1
|
Mensah EO, Chalif JI, Johnston BR, Chalif E, Parker T, Izzy S, He Z, Saigal R, Fehlings MG, Lu Y. Traumatic spinal cord injury: a review of the current state of art and future directions - what do we know and where are we going? NORTH AMERICAN SPINE SOCIETY JOURNAL 2025; 22:100601. [PMID: 40256049 PMCID: PMC12008600 DOI: 10.1016/j.xnsj.2025.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/22/2025]
Abstract
Background Traumatic spinal cord injury (SCI) remains a devastating condition, with limited functional recovery despite advancements in clinical management and understanding of its mechanisms. SCI pathophysiology involves primary mechanical trauma and secondary neuroimmune and structural changes, leading to neuronal death and chronic functional deficits. Methods Through a comprehensive literature review of articles published in the PubMed, MEDLINE, Embase, and Cochrane Reviews Library databases, this article provides an update on the current management of traumatic SCI with a focus on these emerging therapeutic strategies that hold potential for future advancements in the field. Results Current management strategies include pre-hospital care, acute clinical interventions, surgical decompression and spine destabilization, and neurorehabilitation. Despite these interventions, SCI patients often fail to fully restore lost functions. Emerging therapies focus on neuroprotection, neuroregeneration, and neuromodulation, leveraging advances in molecular biomarkers, imaging techniques, and cell-based treatments. Neuroprotective agents, including the sodium-glutamate antagonist riluzole, aim to keep cells alive through the secondary injury phase, while regenerative strategies utilize neurotrophic factors and stem cell transplantation or approaches to target inhibitor molecules such as NOGO or RGMa to regenerate new cells, axons, and neural circuits. Neuromodulation techniques, such as electrical and magnetic field stimulation, offer promising avenues for functional recovery. Combining these novel therapies with traditional neurorehabilitation holds potential for improved outcomes. Conclusions While significant strides have been made in understanding the mechanisms underlying SCI and in developing novel therapeutic approaches, the challenge and opportunity will be to tailor treatments to fit the heterogenous clinical presentation of patients with SCI and to better understand the heterogeneity in clinical trajectories.
Collapse
Affiliation(s)
- Emmanuel O. Mensah
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Benjamin R. Johnston
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Eric Chalif
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tariq Parker
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Rajiv Saigal
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, United States
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Azad TD, Ran KR, Materi JD, Raj D, Al-Khindi T, Gabbita S, Li M, Wang ET, Ahmed AK, Parker M, Kalluri AL, Lubelski D, Jackson CM, Sciubba DM, Weingart JD, Bydon A, Witham TF, Nauen DW, Yegnasubramanian S, Theodore N, Bettegowda C. A multi-analyte blood test for acute spinal cord injury. J Clin Invest 2025; 135:e185463. [PMID: 40026254 PMCID: PMC11870727 DOI: 10.1172/jci185463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
BACKGROUNDRapid diagnosis to facilitate urgent intervention is critical for treatment of acute spinal cord injury (SCI). We hypothesized that a multi-analyte blood biomarker would support point-of-care SCI diagnosis, correlate with injury severity, and predict long-term neurologic outcomes.METHODSDroplet digital PCR (ddPCR) assays were designed to amplify differentially hypomethylated genomic loci in spinal cord tissue. An optimized ddPCR assay was applied to cell-free DNA (cfDNA) from plasma samples collected from prospectively enrolled acute SCI patients. Targeted proteomic profiling was also performed. Spinal cord-derived cfDNA and plasma proteins were tested for their association with SCI and ability to predict conversion in American Spinal Injury Association (ASIA) score at 6 months.RESULTSA bespoke ddPCR assay detected spinal cord-derived cfDNA in plasma of 50 patients with acute SCI (AUC: 0.89, 95% CI 0.83-0.95, P < 0.0001). Levels of cfDNA were highest in patients with the most severe injury, i.e., ASIA A, compared with those with ASIA B (P = 0.04), ASIA C (P = 0.009), and ASIA D injuries (P < 0.001). Dimensionality reduction identified 4 candidate proteins (FABP3, REST, IL-6, NF-H) that were integrated with spinal cord-derived cfDNA to derive the Spinal Cord Injury Index (SCII), which has high sensitivity and specificity for SCI diagnosis (AUC: 0.91, 95% CI 0.82-0.99, P < 0.0001), correlates with injury severity (P < 0.0001), and predicts 6-month neurologic improvement (AUC: 0.77, 95% CI 0.61-0.93, P = 0.006).CONCLUSIONThe detection of spinal cord-derived cfDNA and plasma protein alterations as part of a multi-analyte blood test can inform SCI diagnosis and prognosis.FUNDINGNorth American Spine Society Young Investigator Award; Morton Cure Paralysis Fund.
Collapse
Affiliation(s)
- Tej D. Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen R. Ran
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua D. Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timour Al-Khindi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sameer Gabbita
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marvin Li
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth T. Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A. Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan Parker
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anita L. Kalluri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M. Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Manhasset, New York, USA
| | - Jon D. Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Bydon
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy F. Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Srinivasan Yegnasubramanian
- Department of Pathology and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Hasan A, Ardizzone A, Giosa D, Scuderi SA, Calcaterra E, Esposito E, Capra AP. The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury. Curr Issues Mol Biol 2025; 47:70. [PMID: 39996791 PMCID: PMC11854632 DOI: 10.3390/cimb47020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Spinal cord injury (SCI) involves complex pathological processes that often result in significant and long-term neurological deficits. Increasingly, research has identified microRNA-21 (miR-21) as a pivotal regulator in SCI, with studies focusing on its roles in inflammation, apoptosis, and tissue repair. This review synthesizes current findings on miR-21's involvement in post-injury molecular events, emphasizing its interactions with regulatory targets such as Phosphatase and Tensin Homolog (PTEN) and Programmed Cell Death Protein 4 (PDCD4), as well as its broader effects on inflammatory and apoptotic signaling pathways. Evidence from both in vitro and in vivo studies suggests that modulating miR-21 influences lesion size, cellular dynamics, and functional recovery, highlighting its potential as a therapeutic target for SCI. Nonetheless, the clinical translation of miR-21-based therapies poses significant challenges, including the need to optimize dosages, delivery mechanisms, and long-term safety profiles. Further research is crucial to fully delineate miR-21's therapeutic potential and determine its feasibility for integration into SCI treatment protocols. This review aims to provide a comprehensive overview of miR-21's roles in SCI pathology, offering insights into the molecular mechanisms underlying recovery and the emerging potential of miR-21 in SCI management to enhance outcomes and quality of life for affected patients.
Collapse
Affiliation(s)
- Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
- Center of Neuroscience, School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
| | - Elsa Calcaterra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.H.); (A.A.); (D.G.); (S.A.S.); (E.C.); (A.P.C.)
