1
|
Bagó-Mas A, Korimová A, Bretová K, Deulofeu M, Verdú E, Fiol N, Dubový P, Boadas-Vaello P. Repeated Administrations of Polyphenolic Extracts Prevent Chronic Reflexive and Non-Reflexive Neuropathic Pain Responses by Modulating Gliosis and CCL2-CCR2/CX3CL1-CX3CR1 Signaling in Spinal Cord-Injured Female Mice. Int J Mol Sci 2025; 26:3325. [PMID: 40244217 PMCID: PMC11989601 DOI: 10.3390/ijms26073325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Neuropathic pain after spinal cord injury lacks any effective treatments, often leading to chronic pain. This study tested whether the daily administration of fully characterized polyphenolic extracts from grape stalks and coffee could prevent both reflexive and non-reflexive chronic neuropathic pain in spinal cord-injured mice by modulating the neuroimmune axis. Female CD1 mice underwent mild spinal cord contusion and received intraperitoneal extracts in weeks one, three, and six post-surgery. Reflexive pain responses were assessed weekly for up to 10 weeks, and non-reflexive pain was evaluated at the study's end. Neuroimmune crosstalk was investigated, focusing on glial activation and the expression of CCL2/CCR2 and CX3CL1/CX3CR1 in supraspinal pain-related areas, including the periaqueductal gray, rostral ventromedial medulla, anterior cingulate cortex, and amygdala. Repeated treatments prevented mechanical allodynia and thermal hyperalgesia, and also modulated non-reflexive pain. Moreover, they reduced supraspinal gliosis and regulated CCL2/CCR2 and CX3CL1/CX3CR1 signaling. Overall, the combination of polyphenols in these extracts may offer a promising pharmacological strategy to prevent chronic reflexive and non-reflexive pain responses by modifying central sensitization markers, not only at the contusion site but also in key supraspinal regions implicated in neuropathic pain. Overall, these data highlight the potential of polyphenolic extracts for spinal cord injury-induced chronic neuropathic pain.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Andrea Korimová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Karolína Bretová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, 17003 Girona, Catalonia, Spain;
| | - Petr Dubový
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| |
Collapse
|
2
|
Zhang C, Shao Q, Zhang Y, Liu W, Kang J, Jin Z, Huang N, Ning B. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury. CNS Neurosci Ther 2024; 30:e14826. [PMID: 38973179 PMCID: PMC11228357 DOI: 10.1111/cns.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
AIM We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFβ, and the influence of nicotinamide on TGFβ-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFβ/SMADs pathway. CONCLUSION Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFβ/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qiang Shao
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjing Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jianning Kang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Zhengxin Jin
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Nana Huang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Bryce TN, Tsai CY, Delgado AD, Mulroy SJ, Welch A, Cardenas DD, Taylor HB, Felix ER. Treatments perceived to be helpful for neuropathic pain after traumatic spinal cord injury: A multicenter cross-sectional survey study. J Spinal Cord Med 2024; 47:440-449. [PMID: 35993799 PMCID: PMC11044759 DOI: 10.1080/10790268.2022.2108665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DESIGN Cross-sectional survey. OBJECTIVE To evaluate the perceived helpfulness of pharmacological and non-pharmacological interventions and their combinations for neuropathic pain (NeuP) and subcategories of NeuP after spinal cord injury (SCI). SETTING Six Spinal Cord Injury Model System Centers. METHODS Three hundred ninety one individuals at least one year post traumatic SCI were enrolled. A telephone survey was conducted to determine the pharmacologic and non-pharmacologic treatments used in the last 12 months for each participant's three worst pains, whether these treatments were "helpful", and if currently used, each treatments' effectiveness. RESULTS Two hundred twenty participants (56%) reported 354 distinct NeuPs. Pharmacological treatments rated helpful for NeuP were non-tramadol opioids (opioids were helpful for 86% of opioid treated NeuPs), cannabinoids (83%), and anti-epileptics (79%). Non-pharmacological treatments rated helpful for NeuP were massage (76%), body position adjustment (74%), and relaxation therapy (70%). Those who used both opioids and exercise reported greater NeuP treatment helpfulness compared to participants using opioids without exercise (P = 0.03). CONCLUSIONS Opioids, cannabinoids, and massage were reported more commonly as helpful than treatments recommended as first-line therapies by current clinical practice guidelines (CPGs) for NeuP after SCI (antiepileptics and antidepressants). Individuals with SCI likely value the modulating effects of pharmacological and non-pharmacological treatments on the affective components of pain in addition to the sensory components of pain when appraising treatment helpfulness.
Collapse
Affiliation(s)
- Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chung-Ying Tsai
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew D. Delgado
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sara J. Mulroy
- Pathokinesiology Laboratory, Rancho Los Amigo National Rehabilitation Center, Downey, California, USA
| | | | - Diana D. Cardenas
- Department of Physical Medicine and Rehabilitation, University of Miami, Miami, Florida, USA
| | - Heather B. Taylor
- Department of Physical Medicine & Rehabilitation, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Elizabeth R. Felix
- Department of Physical Medicine and Rehabilitation, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Jin L, Wang H, Dong Y, Chen Q, Li L, Li Y. Choosing the optimal target area for repeated transcranial magnetic stimulation in treating neuropathic pain in spinal cord injury patients: a comparative analysis. Front Neurol 2024; 15:1370420. [PMID: 38601340 PMCID: PMC11004227 DOI: 10.3389/fneur.2024.1370420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Objective The specific target area of repeated transcranial magnetic stimulation (rTMS) in treating neuropathic pain resulting from spinal cord injury (SCI-NP) remains uncertain. Methods Thirty-four participants with SCI-NP were allocated into three groups, namely, the motor cortex (M1, A) group, the left dorsolateral prefrontal cortex (LDLPFC, B) group, and the control (sham stimulation, C) group. The intervention was administered totally 10 times. Outcome measures assessed pre-(T0) and post-(T1)intervention, including Numerical Rating scale (NRS), anxiety (SAS), depression (SDS), sleep quality (PSQI), brief pain inventory (BPI), and impression of change. Results All outcomes in groups A and B significantly changed after intervention (p < 0.05), and the delta value (T1-T0) also significantly changed than group C (p < 0.05). The delta value of SDS in the group B was better than the group A, and the change of pain degree in the group B was moderately correlated with the change in PSQI (r = 0.575, p < 0.05). Both patients in the groups A and B showed significant impression of change about their received therapy (p < 0.05). Conclusion Both targets are effective, but LDLPFC is more effective in reducing depression in SCI-NP. Healthcare providers might select the suitable area according to the specific attributes of their patients.
