia on Cerebral Metabolism: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:547-557. [PMID: 35641804 DOI: 10.1007/s12028-022-01529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia due to hypoxia is a major cause of secondary brain injury and is associated with higher morbidity and mortality in patients with acute brain injury. Hyperoxia could improve energetic dysfunction in the brain in this setting. Our objectives were to perform a systematic review and meta-analysis of the current literature and to assess the impact of normobaric hyperoxia on brain metabolism by using cerebral microdialysis. METHODS We searched Medline and Scopus, following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement; we searched for retrospective and prospective observational studies, interventional studies, and randomized clinical trials that performed a hyperoxia challenge in patients with acute brain injury who were concomitantly monitored with cerebral microdialysis. This study was registered in PROSPERO (CRD420211295223). RESULTS We included a total of 17 studies, with a total of 311 patients. A statistically significant reduction in cerebral lactate values (pooled standardized mean difference [SMD] - 0.38 [- 0.53 to - 0.23]) and lactate to pyruvate ratio values (pooled SMD - 0.20 [- 0.35 to - 0.05]) was observed after hyperoxia. However, glucose levels (pooled SMD - 0.08 [- 0.23 to 0.08]) remained unchanged after hyperoxia. CONCLUSIONS Normobaric hyperoxia may improve cerebral metabolic disturbances in patients with acute brain injury. The clinical impact of such effects needs to be further elucidated.
Collapse
|
7
|
Svedung Wettervik T, Engquist H, Hånell A, Howells T, Rostami E, Ronne-Engström E, Lewén A, Enblad P. Cerebral Blood Flow and Oxygen Delivery in Aneurysmal Subarachnoid Hemorrhage: Relation to Neurointensive Care Targets. Neurocrit Care 2022; 37:281-292. [PMID: 35449343 PMCID: PMC9283361 DOI: 10.1007/s12028-022-01496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Background The primary aim was to determine to what extent continuously monitored neurointensive care unit (neuro-ICU) targets predict cerebral blood flow (CBF) and delivery of oxygen (CDO2) after aneurysmal subarachnoid hemorrhage. The secondary aim was to determine whether CBF and CDO2 were associated with clinical outcome. Methods In this observational study, patients with aneurysmal subarachnoid hemorrhage treated at the neuro-ICU in Uppsala, Sweden, from 2012 to 2020 with at least one xenon-enhanced computed tomography (Xe-CT) obtained within the first 14 days post ictus were included. CBF was measured with the Xe-CT and CDO2 was calculated based on CBF and arterial oxygen content. Regional cerebral hypoperfusion was defined as CBF < 20 mL/100 g/min, and poor CDO2 was defined as CDO2 < 3.8 mL O2/100 g/min. Neuro-ICU variables including intracranial pressure (ICP), pressure reactivity index, cerebral perfusion pressure (CPP), optimal CPP, and body temperature were assessed in association with the Xe-CT. The acute phase was divided into early phase (day 1–3) and vasospasm phase (day 4–14). Results Of 148 patients, 27 had underwent a Xe-CT only in the early phase, 74 only in the vasospasm phase, and 47 patients in both phases. The patients exhibited cerebral hypoperfusion and poor CDO2 for medians of 15% and 30%, respectively, of the cortical brain areas in each patient. In multiple regressions, higher body temperature was associated with higher CBF and CDO2 in the early phase. In a similar regression for the vasospasm phase, younger age and longer pulse transit time (lower peripheral resistance) correlated with higher CBF and CDO2, whereas lower hematocrit only correlated with higher CBF but not with CDO2. ICP, CPP, and pressure reactivity index exhibited no independent association with CBF and CDO2. R2 of these regressions were below 0.3. Lower CBF and CDO2 in the early phase correlated with poor outcome, but this only held true for CDO2 in multiple regressions. Conclusions Systemic and cerebral physiological variables exhibited a modest association with CBF and CDO2. Still, cerebral hypoperfusion and low CDO2 were common and low CDO2 was associated with poor outcome. Xe-CT imaging could be useful to help detect secondary brain injury not evident by high ICP and low CPP. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-022-01496-1.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Svedung Wettervik T, Hånell A, Howells T, Ronne-Engström E, Enblad P, Lewén A. Association of Arterial Metabolic Content with Cerebral Blood Flow Regulation and Cerebral Energy Metabolism-A Multimodality Analysis in Aneurysmal Subarachnoid Hemorrhage. J Intensive Care Med 2022; 37:1442-1450. [PMID: 35171061 PMCID: PMC9548938 DOI: 10.1177/08850666221080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background In this study, the association of the arterial content of oxygen, carbon
dioxide, glucose, and lactate with cerebral pressure reactivity, energy
metabolism and clinical outcome after aneurysmal subarachnoid hemorrhage
(aSAH) was investigated. Methods In this retrospective study, 60 patients with aSAH, treated at the
neurointensive care (NIC), Uppsala University Hospital, Sweden, between 2016
and 2021 with arterial blood gas (ABG), intracranial pressure, and cerebral
microdialysis (MD) monitoring were included. The first 10 days were divided
into an early phase (day 1 to 3) and a vasospasm phase (day 4 to 10). Results Higher arterial lactate was independently associated with higher/worse
pressure reactivity index (PRx) in the early phase (β = 0.32,
P = .02), whereas higher pO2 had the
opposite association in the vasospasm phase (β = −0.30,
P = .04). Arterial glucose and pCO2 were not
associated with PRx. Higher arterial lactate (β = 0.29,
P = .05) was independently associated with higher
MD-glucose in the vasospasm phase, whereas higher pO2 had the
opposite association in the vasospasm phase (β = −0.33,
P = .03). Arterial glucose and pCO2 were not
associated with MD-glucose. Higher pCO2 in the early phase, lower
arterial glucose in both phases, and lower arterial lactate in the vasospasm
phase were associated (P < .05) with better clinical
outcome. Conclusions Arterial variables associated with more vasoconstriction (higher
pO2 and lower arterial lactate) were associated with better
cerebral pressure reactivity, but worse energy metabolism. In severe aSAH,
when cerebral large-vessel vasospasm with exhausted distal vasodilation is
common, more vasoconstriction could increase distal vasodilatory reserve and
pressure reactivity, but also reduce cerebral blood flow and metabolic
supply. The MD may be useful to monitor the net effects on cerebral
metabolism in PRx-targeted NIC.