| |
Collapse
|
4
|
Li X, Yang Y, Xu S, Gui Y, Chen J, Xu J. Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning. Neural Regen Res 2024; 19:2723-2734. [PMID: 38595290 PMCID: PMC11168503 DOI: 10.4103/1673-5374.391306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guilin People’s Hospital, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Senming Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Ding Z, Zhou W, Wang D, Li L, Wang C, Wang C. MRI variables and peripheral inflammatory response biomarkers predict severity and prognosis in patients with acute cervical traumatic spinal cord injury. BMC Musculoskelet Disord 2024; 25:900. [PMID: 39533270 PMCID: PMC11558895 DOI: 10.1186/s12891-024-08038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Traumatic spinal cord injury (TSCI) stands as one of the most profoundly damaging and debilitating conditions. This study aims to explore the potential of magnetic resonance imaging (MRI) variables and peripheral inflammatory indicators as promising biomarkers. It aims to understand their significance in evaluating the severity and predicting the prognosis of TSCI. Furthermore, the study aims to ascertain whether combining these indicators could enhance the accuracy of injury assessment and predictive prognostic ability. METHODS A multicentre retrospective cohort study was conducted to assess the severity and prognostic value of MRI variables and peripheral inflammatory response biomarkers in patients with acute cervical TSCI. The study involved 374 patients with acute cervical TSCI drawn from the First Affiliated Hospital of Nanchang University and the Second Affiliated Hospital of Nanchang University. The severity and prognosis of patients with acute cervical TSCI were assessed using the American Spinal Injury Association Impairment Scale (AIS). The correlation between MRI variables, peripheral inflammatory response biomarkers, admission severity, and the 1-year follow-up prognosis was analysed. RESULTS After the initial assessment using the AIS grade system, 169 (49.2%) patients fell into the severe category for cervical TSCI (AIS A-B), while 205 (50.8%) patients were classified as non-severe cases (AIS C-E). The MRI variables (intramedullary lesion length [IMLL], Brain and Spinal Injury Centre [BASIC], maximum spinal cord compression [MSCC], and maximum canal compromise [MCC]) and inflammatory response biomarkers (white blood cells [WBCs], neutrophils, and C-reactive protein [CRP]) exhibited a consistent decrease correlating with the severity grades noted upon admission. Among the 374 patients assessed, 147 (39.3%) experienced a poor prognosis, as indicated by the AIS grade during the 1-year follow-up. MRI variables and peripheral inflammatory response biomarkers declined in correspondence with the follow-up AIS grades. Sex (p < 0.001), IMLL (p < 0.001), MSCC (p < 0.001), MCC (p < 0.001), BASIC (p < 0.001), WBC (p < 0.001), neutrophils (p < 0.001), and CRP (p < 0.001) were statistically significant in predicting poor outcomes. Through multivariate logistic regression analysis, BASIC score and CRP emerged as independent predictors of poor prognosis. Notably, the model combining the BASIC score and CRP yielded a larger area under the curve compared to models using only the BASIC score or CRP individually. CONCLUSIONS The BASIC score and CRP are crucial biomarkers for evaluating the severity of cervical TSCI and predicting prognosis. Their combination proved to be a more robust determinant of injury severity and a better predictor of neurological recovery.
Collapse
Affiliation(s)
- Zihan Ding
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Wu Zhou
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Deliang Wang
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Chengyun Wang
- Department of Neurosurgery, The 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Sintakova K, Romanyuk N. The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy. Front Neurosci 2024; 18:1400413. [PMID: 38774785 PMCID: PMC11106386 DOI: 10.3389/fnins.2024.1400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a complex pathology that affects a significant portion of the population and causes long-term consequences. After primary injury, an inflammatory cascade of secondary injury occurs, followed by neuronal cell death and glial scar formation. Together with the limited regenerative capacity of the central nervous system, these are the main reasons for the poor prognosis after SCI. Despite recent advances, there is still no effective treatment. Promising therapeutic approaches include stem cells transplantation, which has demonstrated neuroprotective and immunomodulatory effects in SCI. This positive effect is thought to be mediated by small extracellular vesicles (sEVs); membrane-bound nanovesicles involved in intercellular communication through transport of functional proteins and RNA molecules. In this review, we summarize the current knowledge about sEVs and microRNA as their cargo as one of the most promising therapeutic approaches for the treatment of SCI. We provide a comprehensive overview of their role in SCI pathophysiology, neuroprotective potential and therapeutic effect.
Collapse
Affiliation(s)
- Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
8
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
9
|
Azad TD, Ran KR, Liu J, Vattipally VN, Khela H, Leite E, Materi JD, Davidar AD, Bettegowda C, Theodore N. A future blood test for acute traumatic spinal cord injury. Biomarkers 2023; 28:703-713. [PMID: 38126897 DOI: 10.1080/1354750x.2023.2298650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute spinal cord injury (SCI) requires prompt diagnosis and intervention to minimize the risk of permanent neurologic deficit. Presently, SCI diagnosis and interventional planning rely on magnetic resonance imaging (MRI), which is not always available or feasible for severely injured patients. Detection of disease-specific biomarkers in biofluids via liquid biopsy may provide a more accessible and objective means of evaluating patients with suspected SCI. Cell-free DNA, which has been used for diagnosing and monitoring oncologic disease, may detect damage to spinal cord neurons via tissue-specific methylation patterns. Other types of biomarkers, including proteins and RNA species, have also been found to reflect neuronal injury and may be included as part of a multi-analyte assay to improve liquid biopsy performance. The feasibility of implementing liquid biopsy into current practices of SCI management is supported by the relative ease of blood sample collection as well as recent advancements in droplet digital polymerase chain reaction technology. In this review, we detail the current landscape of biofluid biomarkers for acute SCI and propose a framework for the incorporation of a putative blood test into the clinical management of SCI.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kathleen R Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jiaqi Liu
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Harmon Khela
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Enzo Leite
- Faculdade Pernambucana de Saúde (FPS), Recife, PE, Brazil
| | - Joshua D Materi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
10
|
Ahmed RU, Medina‐Aguinaga D, Adams S, Knibbe CA, Morgan M, Gibson D, Kim J, Sharma M, Chopra M, Davison S, Sherwood LC, Negahdar M, Bert R, Ugiliweneza B, Hubscher C, Budde MD, Xu J, Boakye M. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury. Ann Clin Transl Neurol 2023; 10:1647-1661. [PMID: 37501362 PMCID: PMC10502634 DOI: 10.1002/acn3.51855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel Medina‐Aguinaga
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shawns Adams
- Department of NeurosurgeryDuke UniversityRaleighNorth CarolinaUSA
| | - Chase A. Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Monique Morgan
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Destiny Gibson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joo‐won Kim
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Mayur Sharma
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Manpreet Chopra
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Steven Davison
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Leslie C. Sherwood
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - M.J. Negahdar
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Robert Bert
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Charles Hubscher
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J. Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsinUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
11
|
Zhang P, Zhang J, Kou W, Gu G, Zhang Y, Shi W, Chu P, Liang D, Sun G, Shang J. Comprehensive analysis of a pyroptosis-related gene signature of clinical and biological values in spinal cord injury. Front Neurol 2023; 14:1141939. [PMID: 37273699 PMCID: PMC10237016 DOI: 10.3389/fneur.2023.1141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Background Since some of the clinical examinations are not suitable for patients with severe spinal cord injury (SCI), blood biomarkers have been reported to reflect the severity of SCI. The objective of this study was to screen out the potential biomarkers associated with the diagnosis of SCI by bioinformatics analysis. Methods The microarray expression profiles of SCI were obtained from the Gene Expression Omnibus (GEO) database. Core genes correlated to pyroptosis were obtained by crossing the differential genes, and module genes were obtained by WGCNA analysis and lasso regression. The immune infiltration analysis and GSEA analysis revealed the essential effect of immune cells in the progression of SCI. In addition, the accuracy of the biomarkers in diagnosing SCI was subsequently evaluated and verified using the receiver operating characteristic curve (ROC) and qRT-PCR. Results A total of 423 DEGs were identified, among which 319 genes were upregulated and 104 genes were downregulated. Based on the WGCNA analysis, six potential biomarkers were screened out, including LIN7A, FCGR1A, FGD4, GPR27, BLOC1S1, and GALNT4. The results of ROC curves demonstrated the accurate value of biomarkers related to SCI. The immune infiltration analysis and GSEA analysis revealed the essential effect of immune cells in the progression of SCI, including macrophages, natural killer cells, and neutrophils. The qRT-PCR results verified that FGD4, FCAR1A, LIN7A, BLOC1S1, and GPR27 were significantly upregulated in SCI patients. Conclusion In this study, we identified and verified five immune pyroptosis-related hub genes by WGCNA and biological experiments. It is expected that the five identified potential biomarkers in peripheral white blood cells may provide a novel strategy for early diagnosis.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Jianping Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjuan Kou