Collapse
Affiliation(s)
- Lihua Jin
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haonan Wang
- Department of Rehabilitation, Kunming Medical University, Kunming, Yunnan, China
- Department of Burn and Plastic Medicine, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing, Beijing, China
| | - Yifei Dong
- Department of Rehabilitation, Kunming Medical University, Kunming, Yunnan, China
| | - Qian Chen
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linrong Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongmei Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Chang J, Zhu K, Zhang S, Wang Y, Li Y, Zuo J, Xie B, Ni H, Yao J, Xu Z, Yan T, Wu X, Chen S, Xu P, Song P, Wu Y, Zhu J, Shen C, Yu Y, Dong F. Dysregulated neural activity between the thalamus and cerebral cortex mediates cortical reorganization in cervical spondylotic myelopathy. Brain Res Bull 2023; 205:110837. [PMID: 38043647 DOI: 10.1016/j.brainresbull.2023.110837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Neuroimaging research has revealed significant changes in brain structure and function in patients with cervical spondylotic myelopathy(CSM). The thalamus plays a crucial role in this process, although its mechanisms of action remain incompletely understood. This study aimed to investigate whether spinal cord compression leads to alterations in the functional connectivity between the thalamus and the cerebral cortex, and to determine if such changes are associated with structural and functional remodeling of the brain in patients with CSM, and to identify potential neuroimaging biomarkers for classification. The study included 40 patients with CSM and 34 healthy controls(HCs) who underwent resting-state functional magnetic resonance imaging(fMRI) and structural MRI scans. Brain structural and functional metrics were quantified using functional connectivity(FC), fractional amplitude of low-frequency fluctuations(fALFF), surface-based morphometry(SBM), and independent component analysis(ICA) based on functional and structural MRI. Patients with CSM exhibited significantly reduced fALFF in the bilateral lateral lingual gyrus, bilateral calcarine fissure, left precentral gyrus and postcentral gyrus, left middle and superior occipital gyrus, left superior marginal gyrus, left inferior parietal gyrus, and right Rolandic operculum. ICA results revealed weakened functional connectivity between the sensorimotor network (SMN) and the left and right frontoparietal network(FPN), and lateral visual network (lVN), along with decreased connectivity between lVN and rFPN, and increased connectivity between lFPN and rFPN. Patients with CSM also had decreased sulcus depth in the bilateral insula, left precentral and postcentral gyrus, and right lingual gyrus and calcarine fissure. Furthermore, cervical spondylotic myelopathy patients showed decreased functional connectivity between the left ventral posterolateral nucleus (VPL) of the thalamus and the right middle occipital gyrus (MOG). Finally,multimodal neuroimaging with support vector machine(SVM) classified patients with CSM and healthy controls with 86.00% accuracy. Our study revealed that the decrease in functional connectivity between the thalamus and cortex mediated by spinal cord compression leads to structural and functional reorganization of the cortex. Features based on neuroimaging markers have the potential to become neuroimaging biomarkers for CSM.
Collapse
Affiliation(s)
- Jianchao Chang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siya Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junxun Zuo
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingyong Xie
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Ni
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiyuan Yao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhibin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingfei Yan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianyong Wu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Senlin Chen
- Department of Orthopedics, Dongcheng Branch of The First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei, China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fulong Dong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Deng L, Chen Y, Wang Z, Zeng N, Zhang Q, Zhou T, Chen Y, Wu S. Analysis of the influencing factors related to neuropathic pain in patients with spinal cord injuries: a retrospective study. Br J Neurosurg 2023; 37:1588-1593. [PMID: 35200073 DOI: 10.1080/02688697.2022.2043242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/12/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The aim of this study was to investigate the related influencing factors of neuropathic pain (NP) in patients with spinal cord injury (SCI). METHODS Patients diagnosed with SCI between January 2016 and December 2019 in the Department of Rehabilitation Medicine, Affiliated Hospital of Guizhou Medical University, were screened for NP by using the Douleur Neuropathique 4 (DN4) questionnaire. A total of 133 patients diagnosed with SCI with NP were finally included in the study. We collected the patients' basic information, including gender, age, body mass index (BMI), disease course, injury segment, American Spinal Injury Association (ASIA) grade, occupation, educational level, whether painkillers were used, stability of economic support, and pain level. Univariate and multiple ordered logistic regression analyses were used to examine the influencing factors of NP in the patients with SCI. RESULTS The chi-square test revealed that disease course, injury level, severity of SCI (ASIA classification), stable economic support during hospitalization, and the use of painkillers had statistical significance (p < .01). A multivariate logistic regression analysis was performed to analyze the influencing factors of NP. ASIA grade, stable economic support, and use of painkillers were independent influencing factors of NP in patients with SCI, among which injury severity was the independent risk factor (odds ratio [OR] > 1). Stable economic support and painkiller use were protective factors (OR < 1). CONCLUSIONS In this study, we found no significant correlation between NP after SCI and sex, age, BMI, disease course, injury level, and occupation. However, the injury severity was an independent risk factor, and stable economic support and painkiller use were protective factors.
Collapse
Affiliation(s)
- Luoyi Deng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yuan Chen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Zhitao Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Qian Zhang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Tengfei Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yan Chen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
- School of Clinical Medicine, Guizhou Medical University Guiyang, Guiyang, PR China
| | - Shuang Wu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
8
|
Farley P, Abraham P, Griffin RL, Jansen JO. Pain in Trauma Patients: Measurement and Predisposing Factors. J Surg Res 2023; 291:321-329. [PMID: 37506431 DOI: 10.1016/j.jss.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Acute pain is common after injury. This study intended to evaluate the feasibility of quantifying pain experience over an entire admission using "area under the pain curve" and to identify factors associated with increased pain. METHODS This retrospective single-center study included all trauma patients admitted from 2013 to 2020. Maximum pain scores were extracted for each day. Pain was defined as area under the curve (AUC) of maximum pain scores/day plotted against time. Injury patterns were analyzed by dichotomizing Abbreviated Injury Scale (AIS) scores (AIS < 3 versus AIS ≥ 3) for each body region. Urinary drug screen results were collected from admission data. A general linear model was used to determine which injury patterns, mechanisms, and age groups were predictive of increased AUC in all patients together and separate by operative and nonoperative groups. RESULTS We identified 21,640 patients, of which 70% were male and 83% had suffered blunt injury. Overall injury severity was associated with increased pain experience. Serious head injury, younger age, and older age (compared to 45-49 y) were associated with decreased pain. Spinal injuries, thoraco-abdominal injuries, and combined thoracic and lower extremity injuries were predictive of increased pain. Compared to patients with no positive test for illicit substances or documentation of prehospital narcotic medications, the pain experience was greater for both, those who had been administered a narcotic in the prehospital setting and those who tested positive for illicit substances. CONCLUSIONS This study extends the concept of total pain experience using AUC methodology. Our results demonstrate associations between increased pain and certain patterns of injury, ages, and presence of drugs on admission. Measuring total pain experience could assist in comparing pain-management strategies. Future research should focus on validating pain experience against quality-of-life measurements.
