1
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Fu Y, Liu R, Zhao Y, Xie Y, Ren H, Wu Y, Zhang B, Chen X, Guo Y, Yao Y, Jiang W, Han R. Veliparib exerts protective effects in intracerebral hemorrhage mice by inhibiting the inflammatory response and accelerating hematoma resolution. Brain Res 2024; 1838:148988. [PMID: 38729332 DOI: 10.1016/j.brainres.2024.148988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have potent anti-inflammatory effects, including the suppression of brain microglial activation. Veliparib, a well-known PARP1/2 inhibitor, exhibits particularly high brain penetration, but its effects on stroke outcome is unknown. Here, the effects of veliparib on the short-term outcome of intracerebral hemorrhage (ICH), the most lethal type of stroke, were investigated. Collagenase-induced mice ICH model was applied, and the T2-weighted magnetic resonance imaging was performed to evaluate lesion volume. Motor function and hematoma volume were also measured. We further performed immunofluorescence, enzyme linked immunosorbent assay, flow cytometry, and blood-brain barrier assessment to explore the potential mechanisms. Our results demonstrated veliparib reduced the ICH lesion volume dose-dependently and at a dosage of 5 mg/kg, veliparib significantly improved mouse motor function and promoted hematoma resolution at days 3 and 7 post-ICH. Veliparib inhibited glial activation and downregulated the production of pro-inflammatory cytokines. Veliparib significantly decreased microglia counts and inhibited peripheral immune cell infiltration into the brain on day 3 after ICH. Veliparib improved blood-brain barrier integrity at day 3 after ICH. These findings demonstrate that veliparib improves ICH outcome by inhibiting inflammatory responses and may represent a promising novel therapy for ICH.
Collapse
Affiliation(s)
- Yiwei Fu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Rongrong Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuexin Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuhan Xie
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurology, Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yu Wu
- Department of Neurology, Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Bohao Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuju Chen
- Department of Neurology, Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Lyden PD, Diniz MA, Bosetti F, Lamb J, Nagarkatti KA, Rogatko A, Kim S, Cabeen RP, Koenig JI, Akhter K, Arbab AS, Avery BD, Beatty HE, Bibic A, Cao S, Simoes Braga Boisserand L, Chamorro A, Chauhan A, Diaz-Perez S, Dhandapani K, Dhanesha N, Goh A, Herman AL, Hyder F, Imai T, Johnson CW, Khan MB, Kamat P, Karuppagounder SS, Kumskova M, Mihailovic JM, Mandeville JB, Morais A, Patel RB, Sanganahalli BG, Smith C, Shi Y, Sutariya B, Thedens D, Qin T, Velazquez SE, Aronowski J, Ayata C, Chauhan AK, Leira EC, Hess DC, Koehler RC, McCullough LD, Sansing LH. A multi-laboratory preclinical trial in rodents to assess treatment candidates for acute ischemic stroke. Sci Transl Med 2023; 15:eadg8656. [PMID: 37729432 DOI: 10.1126/scitranslmed.adg8656] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Karisma A Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - André Rogatko
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Imaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazi Akhter
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Ali S Arbab
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912-0004, USA
| | - Brooklyn D Avery
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Hannah E Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | | | - Angel Chamorro
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Hospital Clinic, University of Barcelona, Barcelona 08036, Spain
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Sebastian Diaz-Perez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Krishnan Dhandapani
- Department Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew Goh
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Alison L Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Conor W Johnson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Joseph B Mandeville
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Andreia Morais
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rakesh B Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Cameron Smith
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Thedens
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tao Qin
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sofia E Velazquez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Enrique C Leira
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Wang J, Shi Y, Cao S, Liu X, Martin LJ, Simoni J, Soltys BJ, Hsia CJC, Koehler RC. Polynitroxylated PEGylated hemoglobin protects pig brain neocortical gray and white matter after traumatic brain injury and hemorrhagic shock. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1074643. [PMID: 36896342 PMCID: PMC9988926 DOI: 10.3389/fmedt.2023.1074643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