- School of Pharmaceutical Sciences and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Disinfection Monitoring, Yongji Disease Control and Prevention Center, Yongji, Shanxi, China
| | - Guangjin Gu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaning Zhang
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Weihan Shi
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Pengcheng Chu
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Dachuan Liang
- Department of Scientific Research Management, Shanxi Medical College Seventh Affiliated Hospital, Linfen People's Hospital, Linfen, Shanxi, China
| | - Guangwei Sun
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Jun Shang
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Li C, Qin T, Jin Y, Hu J, Yuan F, Cao Y, Duan C. Cerebrospinal fluid-derived extracellular vesicles after spinal cord injury promote vascular regeneration via PI3K/AKT signaling pathway. J Orthop Translat 2023; 39:124-134. [PMID: 36909861 PMCID: PMC9999163 DOI: 10.1016/j.jot.2023.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Background The cerebrospinal fluid (CSF), which surrounds the brain and spinal cord, is predominantly produced by the choroid plexus of the ventricle. Although CSF-derived extracellular vesicles (CSF-EVs) may be utilized as diagnostic and prognostic indicators for illnesses of the central nervous system (CNS), it is uncertain if CSF-EVs may have an impact on neurological function after spinal cord injury (SCI). Methods Here, we isolated EVs using ultracentrifugation after extracting CSF from Bama miniature pigs. We then combined CSF-EVs with hydrogel and put it on the spinal cord's surface. To determine if CSF-EVs had an impact on mice's neurofunctional recovery, behavioral evaluations were employed. Both in vitro and in vivo, the effect of CSF-EVs on angiogenesis was assessed. We investigated whether CSF-EVs stimulated the PI3K/AKT pathway to alter angiogenesis using the PI3K inhibitor LY294002. Results CSF-EVs were successfully isolated and identified by transmission electron microscope (TEM), nano-tracking analysis (NTA), and western blot. CSF-EVs could be ingested by vascular endothelial cells as proved by in vivo imaging and immunofluorescence. We demonstrated that CSF-EVs derived from pigs with SCI (SCI-EVs) showed a better effect on promoting vascular regeneration as compared to CSF-EVs isolated from pigs receiving laminectomy (Sham-EVs). Behavioral assessments demonstrated that SCI-EVs could dramatically enhance motor and sensory function in mice with SCI. Western blot analysis suggested that SCI-EVs promote angiogenesis by activating PI3K/AKT signaling pathway, and the pro-angiogenetic effect of SCI-EVs was attenuated by the application of the LY294002 (PI3K inhibitor). Conclusion Our study revealed that CSF-EVs could enhance vascular regeneration by activating the PI3K/AKT pathway, hence improving motor function recovery after SCI, which may offer potential novel therapeutic options for acute SCI. The translational potential of this article This study demonstrated the promotion of vascular regeneration and neurological function of CSF-derived exosomes, which may provide a potential therapeutic approach for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Yuxin Jin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| |
Collapse
|
13
|
Glial fibrillary acidic protein is a robust biomarker in cerebrospinal fluid and peripheral blood after traumatic spinal cord injury: a prospective pilot study. Acta Neurochir (Wien) 2023; 165:1417-1425. [PMID: 36790588 DOI: 10.1007/s00701-023-05520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Biochemical biomarkers to determine the injury severity and the potential for functional recovery of traumatic spinal cord injury (TSCI) are highly warranted; however, it remains to be clarified whether cerebrospinal fluid (CSF) or peripheral blood (PB) is the ideal sample media. This study aims to measure and compare biomarker concentrations in CSF and PB and to explore associations between biomarker concentrations and injury severity, i.e., American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade, and biomarker concentrations and clinical outcome, i.e., AIS grade improvement and Spinal Cord Independent Measure version III (SCIM-III) score. METHODS From 2018 to 2020, we conducted a single-center prospective pilot study of TSCI patients (n=15) and healthy controls (n=15). Sample collection and clinical outcome assessment were performed at median 13 h [IQR: 19], 9 days [IQR: 2], and 148 days [IQR: 49] after TSCI. Concentrations of neuron-specific enolase (NSE); glial fibrillary acid protein (GFAP); neurofilament light chain (NfL); interferon-γ (IFN-γ); interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and IL-13; and tumor necrosis factor α (TNF-α) were measured and associated to clinical outcomes. RESULTS The biomarker concentrations were higher in CSF than PB. CSF concentrations of GFAP, NSE, IFN-y, TNF-a, IL-2, IL-12p70, IL-4, IL-10, and IL-13 and PB concentrations of GFAP and IFN-y were significantly associated with AIS grade, but not with AIS grade improvement or SCIM-III score. CONCLUSIONS Our results support GFAP as a potential diagnostic biomarker that may be measured in CSF as well as PB.
Collapse
|
14
|
Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y, Li Y, Bai F, Jing Y, Li Z, Li Z, Yang D, Gao F, Du L, Li J, Yu Y. MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci 2023; 16:1099256. [PMID: 36818651 PMCID: PMC9931912 DOI: 10.3389/fnmol.2023.1099256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a global medical problem with high disability and mortality rates. At present, the diagnosis and treatment of SCI are still lacking. Spinal cord injury has a complex etiology, lack of diagnostic methods, poor treatment effect and other problems, which lead to the difficulty of spinal cord regeneration and repair, and poor functional recovery. Recent studies have shown that gene expression plays an important role in the regulation of SCI repair. MicroRNAs (miRNAs) are non-coding RNA molecules that target mRNA expression in order to silence, translate, or interfere with protein synthesis. Secondary damage, such as oxidative stress, apoptosis, autophagy, and inflammation, occurs after SCI, and differentially expressed miRNAs contribute to these events. This article reviews the pathophysiological mechanism of miRNAs in secondary injury after SCI, focusing on the mechanism of miRNAs in secondary neuroinflammation after SCI, so as to provide new ideas and basis for the clinical diagnosis and treatment of miRNAs in SCI. The mechanisms of miRNAs in neurological diseases may also make them potential biomarkers and therapeutic targets for spinal cord injuries.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,*Correspondence: Jianjun Li,
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Yan Yu,
| |
Collapse
|
15
|
Nepotchatykh E, Caraus I, Elremaly W, Leveau C, Elbakry M, Godbout C, Rostami-Afshari B, Petre D, Khatami N, Franco A, Moreau A. Circulating microRNA expression signatures accurately discriminate myalgic encephalomyelitis from fibromyalgia and comorbid conditions. Sci Rep 2023; 13:1896. [PMID: 36732593 PMCID: PMC9894933 DOI: 10.1038/s41598-023-28955-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and fibromyalgia (FM) are two chronic complex diseases with overlapping symptoms affecting multiple systems and organs over time. Due to the absence of validated biomarkers and similarity in symptoms, both disorders are misdiagnosed, and the comorbidity of the two is often unrecognized. Our study aimed to investigate the expression profiles of 11 circulating miRNAs previously associated with ME/CFS pathogenesis in FM patients and individuals with a comorbid diagnosis of FM associated with ME/CFS (ME/CFS + FM), and matched sedentary healthy controls. Whether these 11 circulating miRNAs expression can differentiate between the two disorders was also examined. Our results highlight differential circulating miRNAs expression signatures between ME/CFS, FM and ME/CFS + FM, which also correlate to symptom severity between ME/CFS and ME/CFS + FM groups. We provided a prediction model, by using a machine-learning approach based on 11 circulating miRNAs levels, which can be used to discriminate between patients suffering from ME/CFS, FM and ME/CFS + FM. These 11 miRNAs are proposed as potential biomarkers for discriminating ME/CFS from FM. The results of this study demonstrate that ME/CFS and FM are two distinct illnesses, and we highlight the comorbidity between the two conditions. Proper diagnosis of patients suffering from ME/CFS, FM or ME/CFS + FM is crucial to elucidate the pathophysiology of both diseases, determine preventive measures, and establish more effective treatments.
