1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Johnson KJ, Johnson K, Grant A, Taglialatela G, Micci MA. Photobiomodulation therapy increases neural stem cell pool in aged 3xTg-AD mice. PLoS One 2025; 20:e0321668. [PMID: 40261888 PMCID: PMC12013953 DOI: 10.1371/journal.pone.0321668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Presently approved Alzheimer's Disease (AD) therapeutics are designed for targeted removal of the AD-related toxic protein aggregate amyloid-β (Aβ) and have only shown moderate efficacy at slowing disease progression. Reversal of cognitive decline requires both removal of toxic aggregates and repair of the cellular systems damaged by decades of exposure to these aggregates. Adult hippocampal neurogenesis (AHN) is one such system that is known to be affected early and severely in the development of AD. Moreover, preserved AHN is associated with cognitive resilience to AD neuropathology. Therefore, targeted therapies to improve or enhance neurogenesis should be considered in addition to the removal of toxic protein aggregates. Photobiomodulation (PBM) using 670 nm LED light has been shown to induce synaptic resilience to and removal of AD-related toxic protein aggregates. In this study, we aimed to assess the effect of PBM on a mouse model of advanced AD neuropathology. Transgenic 3xTg-AD mice (15- to 17-month old) were randomized to receive PBM or SHAM therapy for one month, followed by neuropathological assessments. Our results show that one month of PBM therapy reduces hyperphosphorylated tau burden and partially rescues AHN in aged 3xTg-AD mice as compared to SHAM-treated transgenic mice. These data support the notion that PBM has the potential to be an effective non-invasive therapy to help preserve AHN and reduce cognitive dysfunction in moderate to advanced AD.
Collapse
Affiliation(s)
- Kevin J. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neurobiology, Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Auston Grant
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- The Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Selvaraj S, Weerasinghe L. The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury. Cent Nerv Syst Agents Med Chem 2025; 25:20-38. [PMID: 38676493 DOI: 10.2174/0118715249291999240418112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
4
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2025; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
5
|
Moscheni C, Sartori P, Hu K, Zecchini S, Brambilla L, Arcari A, Napoli A, Mocciaro E, Uboldi M, Zema L, Perrotta C, Castiglioni C. Tailored graphene nanoparticles for biomedical application: preliminary in vitro characterization of the functionality in model cell lines. Int J Pharm 2024; 667:124914. [PMID: 39515671 DOI: 10.1016/j.ijpharm.2024.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Thanks to an environmentally friendly physical treatment of high purity graphite, a good control of the structure of graphene nanoparticles (GNPs) has been obtained with the production of stable and reproducible GNPs water dispersions. The preparation protocol entailed ball-milling of synthetic graphite followed by sonication in water and centrifugation/separation procedures. This way, two different GNPs samples with slightly different structural characteristics were harvested: TOP60, showing an average lateral size of the graphene layers = 70 nm and average number of stacked layers = 4, and BOTTOM60, with = 120 nm and = 6. A detailed structural characterization of GNPs was performed as mandatory pre-requisite to build reliable structure/properties correlations, in terms of both biomedical efficacy and toxicity, aiming at a rationale design of tailored materials for applications in biological environments. To this end, in this study GNPs were thoroughly characterized, focusing on cytotoxicity, cellular uptake, and inflammatory response, by testing their effect in different cell lines. BOTTOM60 GNPs in culture medium and in the presence of cells showed a tendency to form big aggregates, phenomenon that was probably responsible for their cytotoxicity at high concentrations. On the other hand, TOP60 GNPs showed a diverse behavior depending on the cell type under investigation. Indeed, the nanoparticles were internalized by cells specialized in endo/phagocytosis, such as astrocytoma cells, but not by carcinoma cells of epithelial origin. Moreover, TOP60 GNPs caused a reduction of proliferation only at high concentration and did not trigger an inflammatory response in THP-1-derived macrophages. The evidence here collected paves the way for further investigations towards the development of GNPs-based drug delivery systems.
Collapse
Affiliation(s)
- Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Kaiyue Hu
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Luigi Brambilla
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Alessandro Arcari
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Emanuele Mocciaro
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy.