Collapse
Affiliation(s)
- Paige Farley
- Oregon Health and Sciences University, Portland, Oregon
| | - Peter Abraham
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Russell L Griffin
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama
| | - Jan O Jansen
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
9
|
Starosta AJ, Wright KS, Bombardier CH, Kahlia F, Barber J, Accardi-Ravid MC, Wiechman SA, Crane DA, Jensen MP. A Case Study of Hypnosis Enhanced Cognitive Therapy for Pain in a Ventilator Dependent Patient during Inpatient Rehabilitation for Spinal Cord Injury. J Clin Med 2023; 12:4539. [PMID: 37445573 DOI: 10.3390/jcm12134539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Early, acute pain following spinal cord injury (SCI) is common, can negatively impact SCI rehabilitation, and is frequently not responsive to biomedical treatment. Nonpharmacological interventions show promise in reducing pain for individuals with SCI. However, most psychological interventions rely heavily on verbal interaction between the individual being treated and the clinician, making them inaccessible for individuals with impaired verbal output due to mechanical ventilation. This case study aims to describe the adaptation and implementation of hypnotic cognitive therapy (HYP-CT) intervention for early SCI pain in the context of mechanical ventilation dependence and weaning. The participant was a 54-year-old male with C2 AIS A SCI requiring mechanical ventilation. Four sessions of HYP-CT were provided during inpatient rehabilitation with assessment prior to intervention, after the intervention sessions, and prior to discharge. The participant reported immediate reductions in pain intensity following each intervention session. Overall, he reported increases in self-efficacy and pain acceptance. He did not report any negative treatment effects and thought the intervention provided support during mechanical ventilation weaning. During treatment, he discontinued opioid pain medications and reported actively using intervention strategies. Our results support the potential for early, hypnotic cognitive therapy for individuals with SCI experiencing pain or distress while dependent on mechanical ventilation.
Collapse
Affiliation(s)
- Amy J Starosta
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Katherine S Wright
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Charles H Bombardier
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Faran Kahlia
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Michelle C Accardi-Ravid
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84132, USA
| | - Shelley A Wiechman
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Crane
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Capossela S, Landmann G, Ernst M, Stockinger L, Stoyanov J. Assessing the Feasibility of a Multimodal Approach to Pain Evaluation in Early Stages after Spinal Cord Injury. Int J Mol Sci 2023; 24:11122. [PMID: 37446303 DOI: 10.3390/ijms241311122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
This research evaluates the feasibility of a multimodal pain assessment protocol during rehabilitation following spinal cord injury (SCI). The protocol amalgamates clinical workup (CW), quantitative sensory testing (QST), and psychosocial factors (PSF) administered at 4 (T1), 12 (T2), and 24 (T3) weeks post injury and at discharge (T4). Molecular blood biomarkers (BB) were evaluated via gene expression and proteomic assays at T1 and T4. Different pain trajectories and temporal changes were identified using QST, with inflammation and pain-related biomarkers recorded. Higher concentrations of osteopontin and cystatin-C were found in SCI patients compared to healthy controls, indicating their potential as biomarkers. We observed altered inflammatory responses and a slight increase in ICAM-1 and CCL3 were noted, pointing towards changes in cellular adhesion linked with spinal injury and a possible connection with neuropathic pain. Despite a small patient sample hindering the correlation of feasibility data, descriptive statistical analyses were conducted on stress, depression, anxiety, quality of life, and pain interferences. The SCI Pain Instrument (SCIPI) was efficient in distinguishing between nociceptive and neuropathic pain, showing a progressive increase in severity over time. The findings emphasize the need for the careful consideration of recruitment setting and protocol adjustments to enhance the feasibility of multimodal pain evaluation studies post SCI. They also shed light on potential early adaptive mechanisms in SCI pathophysiology, warranting the further exploration of prognostic and preventive strategies for chronic pain in the SCI population.
Collapse
Affiliation(s)
| | - Gunther Landmann
- Centre for Pain Medicine, Swiss Paraplegic Centre, CH-6207 Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, CH-6002 Lucerne, Switzerland
| | - Mario Ernst
- Swiss Paraplegic Research, CH-6207 Nottwil, Switzerland
- Centre for Pain Medicine, Swiss Paraplegic Centre, CH-6207 Nottwil, Switzerland
| | - Lenka Stockinger
- Centre for Pain Medicine, Swiss Paraplegic Centre, CH-6207 Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, CH-6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
11
|
Xiong T, Yang K, Zhao T, Zhao H, Gao X, You Z, Fan C, Kang X, Yang W, Zhuang Y, Chen Y, Dai J. Multifunctional Integrated Nanozymes Facilitate Spinal Cord Regeneration by Remodeling the Extrinsic Neural Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205997. [PMID: 36646515 PMCID: PMC9982579 DOI: 10.1002/advs.202205997] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
High levels of reactive oxygen species (ROS) and inflammation create a complicated extrinsic neural environment that dominates the initial post-injury period after spinal cord injury (SCI). The compensatory pathways between ROS and inflammation limited the efficacy of modulating the above single treatment regimen after SCI. Here, novel "nanoflower" Mn3 O4 integrated with "pollen" IRF-5 SiRNA was designed as a combination antioxidant and anti-inflammatory treatment after SCI. The "nanoflower" and "pollen" structure was encapsulated with a neutrophil membrane for protective and targeted delivery. Furthermore, valence-engineered nanozyme Mn3 O4 imitated the cascade response of antioxidant enzymes with a higher substrate affinity compared to natural antioxidant enzymes. Nanozymes effectively catalyzed ROS to generate O2 , which is advantageous for reducing oxidative stress and promoting angiogenesis. The screened "pollen" IRF-5 SiRNA could reverse the inflammatory phenotype by reducing interferon regulatory factors-5 (IRF-5) expression (protein level: 73.08% and mRNA level: 63.10%). The decreased expression of pro-inflammatory factors reduced the infiltration of inflammatory cells, resulting in less neural scarring. In SCI rats, multifunctional nanozymes enhanced the proliferation of various neuronal subtypes (motor neurons, interneurons, and sensory neurons) and the recovery of locomotor function, demonstrating that the remodeling of the extrinsic neural environment is a promising strategy to facilitate nerve regeneration.
Collapse
Affiliation(s)
- Tiandi Xiong
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Keni Yang
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Tongtong Zhao
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Haitao Zhao
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xu Gao
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Zhifeng You
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Caixia Fan
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xinyi Kang
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Wen Yang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yan Zhuang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yanyan Chen
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jianwu Dai
- Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- State Key Laboratory of Molecular Development BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
12
|
Macionis V. Chronic pain and local pain in usually painless conditions including neuroma may be due to compressive proximal neural lesion. FRONTIERS IN PAIN RESEARCH 2023; 4:1037376. [PMID: 36890855 PMCID: PMC9986610 DOI: 10.3389/fpain.2023.1037376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
It has been unexplained why chronic pain does not invariably accompany chronic pain-prone disorders. This question-driven, hypothesis-based article suggests that the reason may be varying occurrence of concomitant peripheral compressive proximal neural lesion (cPNL), e.g., radiculopathy and entrapment plexopathies. Transition of acute to chronic pain may involve development or aggravation of cPNL. Nociceptive hypersensitivity induced and/or maintained by cPNL may be responsible for all types of general chronic pain as well as for pain in isolated tissue conditions that are usually painless, e.g., neuroma, scar, and Dupuytren's fibromatosis. Compressive PNL induces focal neuroinflammation, which can maintain dorsal root ganglion neuron (DRGn) hyperexcitability (i.e., peripheral sensitization) and thus fuel central sensitization (i.e., hyperexcitability of central nociceptive pathways) and a vicious cycle of chronic pain. DRGn hyperexcitability and cPNL may reciprocally maintain each other, because cPNL can result from reflexive myospasm-induced myofascial tension, muscle weakness, and consequent muscle imbalance- and/or pain-provoked compensatory overuse. Because of pain and motor fiber damage, cPNL can worsen the causative musculoskeletal dysfunction, which further accounts for the reciprocity between the latter two factors. Sensitization increases nerve vulnerability and thus catalyzes this cycle. Because of these mechanisms and relatively greater number of neurons involved, cPNL is more likely to maintain DRGn hyperexcitability in comparison to distal neural and non-neural lesions. Compressive PNL is associated with restricted neural mobility. Intermittent (dynamic) nature of cPNL may be essential in chronic pain, because healed (i.e., fibrotic) lesions are physiologically silent and, consequently, cannot provide nociceptive input. Not all patients may be equally susceptible to develop cPNL, because occurrence of cPNL may vary as vary patients' predisposition to musculoskeletal impairment. Sensitization is accompanied by pressure pain threshold decrease and consequent mechanical allodynia and hyperalgesia, which can cause unusual local pain via natural pressure exerted by space occupying lesions or by their examination. Worsening of local pain is similarly explainable. Neuroma pain may be due to cPNL-induced axonal mechanical sensitivity and hypersensitivity of the nociceptive nervi nervorum of the nerve trunk and its stump. Intermittence and symptomatic complexity of cPNL may be the cause of frequent misdiagnosis of chronic pain.