Collapse
Affiliation(s)
- Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Molecular Biology PhD Program, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Iurie Caraus
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Corinne Leveau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Christian Godbout
- Patient-Partner, ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Bita Rostami-Afshari
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Diana Petre
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Nasrin Khatami
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada. .,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada. .,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
16
|
Specific Blood RNA Profiles in Individuals with Acute Spinal Cord Injury as Compared with Trauma Controls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1485135. [PMID: 36686379 PMCID: PMC9851797 DOI: 10.1155/2023/1485135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Background Spinal cord injury (SCI) is known to cause a more robust systemic inflammatory response than general trauma without CNS injury, inducing severe secondary organ damage, especially the lung and liver. Related studies are principally focused on the mechanisms underlying repair and regeneration in the injured spinal cord tissue. However, the specific mechanism of secondary injury after acute SCI is widely overlooked, compared with general trauma. Methods Two datasets of GSE151371 and GSE45376 related to the blood samples and spinal cord after acute SCI were selected to identify the differentially expressed genes (DEGs). In GSE151371, functional enrichment analysis on specific DEGs of blood samples was performed. And the top 15 specific hub genes were identified from intersectional genes between the specific upregulated DEGs of blood samples in GSE151371 and the upregulated DEGs of the spinal cord in GSE45376. The specific functional enrichment analysis and the drug candidates of the hub genes and the miRNAs-targeted hub genes were also analyzed and predicted. Results DEGs were identified, and a total of 64 specific genes were the intersection of upregulated genes of the spinal cord in GSE45376 and upregulated genes of human blood samples in GSE151371. The top 15 hub genes including HP, LCN2, DLGAP5, CEP55, HMMR, CDKN3, PRTN3, SKA3, MPO, LTF, CDC25C, MMP9, NEIL3, NUSAP1, and CD163 were calculated from the 64 specific genes. Functional enrichment analysis of the top 15 hub genes revealed inflammation-related pathways. The predicted miRNAs-targeted hub genes and drug candidates of hub genes were also performed to put forward reasonable treatment strategies. Conclusion The specific hub genes of acute SCI as compared with trauma without CNS injury were identified. The functional enrichment analysis of hub genes showed a specific immune response. Several predicted drugs of hub genes were also obtained. The hub genes and the predicted miRNAs may be potential biomarkers and therapeutic targets and require further validation.
Collapse
|
17
|
Wang H, Wang Q, Xiao X, Luo X, Gao L. Clinical Trials of Non-Coding RNAs as Diagnostic and Therapeutic Biomarkers for Central Nervous System Injuries. Curr Neuropharmacol 2023; 21:2237-2246. [PMID: 36443964 PMCID: PMC10556392 DOI: 10.2174/1570159x21666221128090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Huiqing Wang
- Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
18
|
Badhiwala JH, Wilson JR, Kulkarni AV, Kiss A, Harrop JS, Vaccaro AR, Aarabi B, Geisler FH, Fehlings MG. A Novel Method to Classify Cervical Incomplete Spinal Cord Injury Based on Potential for Recovery: A Group-Based Trajectory Analysis. J Neurotrauma 2022; 39:1654-1664. [PMID: 35819296 DOI: 10.1089/neu.2022.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The outcomes of cervical incomplete spinal cord injury (SCI) are heterogeneous. This study sought to dissociate subgroups of cervical incomplete SCI patients with distinct longitudinal temporal profiles of recovery in upper limb motor function. Patients with cervical incomplete SCI (American Spinal Injury Association Impairment Scale [AIS] B-D; C1-C8) were identified from four prospective, multi-center SCI datasets. A group-based trajectory model was fit to longitudinal upper extremity motor scores out to 1 year. Multi-variable multinomial logistic regression was performed to identify features that characterize each trajectory group. A classification system for predicting trajectory group at baseline was developed by recursive partitioning. In total, 801 patients were eligible. Four distinct trajectory groups were identified: 1) "Poor outcome": Severe injury, very minimal recovery; 2) "Moderate recovery": Moderate-to-severe injury, moderate recovery; most recovery occurs by 6 months, with mild, gradual recovery continuing thereafter; 3) "Good recovery": Moderate injury, good recovery; most recovery occurs by 3 months, with mild, gradual recovery continuing thereafter; and 4) "Excellent outcome": Mild injury, recovery to normal/near-normal by 3 months. On adjusted analyses, older age was associated with lower likelihood of "excellent outcome" (p = 0.020). AIS C and D injuries were associated with "moderate recovery," "good recovery," and "excellent outcome" (p < 0.001). Mid-cervical injuries occurred more frequently in "moderate recovery," "good recovery," and "excellent outcome" (p < 0.001) groups. Early surgical decompression (< 24 h) was associated with increased propensity for "good recovery" (p = 0.039) and "excellent outcome" (p = 0.048). A classification model based on recursive partitioning could predict trajectory group using age, AIS grade, and neurological level with an area under the curve of 0.81. Patients with cervical incomplete SCI demonstrate distinct temporal profiles of recovery in upper limb motor function. The trajectory a patient is likely to follow may be predicted at baseline with fair accuracy.
Collapse
Affiliation(s)
- Jetan H Badhiwala
- Division of Neurosurgery, Department of Surgery, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Abhaya V Kulkarni
- Division of Neurosurgery, Department of Surgery, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Kiss
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - James S Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Liu J, Huang Z, Yin S, Jiang Y, Shao L. Protective effect of zinc oxide nanoparticles on spinal cord injury. Front Pharmacol 2022; 13:990586. [PMID: 36278165 PMCID: PMC9579424 DOI: 10.3389/fphar.2022.990586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The microenvironmental changes in the lesion area of spinal cord injury (SCI) have been extensively studied, but little is known about the whole-body status after injury. We analyzed the peripheral blood RNA-seq samples from 38 SCI and 10 healthy controls, and identified 10 key differentially expressed genes in peripheral blood of patients with SCI. Using these key gene signatures, we constructed a precise and available neural network diagnostic model. More importantly, the altered transcriptome profiles in peripheral blood reflect the similar negative effects after neuronal damage at lesion site. We revealed significant differential alterations in immune and metabolic processes, therein, immune response, oxidative stress, mitochondrial metabolism and cellular apoptosis after SCI were the main features. Natural agents have now been considered as promising candidates to alleviate/cure neuronal damage. In this study, we constructed an in vitro neuronal axotomy model to investigate the therapeutic effects of zinc oxide nanoparticles (ZnO NPs). We found that ZnO NPs could act as a neuroprotective agent to reduce oxidative stress levels and finally rescue the neuronal apoptosis after axotomy, where the PI3K-Akt signaling probably be a vital pathway. In conclusion, this study showed altered transcriptome of peripheral blood after SCI, and indicated the neuroprotective effect of ZnO NPs from perspective of oxidative stress, these results may provide new insights for SCI diagnosis and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Sabirov D, Ogurcov S, Baichurina I, Blatt N, Rizvanov A, Mukhamedshina Y. Molecular diagnostics in neurotrauma: Are there reliable biomarkers and effective methods for their detection? Front Mol Biosci 2022; 9:1017916. [PMID: 36250009 PMCID: PMC9557129 DOI: 10.3389/fmolb.2022.1017916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
To date, a large number of studies are being carried out in the field of neurotrauma, researchers not only establish the molecular mechanisms of the course of the disorders, but are also involved in the search for effective biomarkers for early prediction of the outcome and therapeutic intervention. Particular attention is paid to traumatic brain injury and spinal cord injury, due to the complex cascade of reactions in primary and secondary injury that affect pathophysiological processes and regenerative potential of the central nervous system. Despite a wide range of methods available methods to study biomarkers that correlate with the severity and degree of recovery in traumatic brain injury and spinal cord injury, development of reliable test systems for clinical use continues. In this review, we evaluate the results of recent studies looking for various molecules acting as biomarkers in the abovementioned neurotrauma. We also summarize the current knowledge of new methods for studying biological molecules, analyzing their sensitivity and limitations, as well as reproducibility of results. In this review, we also highlight the importance of developing reliable and reproducible protocols to identify diagnostic and prognostic biomolecules.