Collapse
|
9
|
Normobaric oxygen treatment for mild-to-moderate depression: a randomized, double-blind, proof-of-concept trial. Sci Rep 2021; 11:18911. [PMID: 34556722 PMCID: PMC8460750 DOI: 10.1038/s41598-021-98245-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Oxygen enriched air may increase oxygen pressure in brain tissue and have biochemical effects even in subjects without lung disease. Consistently, several studies demonstrated that normobaric oxygen treatment has clinical benefits in some neurological conditions. This study examined the efficacy of normobaric oxygen treatment in subjects with depression. In a randomized, double-blind trial, 55 participants aged 18-65 years with mild to moderate depression (had a Hamilton Rating Scale for Depression [HRSD] score of ≥ 8) were recruited to the study from the Southern district in Israel. Participants underwent a psychiatric inclusion assessment at baseline and then were randomly assigned to either normobaric oxygen treatment of 35% fraction of inspired oxygen or 21% fraction of inspired oxygen (room air) through a nasal tube, for 4 weeks, during the night. Evaluations were performed at baseline, 2 and 4 weeks after commencement of study interventions, using the following tools: HRSD; Clinical Global Impression (CGI) questionnaire; World Health Organization-5 questionnaire for the estimation of Quality of Life (WHO-5-QOL); Sense of Coherence (SOC) 13-item questionnaire; and, Sheehan Disability Scale (SDS). A multivariate regression analysis showed that the mean ± standard deviation [SD] changes in the HRSD scores from baseline to week four were - 4.2 ± 0.3 points in the oxygen-treated group and - 0.7 ± 0.6 in the control group, for a between-group difference of 3.5 points (95% confidence interval [CI] - 5.95 to - 1.0; P = 0.007). Similarly, at week four there was a between-group difference of 0.71 points in the CGI score (95% CI - 1.00 to - 0.29; P = 0.001). On the other hand, the analysis revealed that there were no significant differences in WHO-5-QOL, SOC-13 or SDS scores between the groups. This study showed a significant beneficial effect of oxygen treatment on some symptoms of depression.Trial registration: NCT02149563 (29/05/2014).
Collapse
|
10
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Chen Z, Ding Y, Ji X, Meng R. Advances in Normobaric Hyperoxia Brain Protection in Experimental Stroke. Front Neurol 2020; 11:50. [PMID: 32076416 PMCID: PMC7006470 DOI: 10.3389/fneur.2020.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
As we all know that stroke is still a leading cause of death and acquired disability. Etiological treatment and brain protection are equally important. This review aimed to summarize the advance of normobaric-hyperoxia (NBHO) on brain protection in the setting of experimental stroke and brain trauma. We analyzed the data from relevant studies published on PubMed Central (PMC) and EMBASE, about NBHO on brain protection in the setting of experimental ischemic and hemorrhagic strokes and brain trauma, which revealed that NBHO had important value on improving hypoxia and attenuating ischemia damage. The mechanisms of NBHO involved increasing the content of oxygen in brain tissues, restoring the function of mitochondria, enhancing the metabolism of neurons, alleviating blood-brain barrier (BBB) damage, weakening brain cell edema, reducing intracranial pressure, and improving cerebral blood flow, especially in the surrounding of injured area of the brain, to make the neurons in penumbral area alive. Compared to hyperbaric oxygen (HBO), NBHO is more safe and more easily to transform to clinical use, whereby, further studies about the safety and efficacy as well as the proper treatment protocol of NBHO on human may be still needed.