Collapse
|
13
|
Muacevic A, Adler JR, Ermida FN, Costa A, Carvalho JL. Ultrasound-Guided Percutaneous Radiofrequency Thermal Neuroablation for the Treatment of Adductor and Rectus Femoris Spasticity. Cureus 2023; 15:e33422. [PMID: 36751180 PMCID: PMC9899151 DOI: 10.7759/cureus.33422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Spasticity is a very frequent complication of spinal cord injury (SCI) that can limit activities of daily living, reduce the quality of life, and augment caregiver burden. This problem has many treatment options that should be selected according to the clinical and functional scenario. This case study presents a 60-year-old female patient with complete spastic paraplegia after a spinal stroke. Spasticity interfered with activities of daily living, mainly with intermittent catheterization and transfers, and botulinum toxin injections failed to efficiently treat this issue. It was decided to perform an ultrasound-guided radiofrequency thermal ablation of the anterior and posterior branches of the obturator nerve and motor branches to the rectus femoris of the femoral nerve to treat the adductors and rectus femoris spasticity. One year after the radiofrequency treatment, the patient showed considerably reduced spasticity, allowing her caregiver to do transfers and easier intermittent urinary catheterizations. Nerve radiofrequency thermal ablation has the potential to be an effective therapy in lower limb spasticity, with long-lasting effects.
Collapse
|
14
|
Lütolf R, Rosner J, Curt A, Hubli M. Indicators of central sensitization in chronic neuropathic pain after spinal cord injury. Eur J Pain 2022; 26:2162-2175. [PMID: 36008094 PMCID: PMC9826442 DOI: 10.1002/ejp.2028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Central sensitization is considered a key mechanism underlying neuropathic pain (NP) after spinal cord injury (SCI). METHODS Two novel proxies for central sensitization were investigated in thoracic SCI subjects with (SCI-NP) and without NP (SCI-nonNP) compared to healthy controls (HC). Specifically, temporal summation of pain (TSP) was investigated by examining pain ratings during a 2-min tonic heat application to the volar forearm. Additionally, palmar heat-induced sympathetic skin responses (SSR) were recorded in order to reveal changes in pain-autonomic interaction above the lesion level. Pain extent was assessed as the percentage of the body area and the number of body regions being affected by NP. RESULTS Enhanced TSP was observed in SCI-NP (+66%) compared to SCI-nonNP (-75%, p = 0.009) and HC (-59%, p = 0.021). In contrast, no group differences were found (p = 0.685) for SSR habituation. However, pain extent in SCI-NP was positively correlated with deficient SSR habituation (body area: r = 0.561, p = 0.024; body regions: r = 0.564, p = 0.023). CONCLUSIONS These results support the value of TSP and heat-induced SSRs as proxies for central sensitization in widespread neuropathic pain syndromes after SCI. Measures of pain-autonomic interaction emerged as a promising tool for the objective investigation of sensitized neuronal states in chronic pain conditions. SIGNIFICANCE We present two surrogate readouts for central sensitization in neuropathic pain following SCI. On the one hand, temporal summation of tonic heat pain is enhanced in subjects with neuropathic pain. On the other hand, pain-autonomic interaction reveals potential advanced measures in chronic pain, as subjects with a high extent of neuropathic pain showed diminished habituation of pain-induced sympathetic measures. A possible implication for clinical practice is constituted by an improved assessment of neuronal hyperexcitability potentially enabling mechanism-based treatment.
Collapse
Affiliation(s)
- Robin Lütolf
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Jan Rosner
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland,Department of NeurologyUniversity Hospital Bern, Inselspital, University of BernBernSwitzerland
| | - Armin Curt
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Michèle Hubli
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
15
|
Bao QY, Chang PC, Centeno MV, Farmer MA, Baliki M, Procissi D, Zhang W, Apkarian AV. Reversal of neuropathic pain is associated with corticostriatal functional reorganization after nerve repair in the spared nerve injury model. Pain 2022; 163:1929-1938. [PMID: 35082247 PMCID: PMC9309182 DOI: 10.1097/j.pain.0000000000002590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Following surgical repair after peripheral nerve injury, neuropathic pain diminishes in most patients but can persist in a small proportion of cases, the mechanism of which remains poorly understood. Based on the spared nerve injury (SNI), we developed a rat nerve repair (NR) model, where a delayed reconstruction of the SNI-injured nerves resulted in alleviating chronic pain-like behavior only in a subpopulation of rats. Multiple behavioral measures were assayed over 11-week presurgery and postsurgery periods (tactile allodynia, pain prick responses, sucrose preference, motor coordination, and cold allodynia) in SNI (n = 10), sham (n = 8), and NR (n = 12) rats. All rats also underwent resting-state functional magnetic resonance imaging under anesthesia at multiple time points postsurgery, and at 10 weeks, histology and retrograde labeling were used to calculate peripheral reinnervation. Behavioral measures indicated that at approximately 5 weeks postsurgery, the NR group separated to pain persisting (NR persisting, n = 5) and recovering (NR recovering, n = 7) groups. Counts of afferent nerves and dorsal root ganglion cells were not different between NR groups. Therefore, NR group differences could not be explained by peripheral reorganization. By contrast, large brain functional connectivity differences were observed between NR groups, where corticolimbic reorganization paralleled with pain recovery (repeated-measures analysis of variance, false discovery rate, P < 0.05), and functional connectivity between accumbens and medial frontal cortex was related both to tactile allodynia (nociception) and to sucrose preference (anhedonia) in the NR group. Our study highlights the importance of brain circuitry in the reversal of neuropathic pain as a natural pain-relieving mechanism. Further studies regarding the therapeutic potentials of these processes are warranted.