Collapse
Affiliation(s)
- Davran Sabirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, Kazan, Russia
| | - Irina Baichurina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Irina Baichurina,
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
21
|
Cheong JK, Rajgor D, Lv Y, Chung KY, Tang YC, Cheng H. Noncoding RNome as Enabling Biomarkers for Precision Health. Int J Mol Sci 2022; 23:10390. [PMID: 36142304 PMCID: PMC9499633 DOI: 10.3390/ijms231810390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Noncoding RNAs (ncRNAs), in the form of structural, catalytic or regulatory RNAs, have emerged to be critical effectors of many biological processes. With the advent of new technologies, we have begun to appreciate how intracellular and circulatory ncRNAs elegantly choreograph the regulation of gene expression and protein function(s) in the cell. Armed with this knowledge, the clinical utility of ncRNAs as biomarkers has been recently tested in a wide range of human diseases. In this review, we examine how critical factors govern the success of interrogating ncRNA biomarker expression in liquid biopsies and tissues to enhance our current clinical management of human diseases, particularly in the context of cancer. We also discuss strategies to overcome key challenges that preclude ncRNAs from becoming standard-of-care clinical biomarkers, including sample pre-analytics standardization, data cross-validation with closer attention to discordant findings, as well as correlation with clinical outcomes. Although harnessing multi-modal information from disease-associated noncoding RNome (ncRNome) in biofluids or in tissues using artificial intelligence or machine learning is at the nascent stage, it will undoubtedly fuel the community adoption of precision population health.
Collapse
Affiliation(s)
- Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- NUS Centre for Cancer Research, Singapore 117599, Singapore
| | | | - Yang Lv
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | | | | | - He Cheng
- MiRXES Lab, Singapore 138667, Singapore
| |
Collapse
|
22
|
Advances in monitoring for acute spinal cord injury: a narrative review of current literature. Spine J 2022; 22:1372-1387. [PMID: 35351667 DOI: 10.1016/j.spinee.2022.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects about 17,000 individuals every year in the United States, with approximately 294,000 people living with the ramifications of the initial injury. After the initial primary injury, SCI has a secondary phase during which the spinal cord sustains further injury due to ischemia, excitotoxicity, immune-mediated damage, mitochondrial dysfunction, apoptosis, and oxidative stress. The multifaceted injury progression process requires a sophisticated injury-monitoring technique for an accurate assessment of SCI patients. In this narrative review, we discuss SCI monitoring modalities, including pressure probes and catheters, micro dialysis, electrophysiologic measures, biomarkers, and imaging studies. The optimal next-generation injury monitoring setup should include multiple modalities and should integrate the data to produce a final simplified assessment of the injury and determine markers of intervention to improve patient outcomes.
Collapse
|
23
|
MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells 2022; 11:cells11142177. [PMID: 35883621 PMCID: PMC9318426 DOI: 10.3390/cells11142177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. “MiRNA replacement therapy” aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.
Collapse
|
24
|
Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 2022; 12:jpm12071126. [PMID: 35887623 PMCID: PMC9323191 DOI: 10.3390/jpm12071126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/25/2022] Open
Abstract
The spinal cord is a conduit within the central nervous system (CNS) that provides ongoing communication between the brain and the rest of the body, conveying complex sensory and motor information necessary for safety, movement, reflexes, and optimization of autonomic function. After a spinal cord injury (SCI), supraspinal influences on the spinal segmental control system and autonomic nervous system (ANS) are disrupted, leading to spastic paralysis, pain and dysesthesia, sympathetic blunting and parasympathetic dominance resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions and uncontrolled bowel, bladder, and sexual dysfunction. This article outlines the pathophysiology of traumatic SCI, current and emerging methods of classification, and its influence on sensory/motor function, and introduces the probable comorbidities associated with SCI that will be discussed in more detail in the accompanying manuscripts of this special issue.
Collapse
|
25
|
Spinal cord injury: a study protocol for a systematic review and meta-analysis of microRNA alterations. Syst Rev 2022; 11:61. [PMID: 35382886 PMCID: PMC8985297 DOI: 10.1186/s13643-022-01921-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating condition with no current neurorestorative treatments. Clinical trials have been hampered by a lack of meaningful diagnostic and prognostic markers of injury severity and neurologic recovery. Objective biomarkers and novel therapies for SCI represent urgent unmet clinical needs. Biomarkers of SCI that objectively stratify the severity of cord damage could expand the depth and scope of clinical trials and represent targets for the development of novel therapies for acute SCI. MicroRNAs (miRNAs) represent promising candidates both as informative molecules of injury severity and recovery, and as therapeutic targets. miRNAs are small, regulatory RNA molecules that are tissue-specific and evolutionarily conserved across species. miRNAs have been shown to represent powerful predictors of pathology, particularly with respect to neurologic disorders. METHODS Studies investigating miRNA alterations in all species of animal models and human studies of acute, traumatic SCI will be identified from PubMed, Embase, and Scopus. We aim to identify whether SCI is associated with a specific pattern of miRNA expression that is conserved across species, and whether SCI is associated with a tissue- or cell type-specific pattern of miRNA expression. The inclusion criteria for this study will include (1) studies published anytime, (2) including all species, and sexes with acute, traumatic SCI, (3) relating to the alteration of miRNA after SCI, using molecular-based detection platforms including qRT-PCR, microarray, and RNA-sequencing, (4) including statistically significant miRNA alterations in tissues, such as spinal cord, serum/plasma, and/or CSF, and (5) studies with a SHAM surgery group. Articles included in the review will have their titles, abstracts, and full texts reviewed by two independent authors. Random effects meta-regression will be performed, which allows for within-study and between-study variability, on the miRNA expression after SCI or SHAM surgery. We will analyze both the cumulative pooled dataset, as well as datasets stratified by species, tissue type, and timepoint to identify miRNA alterations that are specifically related to the injured spinal cord. We aim to identify SCI-related miRNA that are specifically altered both within a species, and those that are evolutionarily conserved across species, including humans. The analyses will provide a description of the evolutionarily conserved miRNA signature of the pathophysiological response to SCI. DISCUSSION Here, we present a protocol to perform a systematic review and meta-analysis to investigate the conserved inter- and intra-species miRNA changes that occur due to acute, traumatic SCI. This review seeks to serve as a valuable resource for the SCI community by establishing a rigorous and unbiased description of miRNA changes after SCI for the next generation of SCI biomarkers and therapeutic interventions. TRIAL REGISTRATION The protocol for the systematic review and meta-analysis has been registered through PROSPERO: CRD42021222552 .
Collapse
|
26
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
27
|
The Study of Cerebrospinal Fluid microRNAs in Spinal Cord Injury and Neurodegenerative Diseases: Methodological Problems and Possible Solutions. Int J Mol Sci 2021; 23:ijms23010114. [PMID: 35008540 PMCID: PMC8744986 DOI: 10.3390/ijms23010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Despite extensive research on neurological disorders, unanswered questions remain regarding the molecular mechanisms underpinning the course of these diseases, and the search continues for effective biomarkers for early diagnosis, prognosis, or therapeutic intervention. These questions are especially acute in the study of spinal cord injury (SCI) and neurodegenerative diseases. It is believed that the changes in gene expression associated with processes triggered by neurological disorders are the result of post-transcriptional gene regulation. microRNAs (miRNAs) are key regulators of post-transcriptional gene expression and, as such, are often looked to in the search for effective biomarkers. We propose that cerebrospinal fluid (CSF) is potentially a source of biomarkers since it is in direct contact with the central nervous system and therefore may contain biomarkers indicating neurodegeneration or damage to the brain and spinal cord. However, since the abundance of miRNAs in CSF is low, their isolation and detection is technically difficult. In this review, we evaluate the findings of recent studies of CSF miRNAs as biomarkers of spinal cord injury (SCI) and neurodegenerative diseases. We also summarize the current knowledge concerning the methods of studying miRNA in CSF, including RNA isolation and normalization of the data, highlighting the caveats of these approaches and possible solutions.