Polynitroxylated PEGylated hemoglobin (PNPH, aka SanFlow) possesses superoxide dismutase/catalase mimetic activities that may directly protect the brain from oxidative stress. Stabilization of PNPH with bound carbon monoxide prevents methemoglobin formation during storage and permits it to serve as an anti-inflammatory carbon monoxide donor. We determined whether small volume transfusion of hyperoncotic PNPH is neuroprotective in a porcine model of traumatic brain injury (TBI) with and without accompanying hemorrhagic shock (HS). TBI was produced by controlled cortical impact over the frontal lobe of anesthetized juvenile pigs. Hemorrhagic shock was induced starting 5 min after TBI by 30 ml/kg blood withdrawal. At 120 min after TBI, pigs were resuscitated with 60 ml/kg lactated Ringer's (LR) or 10 or 20 ml/kg PNPH. Mean arterial pressure recovered to approximately 100 mmHg in all groups. A significant amount of PNPH was retained in the plasma over the first day of recovery. At 4 days of recovery in the LR-resuscitated group, the volume of frontal lobe subcortical white matter ipsilateral to the injury was 26.2 ± 7.6% smaller than homotypic contralateral volume, whereas this white matter loss was only 8.6 ± 12.0% with 20-ml/kg PNPH resuscitation. Amyloid precursor protein punctate accumulation, a marker of axonopathy, increased in ipsilateral subcortical white matter by 132 ± 71% after LR resuscitation, whereas the changes after 10 ml/kg (36 ± 41%) and 20 ml/kg (26 ± 15%) PNPH resuscitation were not significantly different from controls. The number of cortical neuron long dendrites enriched in microtubules (length >50 microns) decreased in neocortex by 41 ± 24% after LR resuscitation but was not significantly changed after PNPH resuscitation. The perilesion microglia density increased by 45 ± 24% after LR resuscitation but was unchanged after 20 ml/kg PNPH resuscitation (4 ± 18%). Furthermore, the number with an activated morphology was attenuated by 30 ± 10%. In TBI pigs without HS followed 2 h later by infusion of 10 ml/kg LR or PNPH, PNPH remained neuroprotective. These results in a gyrencephalic brain show that resuscitation from TBI + HS with PNPH protects neocortical gray matter, including dendritic microstructure, and white matter axons and myelin. This neuroprotective effect persists with TBI alone, indicating brain-targeting benefits independent of blood pressure restoration.
Collapse
Affiliation(s)
- Jun Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Jan Simoni
- AntiRadical Therapeutics LLC, Sioux Falls, SD, United States
| | | | | | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Bishop R, Won SJ, Irvine KA, Basu J, Rome ES, Swanson RA. Blast-induced axonal degeneration in the rat cerebellum in the absence of head movement. Sci Rep 2022; 12:143. [PMID: 34996954 PMCID: PMC8741772 DOI: 10.1038/s41598-021-03744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Blast exposure can injure brain by multiple mechanisms, and injury attributable to direct effects of the blast wave itself have been difficult to distinguish from that caused by rapid head displacement and other secondary processes. To resolve this issue, we used a rat model of blast exposure in which head movement was either strictly prevented or permitted in the lateral plane. Blast was found to produce axonal injury even with strict prevention of head movement. This axonal injury was restricted to the cerebellum, with the exception of injury in visual tracts secondary to ocular trauma. The cerebellar axonal injury was increased in rats in which blast-induced head movement was permitted, but the pattern of injury was unchanged. These findings support the contentions that blast per se, independent of head movement, is sufficient to induce axonal injury, and that axons in cerebellar white matter are particularly vulnerable to direct blast-induced injury.
Collapse
Affiliation(s)
- Robin Bishop
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Seok Joon Won
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA.
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA.
| | - Karen-Amanda Irvine
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Jayinee Basu
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Eric S Rome
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Raymond A Swanson
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| |
Collapse
|
6
|
Gutierrez-Quintana R, Walker DJ, Williams KJ, Forster DM, Chalmers AJ. Radiation-induced neuroinflammation: a potential protective role for poly(ADP-ribose) polymerase inhibitors? Neurooncol Adv 2022; 4:vdab190. [PMID: 35118383 PMCID: PMC8807076 DOI: 10.1093/noajnl/vdab190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive and harbor a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response (DDR) and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to extend survival but also cause delayed toxicity with 50%-90% of patients developing neurocognitive dysfunction. Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive function. In addition to its well-established role in promoting repair of radiation-induced DNA damage, activation of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflammatory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of the DDR and subsequent neuroinflammation. PARP inhibitors (PARPi) have emerged as promising new agents for GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects and at least 3 compounds being evaluated in clinical trials. We propose that concomitant use of PARPi could reduce radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at the same time improving tumor control by enhancing radiosensitivity.