Collapse
Affiliation(s)
- Qi-Yuan Bao
- Department of Orthopaedics, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Pei-Ching Chang
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Maria Virginia Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Melissa A Farmer
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Marwan Baliki
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Pain Management Center, Chicago, IL, United States
| | - Daniel Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Weibin Zhang
- Department of Orthopaedics, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - A Vania Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
16
|
Li Y, Fang SC, Zhou L, Mo XM, Guo HD, Deng YB, Yu HH, Gong WY. Complement Receptor 3 Pathway and NMDA Receptor 2B Subunit Involve Neuropathic Pain Associated with Spinal Cord Injury. J Pain Res 2022; 15:1813-1823. [PMID: 35784110 PMCID: PMC9242000 DOI: 10.2147/jpr.s366782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Neuropathic pain (NP) after spinal cord injury (SCI-evoked NP) is clinically challenging; the underlying mechanisms are not fully understood, leading to a lack of promising treatment options. NP occurs in only a subset of patients with SCI. The injured spinal cord exhibits a series of histopathological changes, and the complement system has been shown to play an important role in these processes. In addition, NMDA receptor subunit 2B (NR2B) is involved in the development and maintenance of NP. This preliminary study was performed to investigate the correlations of the complement receptor 3/complement component 3 (CR3/C3) pathway and NR2B with SCI-evoked NP. Methods A trauma-induced SCI animal model was established and SCI-evoked NP was evaluated by behavioural analysis. Transcriptome analysis was performed to identify genes in the CR3/C3 pathway related to synaptic modification, while the expression and distribution of NR2B in the injured spinal cord, and the relation to NP, were examined by immunohistochemical analysis. Results Nine of seventeen SCI rats (52.9%) developed NP. C3 mRNA expression was significantly decreased in SCI-evoked NP rats and significantly increased in the non-NP SCI rats. C1q mRNA and CR3 mRNA expression were significantly increased in all SCI rats, but higher levels of expression were observed in the non-NP SCI rats. NR2B mRNA expression was significantly increased in the SCI-evoked NP rats and significantly decreased in the non-NP SCI rats. In addition, significantly elevated expression of NR2B-positive cells was seen in lamina II of the superficial dorsal horn in SCI-evoked NP rats in comparison with non-NP SCI rats. Conclusion NP occurred in only a subset of SCI rats, and the CR3/C3 pathway and NR2B were involved in SCI-evoked NP. Further studies are required to determine the mechanisms underlying the SCI-evoked NP associated with the CR3/C3 pathway and NR2B.
Collapse
Affiliation(s)
- Yong Li
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China
| | - Sheng-Chun Fang
- Department of Anesthesiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430015, People’s Republic of China
| | - Lan Zhou
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China
| | - Xue-Mei Mo
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
| | - Hao-Dong Guo
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
| | - Yan-Bo Deng
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
| | - Hong-Hao Yu
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China
- Correspondence: Hong-Hao Yu, College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China, Email
| | - Wei-Yi Gong
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
- Wei-Yi Gong, Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, People’s Republic of China, Email
| |
Collapse
|
17
|
Tadokoro T, Bravo-Hernandez M, Agashkov K, Kobayashi Y, Platoshyn O, Navarro M, Marsala S, Miyanohara A, Yoshizumi T, Shigyo M, Krotov V, Juhas S, Juhasova J, Nguyen D, Kupcova Skalnikova H, Motlik J, Studenovska H, Proks V, Reddy R, Driscoll SP, Glenn TD, Kemthong T, Malaivijitnond S, Tomori Z, Vanicky I, Kakinohana M, Pfaff SL, Ciacci J, Belan P, Marsala M. Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain. Mol Ther 2022; 30:2722-2745. [PMID: 35524407 PMCID: PMC9372322 DOI: 10.1016/j.ymthe.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously-induced change in developmentally-imprinted excitatory neurotransmitter phenotype of these neurons to inhibitory has not yet been achieved. Here we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-Aminobutyric acid,) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) which persisted for minimum 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (such as sedation, motor weakness or loss of normal sensation) were seen between 2-13 months post-treatment in naive adult mice, pigs and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord- or peripheral nerve-injury induced neuropathic pain.
Collapse
Affiliation(s)
- Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Department of Anesthesiology, University of Ryukyus, Okinawa, Japan; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Mariana Bravo-Hernandez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Kirill Agashkov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yoshiomi Kobayashi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Atsushi Miyanohara
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Vector Core Laboratory, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Tetsuya Yoshizumi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michiko Shigyo
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Volodymyr Krotov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Duong Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Vladimir Proks
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Rajiv Reddy
- Department of Anesthesiology, Pain Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas D Glenn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Zoltan Tomori
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia
| | | | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Pavel Belan
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine; Kyiv Academic University, Kyiv, Ukraine
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
18
|
Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol 2022; 21:659-670. [DOI: 10.1016/s1474-4422(21)00464-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
|
19
|
Braunwalder C, Ehrmann C, Hodel J, Müller R, von Matt D, Fekete C. Pain trajectories during initial rehabilitation after spinal cord injury: Do psychosocial resources and mental health predict trajectories? Arch Phys Med Rehabil 2022; 103:1294-1302. [DOI: 10.1016/j.apmr.2022.01.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
|
20
|
Defrin R, Gruener H, Gaidukov E, Bondi M, Rachamim-Katz O, Ringler E, Blumen N, Zeilig G. From acute to long-term alterations in pain processing and modulation after spinal cord injury: mechanisms related to chronification of central neuropathic pain. Pain 2022; 163:e94-e105. [PMID: 33863855 DOI: 10.1097/j.pain.0000000000002315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT A severe and debilitating consequence of a spinal cord injury (SCI) is central neuropathic pain (CNP). Our aim was to investigate the processes leading to CNP emergence and chronification by analyzing causal relationship over time between spinothalamic function, pain excitability, and pain inhibition after SCI. This longitudinal follow-up study included 53 patients with acute SCI and 20 healthy controls. Spinothalamic, pain excitability, and intrasegmental and extrasegmental pain inhibition indices were repeatedly evaluated at 1.5, 3, and 6 months post-SCI. Between- and within-group analyses were conducted among those patients who eventually developed CNP and those who did not. Healthy controls were evaluated twice for repeatability analysis. Patients who developed CNP, compared with those who did not, exhibited increased thermal thresholds (P < 0.05), reduced pain adaptation (P < 0.01), and conditioned pain modulation (P < 0.05), early post-injury, and the CNP group's manifestations remained worse throughout the follow-up. By contrast, allodynia frequency was initially similar across SCI groups, but gradually increased in the subacute phase onward only among the CNP group (P < 0.001), along with CNP emergence. Early worse spinothalamic and pain inhibition preceded CNP and predicted its occurrence, and early worse pain inhibition mediated the link between spinothalamic function and CNP. Crossover associations were observed between early and late pain inhibition and excitability. Inefficient intrasegmental and extrasegmental inhibition, possibly resulting from spinothalamic deafferentation, seems to ignite CNP chronification. Pain excitability probably contributes to CNP maintenance, possibly via further exhaustion of the inhibitory control. Preemptive treatment promoting antinociception early post-SCI may mitigate or prevent CNP.