Collapse
|
28
|
Jogia T, Kopp MA, Schwab JM, Ruitenberg MJ. Peripheral white blood cell responses as emerging biomarkers for patient stratification and prognosis in acute spinal cord injury. Curr Opin Neurol 2021; 34:796-803. [PMID: 34608075 PMCID: PMC8631147 DOI: 10.1097/wco.0000000000000995] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To date, prognostication of patients after acute traumatic spinal cord injury (SCI) mostly relies on the neurological assessment of residual function attributed to lesion characteristics. With emerging treatment candidates awaiting to be tested in early clinical trials, there is a need for wholistic high-yield prognostic biomarkers that integrate both neurogenic and nonneurogenic SCI pathophysiology as well as premorbid patient characteristics. RECENT FINDINGS It is becoming clearer that effective prognostication after acute SCI would benefit from integrating an assessment of pathophysiological changes on a systemic level, and with that, extend from a lesion-centric approach. Immunological markers mirror tissue injury as well as host immune function and are easily accessible through routine blood sampling. New studies have highlighted the value of circulating white blood cells, neutrophils and lymphocytes in particular, as prognostic systemic indicators of SCI severity and outcomes. SUMMARY We survey recent advances in methods and approaches that may allow for a more refined diagnosis and better prognostication after acute SCI, discuss how these may help deepen our understanding of SCI pathophysiology, and be of use in clinical trials.
Collapse
Affiliation(s)
- Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcel A. Kopp
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan M. Schwab
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Belford Center for Spinal Cord Injury, Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Leister I, Altendorfer B, Maier D, Mach O, Wutte C, Grillhösl A, Arevalo-Martin A, Garcia-Ovejero D, Aigner L, Grassner L. Serum Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein Are Related to the Neurological Impairment and Spinal Edema after Traumatic Spinal Cord Injury. J Neurotrauma 2021; 38:3431-3439. [PMID: 34541888 DOI: 10.1089/neu.2021.0264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurological examination in the acute phase after spinal cord injury (SCI) is often impossible and severely confounded by pharmacological sedation or concomitant injuries. Therefore, diagnostic biomarkers that objectively characterize severity or the presence of SCI are urgently needed to facilitate clinical decision-making. This study aimed to determine if serum markers of neural origin are related to: 1) presence and severity of SCI, and 2) magnetic resonance imaging (MRI) parameters in the very acute post-injury phase. We performed a secondary analysis of serological parameters, as well as MRI findings in patients with acute SCI (n = 38). Blood samples were collected between Days 1-4 post-injury. Serum protein levels of glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), and neurofilament light protein (NfL) were determined. A group of 41 age- and sex-matched healthy individuals served as control group. In the group of individuals with SCI, pre-operative sagittal and axial T2-weighted and sagittal T1-weighted MRI scans were available for 21 patients. Serum markers of neural origin are different among individuals who sustained traumatic SCI depending on injury severity, and the extent of the lesion according to MRI in the acute injury phase. Unbiased Recursive Partitioning regression with Conditional Inference Trees (URP-CTREE) produced preliminary cut-off values for NfL (75.217 pg/mL) and GFAP (73.121 pg/mL), allowing a differentiation between individuals with SCI and healthy controls within the first 4 days after SCI. Serum proteins NfL and GFAP qualify as diagnostic biomarkers for the presence and severity of SCI in the acute post-injury phase, where the reliability of clinical exams is limited.
Collapse
Affiliation(s)
- Iris Leister
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Doris Maier
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany
| | - Christof Wutte
- Department of Neurosurgery, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Biomechanics, BG Trauma Center Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Andreas Grillhösl
- Department of Radiology, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ludwig Aigner
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lukas Grassner
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Biomechanics, BG Trauma Center Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Mousa AH, Agha Mohammad S, Rezk HM, Muzaffar KH, Alshanberi AM, Ansari SA. Nanoparticles in traumatic spinal cord injury: therapy and diagnosis. F1000Res 2021. [DOI: 10.12688/f1000research.55472.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanotechnology has been previously employed for constructing drug delivery vehicles, biosensors, solar cells, lubricants and as antimicrobial agents. The advancement in synthesis procedure makes it possible to formulate nanoparticles (NPs) with precise control over physico-chemical and optical properties that are desired for specific clinical or biological applications. The surface modification technology has further added impetus to the specific applications of NPs by providing them with desirable characteristics. Hence, nanotechnology is of paramount importance in numerous biomedical and industrial applications due to their biocompatibility and stability even in harsh environments. Traumatic spinal cord injuries (TSCIs) are one of the major traumatic injuries that are commonly associated with severe consequences to the patient that may reach to the point of paralysis. Several processes occurring at a biochemical level which exacerbate the injury may be targeted using nanotechnology. This review discusses possible nanotechnology-based approaches for the diagnosis and therapy of TSCI, which have a bright future in clinical practice.
Collapse
|
31
|
Schading S, Emmenegger TM, Freund P. Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers. Curr Neurol Neurosci Rep 2021; 21:49. [PMID: 34268621 PMCID: PMC8282571 DOI: 10.1007/s11910-021-01134-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Traumatic spinal cord injury (SCI) is a life-changing event with drastic implications for patients due to sensorimotor impairment and autonomous dysfunction. Current clinical evaluations focus on the assessment of injury level and severity using standardized neurological examinations. However, they fail to predict individual trajectories of recovery, which highlights the need for the development of advanced diagnostics. This narrative review identifies recent advances in the search of clinically relevant biomarkers in the field of SCI. RECENT FINDINGS Advanced neuroimaging and molecular biomarkers sensitive to the disease processes initiated by the SCI have been identified. These biomarkers range from advanced neuroimaging techniques, neurophysiological readouts, and molecular biomarkers identifying the concentrations of several proteins in blood and CSF samples. Some of these biomarkers improve current prediction models based on clinical readouts. Validation with larger patient cohorts is warranted. Several biomarkers have been identified-ranging from imaging to molecular markers-that could serve as advanced diagnostic and hence supplement current clinical assessments.
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim M Emmenegger
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| |
Collapse
|
32
|
Kyritsis N, Torres-Espín A, Schupp PG, Huie JR, Chou A, Duong-Fernandez X, Thomas LH, Tsolinas RE, Hemmerle DD, Pascual LU, Singh V, Pan JZ, Talbott JF, Whetstone WD, Burke JF, DiGiorgio AM, Weinstein PR, Manley GT, Dhall SS, Ferguson AR, Oldham MC, Bresnahan JC, Beattie MS. Diagnostic blood RNA profiles for human acute spinal cord injury. J Exp Med 2021; 218:e20201795. [PMID: 33512429 PMCID: PMC7852457 DOI: 10.1084/jem.20201795] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Diagnosis of spinal cord injury (SCI) severity at the ultra-acute stage is of great importance for emergency clinical care of patients as well as for potential enrollment into clinical trials. The lack of a diagnostic biomarker for SCI has played a major role in the poor results of clinical trials. We analyzed global gene expression in peripheral white blood cells during the acute injury phase and identified 197 genes whose expression changed after SCI compared with healthy and trauma controls and in direct relation to SCI severity. Unsupervised coexpression network analysis identified several gene modules that predicted injury severity (AIS grades) with an overall accuracy of 72.7% and included signatures of immune cell subtypes. Specifically, for complete SCIs (AIS A), ROC analysis showed impressive specificity and sensitivity (AUC: 0.865). Similar precision was also shown for AIS D SCIs (AUC: 0.938). Our findings indicate that global transcriptomic changes in peripheral blood cells have diagnostic and potentially prognostic value for SCI severity.
