1
|
Shaw DK, Saraswathy VM, McAdow AR, Zhou L, Park D, Mote R, Johnson AN, Mokalled MH. Elevated phagocytic capacity directs innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598515. [PMID: 38915507 PMCID: PMC11195157 DOI: 10.1101/2024.06.11.598515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Immune cells elicit a continuum of transcriptional and functional states after spinal cord injury (SCI). In mammals, inefficient debris clearance and chronic inflammation impede recovery and overshadow pro-regenerative immune functions. We found that, unlike mammals, zebrafish SCI elicits transient immune activation and efficient debris clearance, without causing chronic inflammation. Single-cell transcriptomics and inducible genetic ablation showed zebrafish macrophages are highly phagocytic and required for regeneration. Cross-species comparisons between zebrafish and mammalian macrophages identified transcription and immune response regulator ( tcim ) as a macrophage-enriched zebrafish gene. Genetic deletion of zebrafish tcim impairs phagocytosis and regeneration, causes aberrant and chronic immune activation, and can be rescued by transplanting wild-type immune precursors into tcim mutants. Conversely, genetic expression of human TCIM accelerates debris clearance and regeneration by reprogramming myeloid precursors into activated phagocytes. This study establishes a central requirement for elevated phagocytic capacity to achieve innate spinal cord repair.
Collapse
|
2
|
Fischer G, Bättig L, Stienen MN, Curt A, Fehlings MG, Hejrati N. Advancements in neuroregenerative and neuroprotective therapies for traumatic spinal cord injury. Front Neurosci 2024; 18:1372920. [PMID: 38812974 PMCID: PMC11133582 DOI: 10.3389/fnins.2024.1372920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) continue to be a major healthcare concern, with a rising prevalence worldwide. In response to this growing medical challenge, considerable scientific attention has been devoted to developing neuroprotective and neuroregenerative strategies aimed at improving the prognosis and quality of life for individuals with SCIs. This comprehensive review aims to provide an up-to-date and thorough overview of the latest neuroregenerative and neuroprotective therapies currently under investigation. These strategies encompass a multifaceted approach that include neuropharmacological interventions, cell-based therapies, and other promising strategies such as biomaterial scaffolds and neuro-modulation therapies. In addition, the review discusses the importance of acute clinical management, including the role of hemodynamic management as well as timing and technical aspects of surgery as key factors mitigating the secondary injury following SCI. In conclusion, this review underscores the ongoing scientific efforts to enhance patient outcomes and quality of life, focusing on upcoming strategies for the management of traumatic SCI. Each section provides a working knowledge of the fundamental preclinical and patient trials relevant to clinicians while underscoring the pathophysiologic rationale for the therapies.
Collapse
Affiliation(s)
- Gregor Fischer
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Linda Bättig
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Martin N. Stienen
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nader Hejrati
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
3
|
Wang R, Bai J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res 2024; 19:35-42. [PMID: 37488841 PMCID: PMC10479866 DOI: 10.4103/1673-5374.375304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic spinal cord injury is a devastating disorder characterized by sensory, motor, and autonomic dysfunction that severely compromises an individual's ability to perform activities of daily living. These adverse outcomes are closely related to the complex mechanism of spinal cord injury, the limited regenerative capacity of central neurons, and the inhibitory environment formed by traumatic injury. Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury. A number of therapeutic agents have been shown to improve the injury environment, mitigate secondary damage, and/or promote regeneration and repair. Among them, the spinal cord microcirculation has become an important target for the treatment of spinal cord injury. Drug interventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury. These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neurons, axons, and glial cells. This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury, including its structure and histopathological changes. Further, it summarizes the progress of drug therapies targeting the spinal cord microcirculation after spinal cord injury.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhang J, Xu J, Li S, Chen W, Wu Y. Electroacupuncture Relieves HuR/KLF9-Mediated Inflammation to Enhance Neurological Repair after Spinal Cord Injury. eNeuro 2023; 10:ENEURO.0190-23.2023. [PMID: 37940560 PMCID: PMC10668228 DOI: 10.1523/eneuro.0190-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023] Open