Collapse
Affiliation(s)
- Rodrigo Gutierrez-Quintana
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David J Walker
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Duncan M Forster
- Division of Informatics, Imaging and Data Sciences, Manchester Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Koehler RC, Dawson VL, Dawson TM. Targeting Parthanatos in Ischemic Stroke. Front Neurol 2021; 12:662034. [PMID: 34025565 PMCID: PMC8131834 DOI: 10.3389/fneur.2021.662034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parthanatos is a cell death signaling pathway in which excessive oxidative damage to DNA leads to over-activation of poly(ADP-ribose) polymerase (PARP). PARP then generates the formation of large poly(ADP-ribose) polymers that induce the release of apoptosis-inducing factor from the outer mitochondrial membrane. In the cytosol, apoptosis-inducing factor forms a complex with macrophage migration inhibitory factor that translocates into the nucleus where it degrades DNA and produces cell death. In a review of the literature, we identified 24 publications from 13 laboratories that support a role for parthanatos in young male mice and rats subjected to transient and permanent middle cerebral artery occlusion (MCAO). Investigators base their conclusions on the use of nine different PARP inhibitors (19 studies) or PARP1-null mice (7 studies). Several studies indicate a therapeutic window of 4-6 h after MCAO. In young female rats, two studies using two different PARP inhibitors from two labs support a role for parthanatos, whereas two studies from one lab do not support a role in young female PARP1-null mice. In addition to parthanatos, a body of literature indicates that PARP inhibitors can reduce neuroinflammation by interfering with NF-κB transcription, suppressing matrix metaloproteinase-9 release, and limiting blood-brain barrier damage and hemorrhagic transformation. Overall, most of the literature strongly supports the scientific premise that a PARP inhibitor is neuroprotective, even when most did not report behavior outcomes or address the issue of randomization and treatment concealment. Several third-generation PARP inhibitors entered clinical oncology trials without major adverse effects and could be repurposed for stroke. Evaluation in aged animals or animals with comorbidities will be important before moving into clinical stroke trials.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, The Johns Hopkins University, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
8
|
Stringer-Reasor EM, May JE, Olariu E, Caterinicchia V, Li Y, Chen D, Della Manna DL, Rocque GB, Vaklavas C, Falkson CI, Nabell LM, Acosta EP, Forero-Torres A, Yang ES. An open-label, pilot study of veliparib and lapatinib in patients with metastatic, triple-negative breast cancer. Breast Cancer Res 2021; 23:30. [PMID: 33663560 PMCID: PMC7934554 DOI: 10.1186/s13058-021-01408-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Poly (ADP-ribose)-polymerase inhibitors (PARPi) have been approved for cancer patients with germline BRCA1/2 (gBRCA1/2) mutations, and efforts to expand the utility of PARPi beyond BRCA1/2 are ongoing. In preclinical models of triple-negative breast cancer (TNBC) with intact DNA repair, we have previously shown an induced synthetic lethality with combined EGFR inhibition and PARPi. Here, we report the safety and clinical activity of lapatinib and veliparib in patients with metastatic TNBC. METHODS A first-in-human, pilot study of lapatinib and veliparib was conducted in metastatic TNBC (NCT02158507). The primary endpoint was safety and tolerability. Secondary endpoints were objective response rates and pharmacokinetic evaluation. Gene expression analysis of pre-treatment tumor biopsies was performed. Key eligibility included TNBC patients with measurable disease and prior anthracycline-based and taxane chemotherapy. Patients with gBRCA1/2 mutations were excluded. RESULTS Twenty patients were enrolled, of which 17 were evaluable for response. The median number of prior therapies in the metastatic setting was 1 (range 0-2). Fifty percent of patients were Caucasian, 45% African-American, and 5% Hispanic. Of evaluable patients, 4 demonstrated a partial response and 2 had stable disease. There were no dose-limiting toxicities. Most AEs were limited to grade 1 or 2 and no drug-drug interactions noted. Exploratory gene expression analysis suggested baseline DNA repair pathway score was lower and baseline immunogenicity was higher in the responders compared to non-responders. CONCLUSIONS Lapatinib plus veliparib therapy has a manageable safety profile and promising antitumor activity in advanced TNBC. Further investigation of dual therapy with EGFR inhibition and PARP inhibition is needed. TRIAL REGISTRATION ClinicalTrials.gov , NCT02158507 . Registered on 12 September 2014.