Collapse
Affiliation(s)
- Nikos Kyritsis
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Abel Torres-Espín
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Brain Tumor Center, University of California, San Francisco, San Francisco, CA
| | - J. Russell Huie
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Austin Chou
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Xuan Duong-Fernandez
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Leigh H. Thomas
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Rachel E. Tsolinas
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Debra D. Hemmerle
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Lisa U. Pascual
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA
| | - Vineeta Singh
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jonathan Z. Pan
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
| | - Jason F. Talbott
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - William D. Whetstone
- Department of Emergency Medicine, University of California, San Francisco, San Francisco, CA
| | - John F. Burke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Anthony M. DiGiorgio
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Philip R. Weinstein
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Weill Institute for Neurosciences, Institute for Neurodegenerative Diseases, Spine Center, University of California, San Francisco, San Francisco, CA
| | - Geoffrey T. Manley
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Sanjay S. Dhall
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Brain Tumor Center, University of California, San Francisco, San Francisco, CA
| | - Jacqueline C. Bresnahan
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Michael S. Beattie
- Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA
| |
Collapse
|
33
|
Chang Q, Hao Y, Wang Y, Zhou Y, Zhuo H, Zhao G. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5. Brain Res Bull 2021; 170:199-210. [PMID: 33609602 DOI: 10.1016/j.brainresbull.2021.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) may cause loss of locomotor function, and macrophage is a major cell type in response to SCI with M1- and M2-phenotypes. The protective role of bone marrow mesenchymal stem cells (BMMSC)-derived exosomes (B-Exo) in SCI has been underscored, while their regulation on M2 macrophage polarization and the mechanism remain to be clarified. METHODS A rat model of SCI was developed and treated with extracted B-Exo. Recovery of motor function was assessed by Basso-Beattie-Bresnahan (BBB) score. The apoptosis and degeneration of neurons, and macrophage polarization were evaluated. Subsequently, genes differentially expressed in the rat spinal cord after B-Exo treatment were analyzed. Later, the relationships between B-Exo and interferon regulatory factor 5 (IRF5) or macrophage polarization were clarified. Later, the upstream microRNAs (miRNAs) of IRF5 were validated by bioinformatics prediction and dual-luciferase experiments. Finally, the role of miR-125a in the neuroprotection of SCI was verified by rescue experiments. RESULTS B-Exo promoted the recovery of locomotor function and M2-phenotype polarization, whereas inhibited neuronal apoptosis and degeneration and the inflammatory response caused by SCI in rats. In addition, IRF5 expression was reduced after B-Exo treatment. IRF5 promoted macrophage polarization towards M1-phenotype and secretion of inflammatory factors. There is a binding relationship between miR-125a and IRF5. Knockdown of miR-125a in B-Exo increased IRF5 expression in spinal cord tissues of SCI rats and attenuated the neuroprotective effect of B-Exo against SCI. CONCLUSION Exosomal miR-125a derived from BMMSC exerts neuroprotective effects by targeting and negatively regulating IRF5 expression in SCI rats.
Collapse
Affiliation(s)
- Qing Chang
- Department Two of Spine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, 471000, Henan, PR China
| | - Yupeng Hao
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, PR China
| | - Yifan Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, PR China
| | - Yingjie Zhou
- Department Two of Spine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, 471000, Henan, PR China
| | - Hanjie Zhuo
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, PR China
| | - Gang Zhao
- Department Two of Spine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, 471000, Henan, PR China.
| |
Collapse
|
34
|
Sánchez JAS, Sharif S, Costa F, Rangel JAIR, Anania CD, Zileli M. Early Management of Spinal Cord Injury: WFNS Spine Committee Recommendations. Neurospine 2020; 17:759-784. [PMID: 33401855 PMCID: PMC7788427 DOI: 10.14245/ns.2040366.183] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022] Open
Abstract
Scientific knowledge today is being generated more rapidly than we can assimilate thus requiring continuous review of gold-standards for diagnosis and treatment of specific pathologies. The aim of this paper is to provide an update on the best early management of spinal cord injury (SCI), in order to produce acceptable worldwide recommendations to standardize clinical practice as much as possible.The WFNS Spine Committee voted recommendations regarding management of SCI based on literature review of the last 10 years. The committee stated 9 recommendations on 3 main topics: (1) clinical assessment and classification of SCI; (2) emergency care and early management; (3) cardiopulmonary management. American Spinal Injury Association impairment scale, Spinal Cord Independence Measure, and International Spinal Cord Injury Basic Pain Data Set are considered the most useful and feasible in emergency evaluation and follow-up in case of SCI. Magnetic resonance imaging is the most indicated examination to evaluate patients with symptomatic SCI. In early phase, correction of hypotension (systolic blood pressure < 90 mmHg), and bradycardia are strongly recommended. Surgical decompression should be performed as soon as possible with the ideal surgical time being within 8 hours for both complete and incomplete lesions.
Collapse
Affiliation(s)
| | - Salman Sharif
- Department of Neurosurgery, Liaquat National Hospital & Medical College, Karachi, Pakistan
| | - Francesco Costa
- Department of Neurosurgery, Humanitas Clinical and Research Center – IRCCS, Rozzano, Italy
| | | | - Carla Daniela Anania
- Department of Neurosurgery, Humanitas Clinical and Research Center – IRCCS, Rozzano, Italy
| | - Mehmet Zileli
- Department of Neurosurgery, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
Boakye M, Morehouse J, Ethridge J, Burke DA, Khattar NK, Kumar C, Manouchehri N, Streijger F, Reed R, Magnuson DS, Sherwood L, Kwon BK, Howland DR. Treadmill-Based Gait Kinematics in the Yucatan Mini Pig. J Neurotrauma 2020; 37:2277-2291. [PMID: 32605423 PMCID: PMC9836690 DOI: 10.1089/neu.2020.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Yucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 km/h). Kinematic parameters, including limb coordination and proximal and distal limb angles, were measured. Findings indicate that YMPs use a lateral sequence footfall pattern across all speeds. Stride and stance durations decreased with increasing speed whereas swing duration showed no significant change. Across all speeds assessed, no significant differences were noted between hindlimb stepping parameters for bipedal or quadrupedal gait with the exception of distal limb angular kinematics. Specifically, significant differences were observed between locomotor tasks during maximum flexion (quadrupedal > bipedal), total excursion (bipedal > quadrupedal), and the phase relationship between the timing of maximum extension between the right and left hindlimbs (bipedal > quadrupedal). Speed also impacted maximum flexion and right-left phase relationships given that significant differences were found between the fastest speed (3.5 km/h) relative to each of the other speeds. This study establishes a methodology for bipedal and quadrupedal treadmill-based kinematic testing in healthy YMPs. The treadmill approach used was effective in recruiting primarily the spinal circuitry responsible for the basic stepping patterns as has been shown in cats. We recommend 2.5 km/h (0.7 m/sec) as a target walking gait for pre-clinical studies using YMPs, which is similar to that used in cats.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Johnny Morehouse
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Darlene A. Burke
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Nicolas K. Khattar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Chitra Kumar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Robert Reed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Leslie Sherwood
- Research Resources Facilities, University of Louisville, Louisville, Kentucky, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Dena R. Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Research Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
36
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2020; 112:5086-5100. [PMID: 32919018 DOI: 10.1016/j.ygeno.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
37
|
Salah SMM, Matboli M, Nasser HET, Abdelnaiem IA, Shafei AES, El-Asmer MF. Dysregulation in the expression of (lncRNA-TSIX, TP53INP2 mRNA, miRNA-1283) in spinal cord injury. Genomics 2020; 112:3315-3321. [PMID: 32535070 DOI: 10.1016/j.ygeno.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
AIM The objective of this study is to examine the alterations in the levels of expression of serum lncRNA-TSIX, TP53INP2 mRNA, miRNA-1283 in spinal cord injured (SCI) patients versus healthy control. METHOD The expression of the selected RNAs in the sera was determined in 23 patients suffering from acute spinal cord injury, 41 individuals with chronic spinal cord injury, and 36 healthy control using real-time reverse-transcription polymerase chain reaction method. RESULTS The results showed that lncRNA-TSIX and the TP53INP2 mRNA expression levels in SCI patients was overexpressed in comparison to the control group alongside with a significant downregulation of miR-1283. Statistically,there was a highly significant positive correlation between lnc-RNA-TRIX and TP53INP2 mRNA with inverse correlation between miRNA-1283 and lnc-RNA-TRIX based on fold changes. CONCLUSION Up-regulation of lncRNA-TSIX, TP53INP2 mRNA with downregulation of miRNA-1283 might be closely associated with progression of SCI.