Collapse
Affiliation(s)
- Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
12
|
Harutyunyan G, Avitsian R. Revisiting Ischemia After Brain Injury: Oxygen May Not Be the Only Problem. J Neurosurg Anesthesiol 2019; 32:5-8. [PMID: 31651550 DOI: 10.1097/ana.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Gurgen Harutyunyan
- Emergency Physician, Hospital 9 de Octubre, NISA/VITHA0S Valencia, Spain
| | | |
Collapse
|
13
|
Kang L, Dong W, Ruan Y, Zhang R, Wang X. The Molecular Mechanism of Sirt1 Signaling Pathway in Brain Injury of Newborn Rats Exposed to Hyperoxia. Biol Pharm Bull 2019; 42:1854-1860. [PMID: 31527356 DOI: 10.1248/bpb.b19-00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the study was to investigate the changes in the reactive oxygen species (ROS), Sirt1, p53 and acetylated p53 in brain tissue of newborn rats exposed to hyperoxia to clarify the role of Sirt1 signaling pathway in brain injury. Neonate rats were randomly divided into normoxic group and hyperoxic group. Rats in the normoxic group were exposed to room air while the rats in the hyperoxic group were put in a hyperoxic chamber (80 ± 5% oxygen) for 1 to 14 d. Data, including weight growth, the water content of brain tissue, hematoxyline and eosin (H&E) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (Tunel) stain, ROS expression, the relative expression of Sirt1 mRNA and p53 mRNA, and the protein relative expression of Sirt1, p53 and acetylated p53 were analyzed at 1, 7 and 14 d after exposure. A reduced body weight and increased water content were observed in the brain tissue of hyperoxic group compared to normoxic group. HE staining and Tunel staining of brain tissue suggested that cell damaged after hyperoxic exposure. RT-PCR and Western blot results showed that the expression of Sirt1 in the hyperoxic group was lower than that in the normoxic group while the expression of p53 was higher than that in the normoxic group. In addition, Western blot data indicated acetylated p53 expression was higher in the hyperoxic group. Hyperoxic exposure can lead to brain injury in newborn Sprague-Dawley (SD) rats. These events might be regulated by the Sirt1 pathway, which downregulated the deacetylation of p53.
Collapse
Affiliation(s)
- Lan Kang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University.,Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Ying Ruan
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Rong Zhang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Xingyong Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University
| |
Collapse
|
14
|
Management of Head Trauma in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Prediction of rat liver transplantation outcomes using energy metabolites measured by microdialysis. Hepatobiliary Pancreat Dis Int 2018; 17:392-401. [PMID: 30220522 DOI: 10.1016/j.hbpd.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Warm ischemia jeopardizes graft quality and recipient survival in donation after cardiac death (DCD) transplantation. Currently, there is no system to objectively evaluate the liver quality from DCD. The present study tried to use energy metabolites to evaluate the donor liver quality. METHODS We divided 195 Sprague-Dawley rats into five groups: the control (n = 39), warm ischemic time (WIT) 15 min (n = 39), WIT 30 min (n = 39), WIT 45 min (n = 39), and WIT 60 min (n = 39) groups. Three rats from each group were randomly selected for pretransplant histologic evaluation of warm ischemia-related damage. The remaining 36 rats were randomly divided into donors and recipients of 18 liver transplantations, and were subjected to postoperative liver function and survival analyses. Between cardiac arrest and cold storage, liver energy metabolites including glucose, lactate, pyruvate, and glycerol were measured by microdialysis. The lactate to pyruvate ratio (LPR) was calculated. RESULTS The changes in preoperative pathology with warm ischemia were inconspicuous, but the trends in postoperative pathology and aminotransferase levels were consistent with preoperative energy metabolite measurements. The 30-day survival rates of the control and WIT 15, 30, 45, and 60 min groups were 100%, 81.82%, 76.92%, 58.33%, and 25.00%, respectively. The areas under the receiver operating characteristic curves of glucose, lactate, glycerol, and LPR were 0.87, 0.88, 0.88, and 0.92, respectively. CONCLUSION Glucose, lactate, glycerol, and LPR are predictors of graft quality and survival outcomes in DCD transplantation.
Collapse
|
16
|
Harutyunyan G, Harutyunyan G, Mkhoyan G. New Viewpoint in Exaggerated Increase of PtiO 2 With Normobaric Hyperoxygenation and Reasons to Limit Oxygen Use in Neurotrauma Patients. Front Med (Lausanne) 2018; 5:119. [PMID: 29872657 PMCID: PMC5972302 DOI: 10.3389/fmed.2018.00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/10/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
| | | | - Gagik Mkhoyan
- Anesthesiology and Intensive Care, Erebouni Medical Center, Yerevan, Armenia
| |
Collapse
|
17
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Kochanek PM, Bayır H. Titrating the Dose of Oxygen after Severe Traumatic Brain Injury in the Era of Precision Medicine. J Neurotrauma 2017; 34:3067-3069. [PMID: 28537530 DOI: 10.1089/neu.2017.5159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Patrick M Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center , Pittsburgh, Pennsylvania
| | - Hülya Bayır
- 2 Departments of Critical Care Medicine and Environmental and Occupational Health, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center , Pittsburgh, Pennsylvania
| |
Collapse
|