Collapse
Affiliation(s)
- Ruth Defrin
- Department of Physical Therapy at Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gruener
- Department of Physical Therapy at Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Evgeni Gaidukov
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Bondi
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Rachamim-Katz
- Barzilai Day Care Rehabilitation Unit, Barzilai Medical Center, Ashkelon, Israel
| | - Erez Ringler
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nava Blumen
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Rehabilitation Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Gaudet AD, Fonken LK, Ayala MT, Maier SF, Watkins LR. Aging and miR-155 in mice influence survival and neuropathic pain after spinal cord injury. Brain Behav Immun 2021; 97:365-370. [PMID: 34284114 PMCID: PMC8453092 DOI: 10.1016/j.bbi.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) elicits chronic pain in 65% of individuals. In addition, SCI afflicts an increasing number of aged individuals, and those with SCI are predisposed to shorter lifespan. Our group previously identified that deletion of the microRNA miR-155 reduced neuroinflammation and locomotor deficits after SCI. Here, we hypothesized that aged mice would be more susceptible to pain symptoms and death soon after SCI, and that miR-155 deletion would reduce pain symptoms in adult and aged mice and improve survival. Adult (2 month-old) and aged (20 month-old) female wildtype (WT) and miR-155 knockout (KO) mice received T9 contusion SCI. Aged WT mice displayed reduced survival and increased autotomy - a symptom of spontaneous pain. In contrast, aged miR-155 KO mice after SCI were less susceptible to death or spontaneous pain. Evoked pain symptoms were tested using heat (Hargreaves test) and mechanical (von Frey) stimuli. At baseline, aged mice showed heightened heat sensitivity. After SCI, adult and aged WT and miR-155 KO mice all exhibited heat and mechanical hypersensitivity at all timepoints. miR-155 deletion in adult (but not aged) mice reduced mechanical hypersensitivity at 7 and 14 d post-SCI. Therefore, aging predisposes mice to SCI-elicited spontaneous pain and expedited mortality. miR-155 deletion in adult mice reduces evoked pain symptoms, and miR-155 deletion in aged mice reduces spontaneous pain and expedited mortality post-SCI. This study highlights the importance of studying geriatric models of SCI, and that inflammatory mediators such as miR-155 are promising targets after SCI for improving pain relief and longevity.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Laura K Fonken
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Monica T Ayala
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| |
Collapse
|
22
|
Stieglitz LH, Hofer AS, Bolliger M, Oertel MF, Filli L, Willi R, Cathomen A, Meyer C, Schubert M, Hubli M, Kessler TM, Baumann CR, Imbach L, Krüsi I, Prusse A, Schwab ME, Regli L, Curt A. Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): protocol of a prospective one-armed multi-centre study. BMJ Open 2021; 11:e047670. [PMID: 34593490 PMCID: PMC8487195 DOI: 10.1136/bmjopen-2020-047670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a devastating condition with immediate impact on the individual's health and quality of life. Major functional recovery reaches a plateau 3-4 months after injury despite intensive rehabilitative training. To enhance training efficacy and improve long-term outcomes, the combination of rehabilitation with electrical modulation of the spinal cord and brain has recently aroused scientific interest with encouraging results. The mesencephalic locomotor region (MLR), an evolutionarily conserved brainstem locomotor command and control centre, is considered a promising target for deep brain stimulation (DBS) in patients with SCI. Experiments showed that MLR-DBS can induce locomotion in rats with spinal white matter destructions of >85%. METHODS AND ANALYSIS In this prospective one-armed multi-centre study, we investigate the safety, feasibility, and therapeutic efficacy of MLR-DBS to enable and enhance locomotor training in severely affected, subchronic and chronic American Spinal Injury Association Impairment Scale C patients in order to improve functional recovery. Patients undergo an intensive training programme with MLR-DBS while being regularly followed up until 6 months post-implantation. The acquired data of each timepoint are compared with baseline while the primary endpoint is performance in the 6-minute walking test. The clinical trial protocol was written in accordance with the Standard Protocol Items: Recommendations for Interventional Trials checklist. ETHICS AND DISSEMINATION This first in-man study investigates the therapeutic potential of MLR-DBS in SCI patients. One patient has already been implanted with electrodes and underwent MLR stimulation during locomotion. Based on the preliminary results which promise safety and feasibility, recruitment of further patients is currently ongoing. Ethical approval has been obtained from the Ethical Committee of the Canton of Zurich (case number BASEC 2016-01104) and Swissmedic (10000316). Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT03053791.
Collapse
Affiliation(s)
| | - Anna-Sophie Hofer
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Romina Willi
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Adrian Cathomen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, Zurich, Switzerland
| | | | - Lukas Imbach
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Iris Krüsi
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Andrea Prusse
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
23
|
Spinal cord injury in mice impacts central and peripheral pathology in a severity-dependent manner. Pain 2021; 163:1172-1185. [PMID: 34490852 DOI: 10.1097/j.pain.0000000000002471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a common medical complication experienced by those living with spinal cord injury (SCI) and leads to worsened quality of life. The pathophysiology of SCI pain is poorly understood, hampering the development of safe and efficacious therapeutics. We therefore sought to develop a clinically relevant model of SCI with a strong pain phenotype and characterize the central and peripheral pathology after injury. A contusion (50 kdyn) injury, with and without sustained compression (60 seconds) of the spinal cord, was carried out on female C57BL/6J mice. Mice with compression of the spinal cord exhibited significantly greater heat and mechanical hypersensitivity starting at 7 days post-injury, concomitant with reduced locomotor function, compared to those without compression. Immunohistochemical analysis of spinal cord tissue revealed significantly less myelin sparing and increased macrophage activation in mice with compression compared to those without. As measured by flow cytometry, immune cell infiltration and activation were significantly greater in the spinal cord (phagocytic myeloid cells and microglia) and dorsal root ganglia (Ly6C+ monocytes) following compression injury. We also decided to investigate the gastrointestinal microbiome, as it has been shown to be altered in SCI patients and has recently been shown to play a role in immune system maturation and pain. We found increased dysbiosis of the gastrointestinal microbiome in an injury severity-dependent manner. The use of this contusion-compression model of SCI may help advance the preclinical assessment of acute and chronic SCI pain and lead to a better understanding of mechanisms contributing to this pain.
Collapse
|
24
|
Rosner J, Negraeff M, Bélanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Christie S, Wilson JR, Dhall S, Charest-Morin R, Street J, Ailon T, Paquette S, Dea N, Fisher CG, Dvorak MF, Finnerup NB, Kwon BK, Kramer JLK. Characterization of Hyperacute Neuropathic Pain after Spinal Cord Injury: A Prospective Study. THE JOURNAL OF PAIN 2021; 23:89-97. [PMID: 34302956 DOI: 10.1016/j.jpain.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
There is currently a lack of information regarding neuropathic pain in the very early stages of spinal cord injury (SCI). In the present study, neuropathic pain was assessed using the Douleur Neuropathique 4 Questions (DN4) for the patient's worst pain within the first 5 days of injury (i.e., hyperacute) and on follow-up at 3, 6, and 12 months. Within the hyperacute time frame (i.e., 5 days), at- and below-level neuropathic pain were reported as the worst pain in 23% (n = 18) and 5% (n = 4) of individuals with SCI, respectively. Compared to the neuropathic pain observed in this hyperacute setting, late presenting neuropathic pain was characterized by more intense painful electrical and cold sensations, but less itching sensations. Phenotypic differences between acute and late neuropathic pain support the incorporation of timing into a mechanism-based classification of neuropathic pain after SCI. The diagnosis of acute neuropathic pain after SCI is challenged by the presence of nociceptive and neuropathic pains, with the former potentially masking the latter. This may lead to an underestimation of the incidence of neuropathic pain during the very early, hyperacute time points post-injury. TRIAL REGISTRATION: ClinicalTrials.gov (Identifier: NCT01279811) PERSPECTIVE: This article presents distinct pain phenotypes of hyperacute and late presenting neuropathic pain after spinal cord injury and highlights the challenges of pain assessments in the acute phase after injury. This information may be relevant to clinical trial design and broaden our understanding of neuropathic pain mechanisms after spinal cord injury.
