1
|
Kommireddy RS, Mehra S, Pompilus M, Arja RD, Zhu T, Yang Z, Fu Y, Zhu J, Kobeissy F, Wang KKW, Febo M. Functional connectivity, tissue microstructure and T2 at 11.1 Tesla distinguishes neuroadaptive differences in two traumatic brain injury models in rats: A Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.10.570975. [PMID: 38168381 PMCID: PMC10760004 DOI: 10.1101/2023.12.10.570975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Traumatic brain injuries (TBIs), particularly contusive types, are associated with disruptions in neuronal communication due to focal and diffuse axonal injury, as well as alterations in the neuronal chemical environment. These changes can negatively impact neuronal networks beyond the primary injury site. In this Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study, we sought to use multimodal neuroimaging biomarker approach to assess functional connectivity and brain tissue microstructure, along with T2 relaxometry, in two experimental rat models of TBI: controlled cortical impact (CCI) and lateral fluid percussive injury (LFPI). Rats underwent imaging using an 11.1 Tesla scanner at 2 and 30 days post-injury. Naive controls were scanned once to establish baseline comparisons for both TBI groups. Imaging modalities included functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), and multi-echo T2 imaging. fMRI data were analyzed to evaluate functional connectivity across lateral and medial regions of interest (ROIs) in the cortical mantle, hippocampus, and dorsal striatum. DWI scans were used to generate maps of fractional anisotropy (FA) and mean, axial, and radial diffusivities (MD, AD, RD), focusing on cortical and white matter (WM) regions near the injury epicenter. Our findings revealed significantly increased contralateral intra-cortical connectivity at 2 days post-injury in both CCI and LFPI models, localized to similar cortical areas. This increased connectivity persisted at day 30 in the CCI model but not in LFPI. Changes in WM and cortical FA and diffusivities were observed in both models, with WM alterations predominating in CCI and cortical changes being more pronounced in LFPI. These results highlight the utility of multimodal MR imaging for characterizing distinct injury mechanisms in contusive and skull-penetrating TBI models.
Collapse
|
2
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Chuang KH, Qian C, Gilad AA, Pelled G. Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats. Front Neurosci 2024; 18:1459120. [PMID: 39411150 PMCID: PMC11473493 DOI: 10.3389/fnins.2024.1459120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact our understanding of brain function in health and disease. The combination of neurostimulation methods and functional MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area-, and temporal-specific control of neural activity. The magnetogenetic protein-Electromagnetic Perceptive Gene (EPG)-is activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI static and gradient fields while simultaneously measuring their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation, resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a means to study brain function in a minimally-invasive way which was not possible previously.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Paydar A, Khorasani L, Harris NG. Constraint Induced Movement Therapy Confers only a Transient Behavioral Benefit but Enduring Functional Circuit-Level Changes after Experimental TBI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606449. [PMID: 39149371 PMCID: PMC11326145 DOI: 10.1101/2024.08.02.606449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Although the behavioral outcome of Constraint-Induced Movement Therapy (CIMT) is well known, and that a combination of CIMT and arm use training potentiates the effect, there has been limited study of the brain circuits involved that respond to therapy. An understanding of CIMT from a brain network level would be useful for guiding the duration of effective therapy, the type of training regime to potentiate the outcome, as well as brain regional targets that might be amenable for direct neuromodulation. Here we investigated the effect of CIMT therapy alone unconfounded by additional rehabilitation training in order to determine the impact of intervention at the circuit level. Adult rats were injured by controlled cortical impact injury and studied before and then after 2wks of CIMT or noCIMT at 1-3wks post-injury using a combination of forelimb behavioral tasks and task-based and resting state functional magnetic resonance imaging at 3 and 7wks post-injury and compared to sham rats. There was no difference in behavior or functional imaging between CIMT and noCIMT after injury before intervention so that data are unlikely to be confounded by differences in injury severity. CIMT produced only a transient reduction in limb deficits compared to noCIMT immediately after the intervention, but no difference thereafter. However, CIMT resulted in a persistent reduction in contralesional limb-evoked activation and a corresponding ipsilesional cortical plasticity compared to noCIMT that endured 4wks after intervention. This was associated with a significant amelioration of intra and inter-hemispheric connectivity present in the noCIMT group at 7wks post-injury.