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| |
Collapse
|
6
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
7
|
Luan Y, Jiang L, Luan Y, Xie Y, Yang Y, Ren KD. Mitophagy and Traumatic Brain Injury: Regulatory Mechanisms and Therapeutic Potentials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1649842. [PMID: 36846712 PMCID: PMC9957633 DOI: 10.1155/2023/1649842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/25/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI), a kind of external trauma-induced brain function alteration, has posed a financial burden on the public health system. TBI pathogenesis involves a complicated set of events, including primary and secondary injuries that can cause mitochondrial damage. Mitophagy, a process in which defective mitochondria are specifically degraded, segregates and degrades defective mitochondria allowing a healthier mitochondrial network. Mitophagy ensures that mitochondria remain healthy during TBI, determining whether neurons live or die. Mitophagy acts as a critical regulator in maintaining neuronal survival and healthy. This review will discuss the TBI pathophysiology and the consequences of the damage it causes to mitochondria. This review article will explore the mitophagy process, its key factors, and pathways and reveal the role of mitophagy in TBI. Mitophagy will be further recognized as a therapeutic approach in TBI. This review will offer new insights into mitophagy's role in TBI progression.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lulu Jiang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 463599, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Tsai CM, Chang SF, Li CC, Chang H. Transcranial photobiomodulation (808 nm) attenuates pentylenetetrazole-induced seizures by suppressing hippocampal neuroinflammation, astrogliosis, and microgliosis in peripubertal rats. NEUROPHOTONICS 2022; 9:015006. [PMID: 35345494 PMCID: PMC8955735 DOI: 10.1117/1.nph.9.1.015006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Significance: Transcranial photobiomodulation (tPBM) at 808 nm attenuates pentylenetetrazole (PTZ)-induced seizures and convulsive status epilepticus (CSE) in peripubertal rats by protecting neurons from injury and parvalbumin-positive interneurons from apoptosis, and preserving the integrity of perisomatic inhibitory networks. However, the effects of tPBM on neuroinflammation, astrogliosis, and microgliosis in epileptic rat brains are unknown. Thus, further study to unveil these aspects is needed for understanding the phenomena of tPBM on pediatric CSE prevention. Aim: To evaluate the effects of tPBM on neuroinflammation, astrogliosis, and microgliosis in peripubertal rat hippocampus with PTZ-induced seizures and SE. Approach: An 808-nm diode laser was applied transcranially to peripubertal rats prior to PTZ injection. Immunofluorescence staining of neuron-specific enolase (NSE) was used as a marker of neuroinflammation, glial fibrillary acid protein (GFAP) for astrogliosis, ionized calcium-binding adapter molecule 1 (Iba-1) for microgliosis, and mitochondrial cytochrome c oxidase subunit 1 (MT-CO1) for confirming the involvement of cytochrome c oxidase (CCO). Results: tPBM significantly reduced NSE immunoreactivity in CA3 in PTZ-treated rats, GFAP immunoreactivity in CA1, and Iba-1 immunoreactivity in CA3. Enhancement of hippocampal MT-CO1 reflected that tPBM acted in CCO-dependent manner. Conclusions: tPBM (808) attenuated PTZ-induced seizures and SE by suppressing neuroinflammation, astrogliosis, and microgliosis in peripubertal rats.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Taipei Medical University, Graduate Institute of Medical Sciences, College of Medicine, Taipei, Taiwan
- MacKay Children’s Hospital, Department of Pediatrics, Taipei, Taiwan
| | - Shwu-Fen Chang
- Taipei Medical University, Graduate Institute of Medical Sciences, College of Medicine, Taipei, Taiwan
| | - Chih-Chuan Li
- Taipei Medical University Hospital, Department of Pediatrics, Taipei, Taiwan
| | - Hsi Chang
- Taipei Medical University Hospital, Department of Pediatrics, Taipei, Taiwan
- Taipei Medical University, College of Medicine, School of Medicine, Department of Pediatrics, Taipei, Taiwan
| |
Collapse
|
9
|
Montazeri K, Farhadi M, Fekrazad R, Akbarnejad Z, Chaibakhsh S, Mahmoudian S. Transcranial photobiomodulation in the management of brain disorders. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112207. [PMID: 34119804 DOI: 10.1016/j.jphotobiol.2021.112207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/10/2023]
Abstract
Transcranial photobiomodulation (tPBM) is the process of delivering light photons through the skull to benefit from its modifying effect. Brain disorders are important health problems. The aim of this review was to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Parkinson, and Alzheimer's disease as the common brain disorders. Four online databases, including Cochrane, Pub Med, Embase, and Google scholar were searched according to the Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) guidelines. 4728 articles were obtained in the initial search. Only those articles that were published until September 2020 and designed as randomized clinical trials (RCTs) or animal-controlled studies were included. 6 RCTs, 2 related supplementary articles, and 38 controlled animal studies met the inclusion criteria of this study. No RCTs were performed in the fields of Alzheimer's and Parkinson's diseases. The human RCTs and animal studies reported no adverse events resulted from the use of tPBM. Useful parameters of tPBM were identified according to the controlled animal studies. Since the investigated RCTs had no homogenous results, making an evidence-based decision for definite therapeutic application of tPBM is still unattainable. Altogether, these data support the need for large confirmatory well-designed RCTs for using tPBM as a novel, safe, and easy-to-administer treatment of brain disorders. EVIDENCE BEFORE THIS STUDY High prevalence and complications of brain disorders and also side effects of neuropsychiatric medications have encouraged researchers to find alternative therapeutic techniques which tPBM can be one of them. In present review we tried to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Alzheimer, and Parkinson's disease as common brain disorders. Four online databases, including "Cochrane", "Pub Med", "Embase", and "Google scholar" were searched. Only those articles that were published until September 2020 and designed as RCTs or animal-controlled studies were included. Search keywords were the followings: transcranial photobiomodulation" OR "transcranial low-level laser therapy" AND "stroke" OR "traumatic brain injury" OR "Alzheimer" OR "Parkinson". Several studies have confirmed effectiveness of tPBM in treatment of different brain disorders but the level of evidence of its effectiveness remain to be determined. ADDED VALUE OF THIS STUDY In this study we systematically reviewed human RCTs to determine the existing evidence of tPBM effectiveness in management of four mentioned brain disorders. Since the outcomes of the reviewed RCTs were not homogeneous, further well-designed RCTs are required to decide more definitively on the evidence of this noninvasive and probably safe therapeutic intervention. We hypothesized that non-homogeneous outcomes could be due to inefficiency of PBM parameters. Controlled animal studies have the advantage of using objective tests to evaluate the results and compare them with the control group. We determined useful tPBM parameters based on these studies. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE This research is part of our main project of tinnitus treatment using photobiomodulation (PBM). Evidence of central nervous system involvement in tinnitus led us to believe that treatment protocol of tinnitus should also include transcranial PBM. The determined useful parameters can be helpful in designing more efficient tPBM protocols in the management of brain disorders and tinnitus as a common debilitating symptom that can be associated with these disorders.
Collapse
Affiliation(s)
- Katayoon Montazeri
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samira Chaibakhsh
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Iran; Eye Research Center, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
10
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|