1
|
Horin LJ, Sonnett M, Li B, Mitchison TJ. Diverse microtubule-destabilizing drugs induce equivalent molecular pathway responses in endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.632572. [PMID: 39896568 PMCID: PMC11785092 DOI: 10.1101/2025.01.22.632572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Drugs that modulate microtubule (MT) dynamics are well-characterized at the molecular level, yet the mechanisms linking these molecular effects to their distinct clinical outcomes remain unclear. Several MT-destabilizing drugs, including vinblastine, combretastatin A4, and plinabulin, are widely used, or are under evaluation for cancer treatment. Although all three depolymerize MTs, they do so through distinct biochemical mechanisms. Furthermore, their clinical profiles and therapeutic uses differ considerably. To investigate whether differential modulation of molecular pathways might account for clinical differences, we compared gene expression and signaling pathway responses in human pulmonary microvascular endothelial cells (HPMECs), alongside the MT-stabilizing drug docetaxel and the pro-inflammatory cytokine TNF-α. RNA-sequencing and phosphoproteomics revealed that all three MT destabilizers triggered equivalent molecular responses. The substantial changes in gene expression caused by MT destabilization were completely dependent on Rho family GTPase activation. These findings suggest that the distinct clinical profiles of the destabilizing drugs depend on differences in pharmacokinetics (PK) and tissue distribution rather than molecular actions. The washout rate of the three drugs differed, which likely translates to PK differences. Our data provide insights into how MT destabilization triggers signaling changes, potentially explaining how these drugs induce cell cycle re-entry in quiescent cells and how plinabulin ameliorates chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Lillian J Horin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Boyan Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
2
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
3
|
Guha L, Kumar H. Drug Repurposing for Spinal Cord Injury: Progress Towards Therapeutic Intervention for Primary Factors and Secondary Complications. Pharmaceut Med 2023; 37:463-490. [PMID: 37698762 DOI: 10.1007/s40290-023-00499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
Spinal cord injury (SCI) encompasses a plethora of complex mechanisms like the involvement of major cell death pathways, neurodegeneration of spinal cord neurons, overexpression of glutaminergic transmission and inflammation cascade, along with different co-morbidities like neuropathic pain, urinary and sexual dysfunction, respiratory and cardiac failures, making it one of the leading causes of morbidity and mortality globally. Corticosteroids such as methylprednisolone and dexamethasone, and non-steroidal anti-inflammatory drugs such as naproxen, aspirin and ibuprofen are the first-line treatment options for SCI, inhibiting primary and secondary progression by preventing inflammation and action of reactive oxygen species. However, they are constrained by a short effective drug administration window and their pharmacological action being limited to symptomatic relief of the secondary effects related to spinal cord injury only. Although post-injury rehabilitation treatments may enable functional recovery, they take a long time to show results. Drug repurposing might be an innovative method for expanding therapy alternatives, utilising drugs that are already approved by various esteemed federal agencies throughout the world. Reutilising a drug molecule to treat SCI can eliminate the need for expensive and lengthy drug discovery processes and pave the way for new therapeutic approaches in SCI. This review summarises marketed drugs that could be repurposed based on their safety and efficacy data. We also discuss their mechanisms of action and provide a list of repurposed drugs under clinical trials for SCI therapy.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023; 13:736-766. [PMID: 36632220 PMCID: PMC9830443 DOI: 10.7150/thno.79876] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cellular mitophagy means that cells selectively wrap and degrade damaged mitochondria through an autophagy mechanism, thus maintaining mitochondria and intracellular homeostasis. In recent years, mitophagy has received increasing attention as a research hotspot related to the pathogenesis of clinical diseases, such as neurodegenerative diseases, cardiovascular diseases, cancer, metabolic diseases, and so on. It has been found that the regulation of mitophagy may become a new direction for the treatment of some diseases. In addition, numerous small molecule modulators of mitophagy have also been reported, which provides new opportunities to comprehend the procedure and potential of therapeutic development. Taken together, in this review, we summarize current understanding of the mechanism of mitophagy, discuss the roles of mitophagy and its relationship with diseases, introduce the existing small-molecule pharmacological modulators of mitophagy and further highlight the significance of their development.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| |
Collapse
|
5
|
Abstract
Fenbendazole remains the drug of choice to treat pinworm infection in laboratory rodents. When fenbendazole was last reviewed (15 y ago), the literature supported the drug's lack of toxic effects at therapeutic levels, yet various demonstrated physiologic effects have the potential to alter research outcomes. Although more recent reports continue to reflect an overall discordancy of results, several studies support the premise that fenbendazole affects the bone marrow and the immune system. No effects on reproduction were reported in an extensive study that assessed common treatment protocols in mice, and food intake was unchanged in rats. Behavioral studies are sparse, with only a single report of a subtle change in a rotarod performance in mice. Notably, unexpected results in tumor models during facility treatment with fenbendazole have prompted preclinical and clinical studies of the potential roles of benzimidazoles in cancer.