Collapse
Affiliation(s)
- Jan Rosner
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Negraeff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Lise M Bélanger
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Jean-Marc Mac-Thiong
- Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Sean Christie
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Sanjay Dhall
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Raphaële Charest-Morin
- Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles G Fisher
- Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
25
|
Rosner J, Lütolf R, Hostettler P, Villiger M, Clijsen R, Hohenauer E, Barbero M, Curt A, Hubli M. Assessment of neuropathic pain after spinal cord injury using quantitative pain drawings. Spinal Cord 2021; 59:529-537. [PMID: 33594250 PMCID: PMC8110478 DOI: 10.1038/s41393-021-00616-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Clinimetric cross-sectional cohort study in adults with paraplegic spinal cord injury (SCI) and neuropathic pain (NP). OBJECTIVE To assess the reliability of standardized quantitative pain drawings in patients with NP following SCI. SETTING Hospital-based research facility at the Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland. METHODS Twenty individuals with chronic thoracic spinal cord injury and neuropathic pain were recruited from a national and local SCI registry. A thorough clinical examination and pain assessments were performed. Pain drawings were acquired at subsequent timepoints, 13 days (IQR 7.8-14.8) apart, in order to assess test-retest reliability. RESULTS The average extent [%] and intensity [NRS 0-10] of spontaneous NP were 11.3% (IQR 4.9-35.8) and 5 (IQR 3-7), respectively. Pain extent showed excellent inter-session reliability (intraclass correlation coefficient 0.96). Sensory loss quantified by light touch and pinprick sensation was associated with larger pain extent (rpinprick = -0.47, p = 0.04; rlight touch = -0.64, p < 0.01). CONCLUSION Assessing pain extent using quantitative pain drawings is readily feasible and reliable in human SCI. Relating information of sensory deficits to the presence of pain may provide distinct insights into the interaction of sensory deafferentation and the development of neuropathic pain after SCI.
Collapse
Affiliation(s)
- Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Department of Neurology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Pascal Hostettler
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Villiger
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Ron Clijsen
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
| | - Erich Hohenauer
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Biomarkers for predicting central neuropathic pain occurrence and severity after spinal cord injury: results of a long-term longitudinal study. Pain 2021; 161:545-556. [PMID: 31693542 DOI: 10.1097/j.pain.0000000000001740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central neuropathic pain (CNP) after spinal cord injury (SCI) is debilitating and immensely impacts the individual. Central neuropathic pain is relatively resistant to treatment administered after it develops, perhaps owing to irreversible pathological processes. Although preemptive treatment may overcome this shortcoming, its administration necessitates screening patients with clinically relevant biomarkers that could predict CNP early post-SCI. The aim was to search for such biomarkers by measuring pronociceptive and for the first time, antinociceptive indices early post-SCI. Participants were 47 patients with acute SCI and 20 healthy controls. Pain adaptation, conditioned pain modulation (CPM), pain temporal summation, wind-up pain, and allodynia were measured above, at, and below the injury level, at 1.5 months after SCI. Healthy control were tested at corresponding regions. Spinal cord injury patients were monitored for CNP emergence and characteristics at 3 to 4, 6 to 7, and 24 months post-SCI. Central neuropathic pain prevalence was 57.4%. Central neuropathic pain severity, quality, and aggravating factors but not location somewhat changed over 24 months. Spinal cord injury patients who eventually developed CNP exhibited early, reduced at-level pain adaptation and CPM magnitudes than those who did not. The best predictor for CNP emergence at 3 to 4 and 7 to 8 months was at-level pain adaptation with odds ratios of 3.17 and 2.83, respectively (∼77% probability) and a cutoff value with 90% sensitivity. Allodynia and at-level CPM predicted CNP severity at 3 to 4 and 24 months, respectively. Reduced pain inhibition capacity precedes, and may lead to CNP. At-level pain adaptation is an early CNP biomarker with which individuals at risk can be identified to initiate preemptive treatment.
Collapse
|
27
|
Felix ER, Gater DR. Interrelationship of Neurogenic Obesity and Chronic Neuropathic Pain in Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:75-83. [PMID: 33814885 PMCID: PMC7983640 DOI: 10.46292/sci20-00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prevalence of obesity and of neuropathic pain are both estimated at above 50% in the population of people with chronic spinal cord injury (SCI). These secondary consequences of SCI have significant negative impact on physical functioning, activities of daily living, and quality of life. Investigations of relationships between weight or body composition and chronic neuropathic pain in people with SCI are lacking, but investigations in non-SCI cohorts suggest an association between obesity and the presence and severity of neuropathic pain conditions. In the present article, we present a review of the literature linking obesity and neuropathic pain and summarize findings suggesting that metabolic syndrome and chronic, systemic inflammation due to excess adiposity increase the risk for neuropathic pain after an SCI.
Collapse
Affiliation(s)
- Elizabeth R. Felix
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
- Research Service, Miami Veterans Affairs (VA) Healthcare System, Miami, Florida
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Gagné M, Côté I, Boulet M, Jutzeler CR, Kramer JLK, Mercier C. Conditioned Pain Modulation Decreases Over Time in Patients With Neuropathic Pain Following a Spinal Cord Injury. Neurorehabil Neural Repair 2020; 34:997-1008. [PMID: 33016208 PMCID: PMC7650001 DOI: 10.1177/1545968320962497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Neuropathic pain is a major problem following spinal cord injury (SCI). Central mechanisms involved in the modulation of nociceptive signals have been shown to be altered at the chronic stage, and it has been hypothesized that they might play a role in the development of chronic pain. Objective This prospective longitudinal study aimed to describe the evolution of pain modulation mechanisms over time after SCI, and to explore the relationships with the presence of clinical (neuropathic and musculoskeletal) pain. Methods Patients with an SCI were assessed on admission (n = 35; average of 38 days postinjury) and discharge (n = 25; average of 131 days postinjury) using the International Spinal Cord Injury Pain Basic Data Set. Conditioned pain modulation was assessed using the cold pressor test (10 °C; 120 s) as the conditioning stimulus and tonic heat pain, applied above the level of injury, as the test stimulus (120 s). Heat pain threshold was also assessed. Results A marked decrease in the efficacy of conditioned pain modulation was observed over time, with 30.2% of inhibition at admission and only 12.9% at discharge on average (P = .010). This decrease was observed only in patients already suffering from neuropathic pain at admission and was not explained by a general increase in sensitivity to thermal nociceptive stimuli. Conclusion These results suggest that the presence of neuropathic pain leads to a decrease in conditioned pain modulation over time, rather than supporting the hypothesis that inefficient conditioned pain modulation mechanisms are leading to the development of neuropathic pain.