Collapse
Affiliation(s)
- Afshin Paydar
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Laila Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
6
|
To XV, Mohamed AZ, Cumming P, Nasrallah FA. Diffusion tensor imaging and plasma immunological biomarker panel in a rat traumatic brain injury (TBI) model and in human clinical TBI. Front Immunol 2024; 14:1293471. [PMID: 38259455 PMCID: PMC10800599 DOI: 10.3389/fimmu.2023.1293471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Neuroinflammatory reactions play a significant role in the pathology and long-term consequences of traumatic brain injury (TBI) and may mediate salutogenic processes that white matter integrity. This study aimed to investigate the relationship between inflammatory markers and white matter integrity following TBI in both a rat TBI model and clinical TBI cases. Methods In the rat model, blood samples were collected following a controlled cortical impact (CCI) to assess a panel of inflammatory markers; MR-based diffusion tensor imaging (DTI) was employed to evaluate white matter integrity 60 days post-injury. 15 clinical TBI patients were similarly assessed for a panel of inflammatory markers and DTI post-intensive care unit discharge. Blood samples from healthy controls were used for comparison of the inflammatory markers. Results Time-dependent elevations in immunological markers were observed in TBI rats, with a correlation to preserved fractional anisotropy (FA) in white matter. Specifically, TBI-induced increased plasma levels of IL-1β, IL-6, G-CSF, CCL3, CCL5, and TNF-α were associated with higher white matter integrity, as measured by FA. Clinical cases had similar findings: elevated inflammatory markers (relative to controls) were associated with preservation of FA in vulnerable white matter regions. Discussion Inflammatory markers in post-TBI plasma samples are ambivalent with respect to prediction of favourable outcome versus a progression to more pervasive pathology and morbidity.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z. Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A. Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
- The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| |
Collapse
|
7
|
The pericontused cortex can support function early after TBI but it remains functionally isolated from normal afferent input. Exp Neurol 2023; 359:114260. [PMID: 36404463 DOI: 10.1016/j.expneurol.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022]
Abstract
Traumatically injured brain functional connectivity (FC) is altered in a region-dependent manner with some regions functionally disconnected while others are hyperconnected after experimental TBI. Remote, homotopic cortical regions become hyperexcitable after injury, and we hypothesize that this results in increased trans-hemispheric cortical inhibition, preventing reorganization of the primary injured hemisphere. Previously we have shown that temporary silencing the contralesional cortex at 1wk normalizes affected forelimb behavioral use, but not at 4wks. To investigate the potential mechanism for this and to determine whether this occurs due to restoration of afferent pathway FC, and/or reorganization of brain circuits, we probed forelimb circuit function with sensorimotor task-evoked-fMRI, resting state fMRI seed-based analysis, and exploratory structural equation modelling (SEM) of directed causal connections due to forelimb task at 1 and 4wks post-injury after temporary, contralateral silencing with intraparenchymal injection of muscimol versus vehicle, as well as from sham rats. As predicted, silencing at 1wk and 4wks post-injury decimated the contralesional cortical forelimb map evoked by stimulation of the opposite, unaffected forelimb compared to vehicle-injected injured rats indicating the success of the intervention. Surprisingly however, this also resulted in activation of the pericontused cortex ipsilateral to the stimulated forelimb at 1wk, yet this same region could not be activated by directly stimulating the opposite, injury-affected forelimb. Underpinning this were significant increases in interhemispheric FC at the level of the cortex but decreases within subcortical regions. Causal SEM analysis confirmed increased corticothalamic connectivity and suggested changes from and to bilateral thalamus are important for the effect. At 4wks post-injury only cortical increases in FC were found in response to silencing indicating a less flexible brain, and ipsilesional cortex evoked activity was mostly absent. The absence of a reinstatement of ipsilesional evoked activity through normal pathways by temporary neuromodulation despite prior data showing behavioral improvements under the same conditions, indicates that while the pericontused cortex does retain function initially after injury, it is too functionally disconnected to be controlled by normal afferent input. More significant alterations in cross-brain FC during neuromodulation at 1wk compared to 4wk post-injury, suggest that more distributed brain activity accounts for prior behavior improvements in sensorimotor function, and that hemispheric imbalance in function is causally involved in early loss of sensorimotor function in this TBI model.