Collapse
Affiliation(s)
- Erica M Stringer-Reasor
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jori E May
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eva Olariu
- Department of Medicine, Brookwood Baptist Health, Birmingham, AL, USA
| | - Valerie Caterinicchia
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yufeng Li
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deborah L Della Manna
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabrielle B Rocque
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christos Vaklavas
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carla I Falkson
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisle M Nabell
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andres Forero-Torres
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, HSROC Suite 2232 (176F), Birmingham, AL, 35249, USA.
| |
Collapse
|
9
|
Sinha A, Katyal S, Kauppinen TM. PARP-DNA trapping ability of PARP inhibitors jeopardizes astrocyte viability: Implications for CNS disease therapeutics. Neuropharmacology 2021; 187:108502. [PMID: 33631119 DOI: 10.1016/j.neuropharm.2021.108502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
There is emerging interest in the role of poly(ADP-ribose) polymerase-1 (PARP-1) in neurodegeneration and potential of its therapeutic targeting in neurodegenerative disorders. New generations of PARP inhibitors exhibit polypharmacological properties; they do not only block enzymatic activity with lower doses, but also alter how PARP-1 interacts with DNA. While these new inhibitors have proven useful in cancer therapy due to their ability to kill cancer cell, their use in neurodegenerative disorders has an opposite goal: cell protection. We hypothesize that newer generation PARP-1 inhibitors jeopardize the viability of dividing CNS cells by promoting DNA damage upon the PARP-DNA interaction. Using enriched murine astrocyte cultures, our study evaluates the effects of a variety of drugs known to inhibit PARP; talazoparib, olaparib, PJ34 and minocycline. Despite similar PARP enzymatic inhibiting activities, we show here that these drugs result in varied cell viability. Talazoparib and olaparib reduce astrocyte growth in a dose-dependent manner, while astrocytes remain unaffected by PJ34 and minocycline. Similarly, PJ34 and minocycline do not jeopardize DNA integrity, while treatment with talazoparib and olaparib promote DNA damage. These two drugs impact astrocytes similarly in basal conditions and upon nitrosative stress, a pathological condition typical for neurodegeneration. Mechanistic assessment revealed that talazoparib and olaparib promote PARP trapping onto DNA in a dose-dependent manner, while PJ34 and minocycline do not induce PARP-DNA trapping. This study provides unique insight into the selective use of PARP inhibitors to treat neurodegenerative disorders whereby inhibition of PARP enzymatic activity must occur without deleteriously trapping PARP onto DNA.
Collapse
Affiliation(s)
- Asha Sinha
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| | - Sachin Katyal
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada.
| | - Tiina M Kauppinen
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| |
Collapse
|
10
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Mohamadpour M, Whitney K, Bergold PJ. The Importance of Therapeutic Time Window in the Treatment of Traumatic Brain Injury. Front Neurosci 2019; 13:07. [PMID: 30728762 PMCID: PMC6351484 DOI: 10.3389/fnins.2019.00007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability. Despite its importance in public health, there are presently no drugs to treat TBI. Many reasons underlie why drugs have failed clinical trials, one reason is that most drugs to treat TBI lose much of their efficacy before patients are first treated. This review discusses the importance of therapeutic time window; the time interval between TBI onset and the initiation of treatment. Therapeutic time window is complex, as brain injury is both acute and chronic, resulting in multiple drug targets that appear and disappear with differing kinetics. The speed and increasing complexity of TBI pathophysiology is a major reason why drugs lose efficacy as time to first dose increases. Recent Phase III clinical trials treated moderate to severe TBI patients within 4–8 h after injury, yet they turned away many potential patients who could not be treated within these time windows. Additionally, most head trauma is mild TBI. Unlike moderate to severe TBI, patients with mild TBI often delay treatment until their symptoms do not abate. Thus, drugs to treat moderate to severe TBI likely will need to retain high efficacy for up to 12 h after injury; drugs for mild TBI, however, will likely need even longer windows. Early pathological events following TBI progress with similar kinetics in humans and animal TBI models suggesting that preclinical testing of time windows assists the design of clinical trials. We reviewed preclinical studies of drugs first dosed later than 4 h after injury. This review showed that therapeutic time window can differ depending upon the animal TBI model and the outcome measure. We identify the few drugs (methamphetamine, melanocortin, minocycline plus N-acetylcysteine, and cycloserine) that demonstrated good therapeutic windows with multiple outcome measures. On the basis of their therapeutic window, these drugs appear to be excellent candidates for clinical trials. In addition to further testing of these drugs, we recommend that the assessment of therapeutic time window with multiple outcome measures becomes a standard component of preclinical drug testing.
Collapse
Affiliation(s)
- Maliheh Mohamadpour
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Peter J Bergold
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
12
|
Kinder HA, Baker EW, West FD. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019; 14:413-424. [PMID: 30539807 PMCID: PMC6334610 DOI: 10.4103/1673-5374.245334] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models-the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|