Collapse
Affiliation(s)
- Martin Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Quebec City, Quebec, Canada
| | - Isabelle Côté
- Laval University, Quebec City, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Mélanie Boulet
- Laval University, Quebec City, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Catherine R Jutzeler
- Swiss Federal Institute of Technology, Basel, Switzerland.,University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Quebec City, Quebec, Canada.,Laval University, Quebec City, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Quebec, Canada
| |
Collapse
|
29
|
Cragg JJ, Jutzeler CR, Grassner L, Ramer M, Bradke F, Kramer JLK. Beneficial "Pharmaceutical Pleiotropy" of Gabapentinoids in Spinal Cord Injury: A Case for Refining Standard-of-Care. Neurorehabil Neural Repair 2020; 34:686-689. [PMID: 32508248 DOI: 10.1177/1545968320931516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spinal cord injury results in devastating neurological deficits accompanied by lifelong disability and significant economic burden. While the development of novel compounds or cell-based interventions for spinal cord injury is unquestionably worthwhile, a complementary approach examines current standards of care and the degree to which these can be optimized to benefit long-term neurological function. Numerous classes of drugs, already in use in the acute phase of spinal cord injury, are intriguing because they (1) readily cross the blood-spinal cord barrier to modulate activity in the central nervous system and (2) are administered during a window of time in which neuroprotection, and even some repair, are feasible. Here, we review a rare case of convergent lines of evidence from both preclinical and human studies to support the early administration of a class of drug (ie, gabapentinoids) to both foster motor recovery and reduce the severity of neuropathic pain.
Collapse
Affiliation(s)
- Jacquelyn J Cragg
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lukas Grassner
- Paracelsus Medical University, Salzburg, Austria.,Medical University Innsbruck, Innsbruck, Austria
| | - Matt Ramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Frank Bradke
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Viswanath O, Urits I, Burns J, Charipova K, Gress K, McNally A, Urman RD, Welschmeyer A, Berger AA, Kassem H, Sanchez MG, Kaye AD, Eubanks TN, Cornett EM, Ngo AL. Central Neuropathic Mechanisms in Pain Signaling Pathways: Current Evidence and Recommendations. Adv Ther 2020; 37:1946-1959. [PMID: 32291648 PMCID: PMC7467462 DOI: 10.1007/s12325-020-01334-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Purpose This is a comprehensive review of the current literature on central neuropathic pain mechanisms that is secondary to spinal cord injury. It reviews recent and seminal findings on the pathophysiology, diagnosis, and treatment and compares treatment options and recommendations. Recent Findings Neuropathic pain (NP) is a common complication of spinal cord injury (SCI). Chronicity of NP is attributed to increased abundance of inflammatory mediators and ion channel dysfunction leading to afferent nerve sensitization; nerve damage and nerve–glia cross talk have also been implicated. Conventional treatment is medical and has had limited success. Recent studies have made headway in identifying novel biomarkers, including microRNA and psychosocial attributes that can predict progress from SCI to chronic NP (CNP). Recent advances have provided evidence of efficacy for two promising drugs. Baclofen was able to provide good, long-lasting pain relief. Ziconotide, a voltage-gated calcium channel blocker, was studied in a small trial and was able to provide good analgesia in most participants. However, several participants had to be withdrawn because of worrisome creatine phosphokinase (CPK) elevations, and further studies are required to define its safety profile. Non-medical interventions include brain sensitization and biofeedback techniques. These methods have recently had encouraging results, albeit preliminary. Case reports of non-conventional techniques, such as hypnosis, were also reported. Summary CNP is a common complication of SCI and is a prevalent disorder with significant morbidity and disability. Conventional medical treatment is limited in efficacy. Recent studies identified baclofen and ziconotide as possible new therapies, alongside non-medical interventions. Further research into the pathophysiology is required to identify further therapy candidates. A multidisciplinary approach, including psychosocial support, medical and non-medical interventions, is likely needed to achieve therapeutic effects in this difficult to treat syndrome.
Collapse
Affiliation(s)
- Omar Viswanath
- Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - James Burns
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ali Welschmeyer
- Georgetown University School of Medicine, Washington, DC, USA
| | - Amnon A Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Hisham Kassem
- Department of Anesthesiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Manuel G Sanchez
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Treniece N Eubanks
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Anh L Ngo
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
- Harvard Medical School, Boston, USA
| |
Collapse
|
31
|
Pretreatment with AM1241 Enhances the Analgesic Effect of Intrathecally Administrated Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:7025473. [PMID: 31611918 PMCID: PMC6755285 DOI: 10.1155/2019/7025473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells have cannabinoid (CB) receptors type 1 and type 2 and can alleviate a variety of neuropathic pains, including chronic constriction injury (CCI). A selective CB2 receptor agonist is AM1241. In the present study, it was found that mice with CCI displayed a longer duration of mechanical and thermal analgesia when intrathecally (i.t.) injected with AM1241-treated mesenchymal stem cells, compared to those injected with untreated mesenchymal stem cells or AM1241 alone. Moreover, CCI-induced upregulation of the phosphorylated extracellular signal-regulated kinase (ERK) 1/2 (p-ERK1/2) was inhibited following i.t. injection of AM1241-treated mesenchymal stem cells and this inhibition was noticeably higher compared to injection with untreated mesenchymal stem cells. The expression of transforming growth factor-β1 (TGF-β1) was also analyzed in the dorsal root ganglion (DRGs) and spinal cord of CCI mice. In untreated CCI mice, expression of TGF-β1 was increased, whereas pretreatment with AM1241-treated mesenchymal stem cells regulated the expression of TGF-β1 on 10 days and 19 days after surgery. In addition, i.t. injection of exogenous TGF-β1 slightly alleviated neuropathic pain whilst neutralization of TGF-β1 potently blocked the effect of AM1241-treated mesenchymal stem cells on thermal hyperalgesia and mechanical allodynia of CCI mice. In an in vitro experiment, AM1241 could enhance the release of TGF-β1 in the supernatant of BMSCs after lipopolysaccharide (LPS) simulation. Taken together, the findings of the current study show that i.t. administration of AM1241-treated mesenchymal stem cells has a positive effect on analgesia and that TGF-β1 and p-ERK1/2 may be the molecular signaling pathway involved in this process.
Collapse
|
32
|
Yasko JR, Mains RE. Chronic pain following spinal cord injury: Current approaches to cellular and molecular mechanisms. TRENDS IN CELL & MOLECULAR BIOLOGY 2018; 13:67-84. [PMID: 33564218 PMCID: PMC7869846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traumatic spinal cord injury (SCI) has devastating implications for patients, including a high prevalence of chronic pain. Despite advancements in our understanding of the mechanisms involved post-SCI, there are no effective treatments for chronic pain following injury. The development of new treatment interventions for pain is needed, but this requires improved models to assess injury-related cellular, neurophysiological and molecular changes in the spinal cord. Here, we will discuss recent animal models for SCI, molecular screening for altered patterns of gene expression, and the importance of injury severity and timing after SCI.
Collapse
Affiliation(s)
- Jessica R. Yasko
- Department of Neuroscience, University of Connecticut Health Center, Farmington CT 06030-3401, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington CT 06030-3401, USA
| |
Collapse
|