Collapse
|
8
|
Chovsepian A, Empl L, Bareyre FM. Plasticity of callosal neurons in the contralesional cortex following traumatic brain injury. Neural Regen Res 2022; 18:1257-1258. [PMID: 36453402 PMCID: PMC9838154 DOI: 10.4103/1673-5374.360167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alexandra Chovsepian
- Institute of Clinical Neuroimmunology, Biomedical Building and Clinic of the Ludwig-Maximilians Universität München, Munich, Germany
| | - Laura Empl
- Institute of Clinical Neuroimmunology, Biomedical Building and Clinic of the Ludwig-Maximilians Universität München, Munich, Germany
| | - Florence M. Bareyre
- Institute of Clinical Neuroimmunology, Biomedical Building and Clinic of the Ludwig-Maximilians Universität München, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Correspondence to: Florence M. Bareyre, .
| |
Collapse
|
9
|
Huang J, Zhang Y, Zhang Q, Wei L, Zhang X, Jin C, Yang J, Li Z, Liang S. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front Neurosci 2022; 16:963175. [PMID: 36213733 PMCID: PMC9540855 DOI: 10.3389/fnins.2022.963175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
As a non-radiative, non-invasive imaging technique, functional magnetic resonance imaging (fMRI) has excellent effects on studying the activation of blood oxygen levels and functional connectivity of the brain in human and animal models. Compared with resting-state fMRI, fMRI combined with stimulation could be used to assess the activation of specific brain regions and the connectivity of specific pathways and achieve better signal capture with a clear purpose and more significant results. Various fMRI methods and specific stimulation paradigms have been proposed to investigate brain activation in a specific state, such as electrical, mechanical, visual, olfactory, and direct brain stimulation. In this review, the studies on animal brain activation using fMRI combined with different stimulation methods were retrieved. The instruments, experimental parameters, anesthesia, and animal models in different stimulation conditions were summarized. The findings would provide a reference for studies on estimating specific brain activation using fMRI combined with stimulation.
Collapse
|
10
|
Zhuang Y, Dong J, Ge Q, Zhang B, Yang M, Lu S, Li H, Niu F, Xu X, Liu B. Contralateral synaptic changes following severe unilateral brain injury. Brain Res Bull 2022; 188:21-29. [PMID: 35868500 DOI: 10.1016/j.brainresbull.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
Abstract
The brain is highly integrated and thus unilateral injury can impact the contralateral hemisphere. However, further research is needed to clarify the changes in the response of the contralateral homotopic area to ipsilateral injury. We hypothesized that severe unilateral brain injury would be accompanied by contralateral synaptic changes that are related to functional recovery. To test this, we divided rats into sham and experimental groups. In the experimental group, we performed right motor cortex resection. These rats were further divided into three subgroups according to post-injury time: 7 days, 14 days, and 30 days post-injury. Rats in each group were evaluated using a beam walking test to quantify the recovery of motor function, and all rats received an injection of adeno-associated virus-containing green fluorescent protein (GFP). Finally, we conducted morphological and histological analyses to identify synaptic changes. Over time, the behavior of the rats that underwent right motor cortex resection recovered. Furthermore, in contrast to the sham group, the experimental groups exhibited an increase in the spine density and expression of synaptic proteins in layer V of the contralateral motor cortex, which was consistent with the GFP-labeled neurons. Moreover, more immature spines were observed 7 days post-injury. Notably, spine morphology matured from 7 to 30 days, and the increase in Synapsin-1 intensity in layer V peaked 14 days after the resection, whereas PSD-95 intensity continued to increase until day 30. Our findings suggested that following motor function recovery from unilateral brain injury, spine morphology and synaptic proteins change dynamically in the contralateral hemisphere.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinqian Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghua Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
11
|
Vinh To X, Soni N, Medeiros R, Alateeq K, Nasrallah FA. Traumatic brain injury alterations in the functional connectome are associated with neuroinflammation but not tau in a P30IL tauopathy mouse model. Brain Res 2022; 1789:147955. [PMID: 35636493 DOI: 10.1016/j.brainres.2022.147955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is often associated with long-term cognitive deficits and altered brain networks which have been linked with accumulation of neurofibrillary tau tangles and neuroinflammation. In this work, we investigated the changes in the brain post-TBI in an Alzheimer's disease pR5 tauopathy model and evaluated the contribution of tauopathy and neuroinflammation to connectivity alterations using resting-state functional Magnetic Resonance Imaging (rs-fMRI). METHOD 26 P301L tau transgenic mice of 8-9 months of age (21-35 g) expressing the human tau isoform carrying the pathogenic P301L mutation were used for the study. Animals were assessed at day 1 and 7 post-injury/craniotomy and were randomly divided into four groups. All animals underwent an MRI scan on a 9.4 T Bruker system where rsfMRI was acquired. Following imaging, brains were stained with pSer (396 + 404), glial fibrillary acidic protein (GFAP), and ionised calcium-binding adaptor molecule-1 (Iba-1). Group-information-guided Independent Component Analysis (GIG-ICA) and region-of-interest (ROI)-based network connectivity approaches were applied. Principal Component Regression was applied to predict connectivity network strength from the corresponding ROIs. RESULTS TBI mice showed decreased functional connectivity in the dentate gyrus, thalamus, and other areas compared to sham animals at day 1 post-injury with the majority of changes resolving at day 7. Principal Component Regression showed only the contralateral CA1 network strength was correlated with the CA1's astrocyte and microglia cell density and the ipsilateral thalamus network strength was correlated with the ipsilateral thalamus' astrocyte and microglia cell density. CONCLUSION We present the first report on the temporal alterations in functional connectivity in a P30IL mouse model following TBI. Connectivity between key regions known to be affected in Alzheimer's disease were short-term and reversible following injury. Connectivity strength in CA1 and thalamus showed significant correlation with astrocyte and microglial cell density but not tau density.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia; The University of California, Irvine, The United States of America.