Collapse
Affiliation(s)
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Hanaa El-Tayeb Nasser
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohamed Farid El-Asmer
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, Wang QY, Zhang JP. MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5. J Neurochem 2020; 156:106-120. [PMID: 32406529 DOI: 10.1111/jnc.15042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Cell death after spinal cord ischemia/reperfusion (I/R) can occur through necrosis, apoptosis, and autophagy, resulting in changes to the immune environment. However, the molecular mechanism of this immune regulation is not clear. Accumulating evidence indicates that microRNAs (miRs) play a crucial role in the pathogenesis of spinal cord I/R injury. Here, we hypothesized miR-22-3p may be involved in spinal cord I/R injury by interacting with interferon regulatory factor (IRF) 5. Rat models of spinal cord I/R injury were established by 12-min occlusion of the aortic arch followed by 48-hr reperfusion, with L4-6 segments of spinal cord tissues collected. MiR-22-3p agomir, a lentivirus-delivered siRNA specific for IRF5, or a lentivirus expressing wild-type IRF5 was injected intrathecally to rats with I/R injury to evaluate the effects of miR-22-3p and IRF5 on hindlimb motor function. Macrophages isolated from rats were treated with miR-22-3p mimic or siRNA specific for IRF5 to evaluate their effects on macrophage polarization. The levels of IL-1β and TNF-α in spinal cord tissues were detected by ELISA. miR-22-3p was down-regulated, whereas IRF5 was up-regulated in rat spinal cord tissues following I/R. IRF5 was a target gene of miR-22-3p and could be negatively regulated by miR-22-3p. Silencing IRF5 or over-expressing miR-22-3p relieved inflammation, elevated Tarlov score, and reduced the degree of severity of spinal cord I/R injury. Increased miR-22-3p facilitated M2 polarization of macrophages and inhibited inflammation in tissues by inhibiting IRF5, thereby attenuating spinal cord I/R injury. Taken together, these results demonstrate that increased miR-22-3p can inhibit the progression of spinal cord I/R injury by repressing IRF5 in macrophages, highlighting the discovery of a promising new target for spinal cord I/R injury treatment.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Qin Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hon-Ling Jin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| |
Collapse
|
39
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 816] [Impact Index Per Article: 163.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
40
|
Practical Application of Recent Advances in Diagnostic, Prognostic, and Therapeutic Modalities for Spinal Cord Injury. World Neurosurg 2020; 136:330-336. [PMID: 31931244 DOI: 10.1016/j.wneu.2020.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal cord injury remains a highly morbid entity, with limited treatment modalities in both acute and chronic settings. Clinical research efforts to improve therapeutic guidelines are confounded by initial evaluation inaccuracies, as presentations are frequently complicated by trauma and objective diagnostic and prognostic methods are poorly defined. The purpose of our study was to review recent practical advances for further delineation of these injuries and how such classification may benefit the development of novel treatments. METHODS A review was carried out of recent studies reported within the last 5 years for prognostic and diagnostic modalities of acute spinal cord injury. RESULTS Substantial efforts have been made to improve the timeliness and accuracy of the initial assessment, not only for the purpose of enhancing prognostication but also in determining the efficacy of new treatments. Whether it be applying traumatic brain injury principles to limit injury extent, external stimulators used for chronic pain conditions to enhance the effects of physical therapy, or creative algorithms incorporating various nerve or muscle transfer techniques, innovative and practical solutions continue to be developed in lieu of definitive treatment. Further development will benefit from enhanced stratification of injury from accurate and practical assessment modalities. CONCLUSIONS Recent advances in accurate, timely, and practical classification methods of acute spinal cord injury will assist in the development of novel treatment approaches for both acute and chronic injury alike.
Collapse
|
41
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
42
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2019; 112:2092-2105. [PMID: 31830526 DOI: 10.1016/j.ygeno.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
43
|
Ding SQ, Chen J, Wang SN, Duan FX, Chen YQ, Shi YJ, Hu JG, Lü HZ. Identification of serum exosomal microRNAs in acute spinal cord injured rats. Exp Biol Med (Maywood) 2019; 244:1149-1161. [PMID: 31450959 DOI: 10.1177/1535370219872759] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is important to find specific and easily detectable diagnostic markers in acute stage of spinal cord injury for guiding treatment and estimating prognosis. Although, microRNAs are attractive biomarkers, there is still no uniform standard for clinical evaluation of spinal cord injury based on “free circulation” miRNA spectrum. The reason may be that miRNA analysis from biological fluids is influenced by many pre-analysis variables. Exosome miRNAs are widely distributed in body fluids and have many advantages comparing with free miRNAs. The specific miRNAs in the central nervous system can be transported to the peripheral circulation and concentrated in exosomes. Therefore, we hypothesized that there might be some physiological changes associated with spinal cord injury in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute spinal cord injury rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute spinal cord injury can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute spinal cord injury. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute spinal cord injury. More interestingly, we also found some valuable known and novel miRNAs. Further bioinformatics analysis and functional research will be of great help to make clear their role in the pathological process of spinal cord injury and judging whether they can be used as diagnostic markers. Impact statement This research hypothesized that there might be some physiological changes associated with SCI in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute SCI rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute SCI can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute SCI. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| |
Collapse
|
44
|
Hrishi AP, Sethuraman M. Cerebrospinal Fluid (CSF) Analysis and Interpretation in Neurocritical Care for Acute Neurological Conditions. Indian J Crit Care Med 2019; 23:S115-S119. [PMID: 31485118 PMCID: PMC6707491 DOI: 10.5005/jp-journals-10071-23187] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cerebrospinal fluid (CSF) is a clear fluid circulating in the intracranial and spinal compartments. Under normal conditions, the composition of CSF remains constant. However, in various neurological disease especially in acute conditions, the composition, quantity and its pressure can be altered. By measuring the levels of various CSF components using relevant techniques, diagnosis, severity and prognostication of neurological conditions like infections, subarachnoid hemorrhage, demyelinating conditions, tumor like conditions, etc. can be done. In this review, alterations in CSF components and its relevance to the emergency care physician to help in the management of patients are enumerated. HOW TO CITE THIS ARTICLE Hrishi AP, Sethuraman M. Cerebrospinal Fluid (CSF) Analysis and Interpretation in Neurocritical Care for Acute Neurological Conditions. Indian J Crit Care Med 2019;23(Suppl 2):S115-S119.
Collapse
Affiliation(s)
- Ajay Prasad Hrishi
- Department of Anaesthesiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Manikandan Sethuraman
- Department of Anaesthesiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|