Collapse
Affiliation(s)
- Carolyn Cray
- Division of Comparative Pathology and,Corresponding author.
| | - Norman H Altman
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
6
|
Inhibition of Bruton Tyrosine Kinase Reduces Neuroimmune Cascade and Promotes Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 23:ijms23010355. [PMID: 35008785 PMCID: PMC8745213 DOI: 10.3390/ijms23010355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Microglia/astrocyte and B cell neuroimmune responses are major contributors to the neurological deficits after traumatic spinal cord injury (SCI). Bruton tyrosine kinase (BTK) activation mechanistically links these neuroimmune mechanisms. Our objective is to use Ibrutinib, an FDA-approved BTK inhibitor, to inhibit the neuroimmune cascade thereby improving locomotor recovery after SCI. Rat models of contusive SCI, Western blot, immunofluorescence staining imaging, flow cytometry analysis, histological staining, and behavioral assessment were used to evaluate BTK activity, neuroimmune cascades, and functional outcomes. Both BTK expression and phosphorylation were increased at the lesion site at 2, 7, 14, and 28 days after SCI. Ibrutinib treatment (6 mg/kg/day, IP, starting 3 h post-injury for 7 or 14 days) reduced BTK activation and total BTK levels, attenuated the injury-induced elevations in Iba1, GFAP, CD138, and IgG at 7 or 14 days post-injury without reduction in CD45RA B cells, improved locomotor function (BBB scores), and resulted in a significant reduction in lesion volume and significant improvement in tissue-sparing 11 weeks post-injury. These results indicate that Ibrutinib exhibits neuroprotective effects by blocking excessive neuroimmune responses through BTK-mediated microglia/astroglial activation and B cell/antibody response in rat models of SCI. These data identify BTK as a potential therapeutic target for SCI.
Collapse
|
7
|
Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021; 346:113832. [PMID: 34363808 PMCID: PMC9065093 DOI: 10.1016/j.expneurol.2021.113832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Cervical spinal cord injury (cSCI) severs bulbospinal projections to respiratory motor neurons, paralyzing respiratory muscles below the injury. C2 spinal hemisection (C2Hx) is a model of cSCI often used to study spontaneous and induced plasticity and breathing recovery post-injury. One key assumption is that C2Hx dennervates motor neurons below the injury, but does not affect their survival. However, a recent study reported substantial bilateral motor neuron death caudal to C2Hx. Since phrenic motor neuron (PMN) death following C2Hx would have profound implications for therapeutic strategies designed to target spared neural circuits, we tested the hypothesis that C2Hx minimally impacts PMN survival. Using improved retrograde tracing methods, we observed no loss of PMNs at 2- or 8-weeks post-C2Hx. We also observed no injury-related differences in ChAT or NeuN immunolabeling within labelled PMNs. Although we found no evidence of PMN loss following C2Hx, we cannot rule out neuronal loss in other motor pools. These findings address an essential prerequisite for studies that utilize C2Hx as a model to explore strategies for inducing plasticity and/or regeneration within the phrenic motor system, as they provide important insights into the viability of phrenic motor neurons as therapeutic targets after high cervical injury.
Collapse
Affiliation(s)
- Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zachary A Asa
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|