| |
Collapse
|
12
|
Vinh To X, Mohamed AZ, Cumming P, Nasrallah FA. Subacute cytokine changes after a traumatic brain injury predict chronic brain microstructural alterations on advanced diffusion imaging in the male rat. Brain Behav Immun 2022; 102:137-150. [PMID: 35183698 DOI: 10.1016/j.bbi.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The process of neuroinflammation occurring after traumatic brain injury (TBI) has received significant attention as a potential prognostic indicator and interventional target to improve patients' outcomes. Indeed, many of the secondary consequences of TBI have been attributed to neuroinflammation and peripheral inflammatory changes. However, inflammatory biomarkers in blood have not yet emerged as a clinical tool for diagnosis of TBI and predicting outcome. The controlled cortical impact model of TBI in the rodent gives reliable readouts of the dynamics of post-TBI neuroinflammation. We now extend this model to include a panel of plasma cytokine biomarkers measured at different time points post-injury, to test the hypothesis that these markers can predict brain microstructural outcome as quantified by advanced diffusion-weighted magnetic resonance imaging (MRI). METHODS Fourteen 8-10-week-old male rats were randomly assigned to sham surgery (n = 6) and TBI (n = 8) treatment with a single moderate-severe controlled cortical impact. We collected blood samples for cytokine analysis at days 1, 3, 7, and 60 post-surgery, and carried out standard structural and advanced diffusion-weighted MRI at day 60. We then utilized principal component regression to build an equation predicting different aspects of microstructural changes from the plasma inflammatory marker concentrations measured at different time points. RESULTS The TBI group had elevated plasma levels of IL-1β and several neuroprotective cytokines and chemokines (IL-7, CCL3, and GM-CSF) compared to the sham group from days 3 to 60 post-injury. The plasma marker panels obtained at day 7 were significantly associated with the outcome at day 60 of the trans-hemispheric cortical map transfer process that is a frequent finding in unilateral TBI models. DISCUSSION These results confirm and extend prior studies showing that day 7 post-injury is a critical temporal window for the reorganisation process following TBI. High plasma level of IL-1β and low plasma levels of the neuroprotective IL-7, CCL3, and GM-CSF of TBI animals at day 60 were associated with greater TBI pathology.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|
13
|
Harris NG, Paydar A, Smith GS, Lepore S. Diffusion MR imaging acquisition and analytics for microstructural delineation in pre-clinical models of TBI. J Neurosci Res 2022; 100:1128-1139. [PMID: 31044457 PMCID: PMC6824967 DOI: 10.1002/jnr.24416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
Significant progress has been made toward improving both the acquisition of clinical diffusion-weighted imaging (DWI) data and its analysis in the uninjured brain, through various techniques including a large number of model-based solutions that have been proposed to fit for multiple tissue compartments, and multiple fibers per voxel. While some of these techniques have been applied to clinical traumatic brain injury (TBI) research, the majority of these technological enhancements have yet to be fully implemented in the preclinical arena of TBI animal model-based research. In this review, we describe the requirement for preclinical, MRI-based efforts to provide systematic confirmation of the applicability of some of these models as indicators of tissue pathology within the injured brain. We review how current DWI techniques are currently being used in animal TBI models, and describe how both acquisition and analytic techniques could be extended to leverage the progress made in clinical work. Finally, we highlight remaining gaps in the preclinical pipeline from data acquisition to final analysis that currently have no real, preclinical-based correlate.
Collapse
Affiliation(s)
- N G Harris
- Department of Neurosurgery, UCLA Brain Injury Research Centre, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
- UCLA Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - A Paydar
- Department of Neurosurgery, UCLA Brain Injury Research Centre, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - G S Smith
- Department of Neurosurgery, UCLA Brain Injury Research Centre, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - S Lepore
- Department of Neurosurgery, UCLA Brain Injury Research Centre, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Papasavvas C, Taylor PN, Wang Y. Long-term changes in functional connectivity improve prediction of responses to intracranial stimulation of the human brain. J Neural Eng 2022; 19. [PMID: 35168208 DOI: 10.1088/1741-2552/ac5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Targeted electrical stimulation of the brain perturbs neural networks and modulates their rhythmic activity both at the site of stimulation and at remote brain regions. Understanding, or even predicting, this neuromodulatory effect is crucial for any therapeutic use of brain stimulation. The objective of this study was to investigate if brain network properties prior to stimulation sessions hold associative and predictive value in understanding the neuromodulatory effect of electrical stimulation in a clinical context. APPROACH We analysed the stimulation responses in 131 stimulation sessions across 66 patients with focal epilepsy recorded through intracranial electroencephalogram (iEEG). We considered functional and structural connectivity features as predictors of the response at every iEEG contact. Taking advantage of multiple recordings over days, we also investigated how slow changes in interictal functional connectivity (FC) ahead of the stimulation, representing the long-term variability of FC, relate to stimulation responses. MAIN RESULTS The long-term variability of FC exhibits strong association with the stimulation-induced increases in delta and theta band power. Furthermore, we show through cross-validation that long-term variability of FC improves prediction of responses above the performance of spatial predictors alone. SIGNIFICANCE This study highlights the importance of the slow dynamics of functional connectivity in the prediction of brain stimulation responses. Furthermore, these findings can enhance the patient-specific design of effective neuromodulatory protocols for therapeutic interventions.
Collapse
Affiliation(s)
- Christoforos Papasavvas
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Peter Neal Taylor
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yujiang Wang
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
15
|
Browne CA, Hildegard A Wulf BA, Jacobson ML, Oyola M, Wu TJ, Lucki I. Long-term increase in sensitivity to ketamine's behavioral effects in mice exposed to mild blast induced traumatic brain injury. Exp Neurol 2021; 350:113963. [PMID: 34968423 DOI: 10.1016/j.expneurol.2021.113963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic, analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America.
| | - B A Hildegard A Wulf
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Moriah L Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Mario Oyola
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - T John Wu
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| |
Collapse
|
16
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
17
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
19
|
Long Q, Bhinge S, Calhoun VD, Adali T. Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups. Brain Connect 2021; 11:430-446. [PMID: 33724055 DOI: 10.1089/brain.2020.0815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant clinical importance due to a need to study the heterogeneity of schizophrenia. Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to investigate the relationship between dBA and dynamic FNC (dFNC). Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA) patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms. Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the use of neuroimaging in studying the heterogeneity of disorders. Impact statement This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional magnetic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of the human brain, especially the brain with a mental disorder.
Collapse
Affiliation(s)
- Qunfang Long
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Suchita Bhinge
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
20
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
21
|
Verley DR, Torolira D, Hessell BA, Sutton RL, Harris NG. Cortical Neuromodulation of Remote Regions after Experimental Traumatic Brain Injury Normalizes Forelimb Function but is Temporally Dependent. J Neurotrauma 2019; 36:789-801. [PMID: 30014759 PMCID: PMC6387565 DOI: 10.1089/neu.2018.5769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) results in well-known, significant alterations in structural and functional connectivity. Although this is especially likely to occur in areas of pathology, deficits in function to and from remotely connected brain areas, or diaschisis, also occur as a consequence to local deficits. As a result, consideration of the network wiring of the brain may be required to design the most efficacious rehabilitation therapy to target specific functional networks to improve outcome. In this work, we model remote connections after controlled cortical impact injury (CCI) in the rat through the effect of callosal deafferentation to the opposite, contralesional cortex. We show rescue of significantly reaching deficits in injury-affected forelimb function if temporary, neuromodulatory silencing of contralesional cortex function is conducted at 1 week post-injury using the γ-aminobutyric acid (GABA) agonist muscimol, compared with vehicle. This indicates that subacute, injury-induced remote circuit modifications are likely to prevent normal ipsilesional control over limb function. However, by conducting temporary contralesional cortex silencing in the same injured rats at 4 weeks post-injury, injury-affected limb function either remains unaffected and deficient or is worsened, indicating that circuit modifications are more permanently controlled or at least influenced by the contralesional cortex at extended post-injury times. We provide functional magnetic resonance imaging (MRI) evidence of the neuromodulatory effect of muscimol on forelimb-evoked function in the cortex. We discuss these findings in light of known changes in cortical connectivity and excitability that occur in this injury model, and postulate a mechanism to explain these findings.
Collapse
Affiliation(s)
- Derek R. Verley
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel Torolira
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brittany A. Hessell
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Richard L. Sutton
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|