Abstract
Electroacupuncture (EA) is widely applied in clinical therapy for spinal cord injury (SCI). However, the associated molecular mechanism has yet to be elucidated. The current study aimed to investigate the underlying mechanism of EA in neurologic repair after SCI. First, we investigated the role of EA in the neurologic repair of the SCI rat model. The expression levels of human antigen R (HuR) and Krüppel-like factor 9 (KLF9) in spinal cord tissues were quantified after treatment. Second, we conducted bioinformatics analysis, RNA pull-down assays, RNA immunoprecipitation, and luciferase reporter gene assay to verify the binding of HuR and KLF9 mRNA for mRNA stability. Last, HuR inhibitor CMLD-2 was used to verify the enhanced effect of EA on neurologic repair after SCI via the HuR/KLF9 axis. Our data provided convincing evidence that EA facilitated the recovery of neuronal function in SCI rats by reducing apoptosis and inflammation of neurons. We found that EA significantly diminished the SCI-mediated upregulation of HuR, and HuR could bind to the 3' untranslated region of KLF9 mRNA to protect its decay. In addition, a series of in vivo experiments confirmed that CMLD-2 administration increased EA-mediated pain thresholds and motor function in SCI rats. Collectively, the present study showed that EA improved pain thresholds and motor function in SCI rats via impairment of HuR-mediated KLF9 mRNA stabilization, thus providing a better understanding of the regulatory mechanisms regarding EA-mediated neurologic repair after SCI.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Jingjie Xu
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Shisheng Li
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Wei Chen
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Yaochi Wu
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
5
|
Hejrati N, Aarabi B, Neal CJ, Ugiliweneza B, Kurpad SN, Shaffrey CI, Guest JD, Toups EG, Harrop JS, Fehlings MG. Trends in the Use of Corticosteroids in the Management of Acute Spinal Cord Injury in North American Clinical Trials Network Sites. J Neurotrauma 2023; 40:1938-1947. [PMID: 36597351 DOI: 10.1089/neu.2022.0409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immunomodulatory therapeutics represent a potential neuroprotective strategy for the management of acute spinal cord injury (SCI). One of the most intensely debated neuroprotective drugs has been methylprednisolone sodium succinate (MPSS), which was investigated initially for its role in mitigating lipid peroxidation. More recently, the anti-inflammatory/immunomodulatory properties of MPSS have been increasingly appreciated. Over the past two decades, several systematic reviews and clinical practice guidelines related to MPSS use in SCI have been published. The goal of this study was to investigate the temporal changes in the use of steroids at North American Clinical Trials Network (NACTN) centers and to correlate these changes with the evolution in published literature and guidelines. Data on patients enrolled from 2008-2018 in the prospective, multi-center NACTN registry, and in whom information related to the use of steroids was available, were analyzed. Patients were stratified based on whether they received steroids or not. The primary outcome was the change in the rate of steroid use per year between 2008 and 2018. Secondary outcomes included cardiac, gastrointestinal and genitourinary (GIGU), pulmonary, and dermatological complications. We identified 608 patients, of whom 171 (28.1%) were given steroids. In 2008 and 2009, the prevailing paradigm across NACTN centers was in favor of steroid administration and as such 70% (n = 56) of patients received steroids in 2008 and 71.9% (n = 46) in 2009. An abrupt practice reversal was observed in 2010, whereby only 19.7% of patients (n = 14) received steroids, a trend that continued over subsequent years. Increasing literature in the 2000s arguing against the use of steroids culminated in the 2013 CNS/AANS practice guidelines for the management of acute SCI. These guidelines recommended against the use of MPSS for the treatment of those with acute SCI. Over the following years (2013-2018), steroids continued to be an uncommonly used therapeutic option in NACTN centers (range 3.9-16.9%). Patients receiving steroids had significantly higher rates of pulmonary complications (87%, n = 147) compared with those not receiving steroids (73%, n = 265; p = 0.0003). Compared with patients receiving steroids, however, those who did not receive steroids had significantly higher rates of cardiac (40%, [n = 146] versus 23%, [n = 39]; p = 0.0001) and gastrointestinal/genitourinary complications (55%, [n = 189], versus 31%, [n = 52]; p < 0.0001). The 2013 AANS/CNS guidelines and preceding literature appeared to have an impact on dramatically lowering the rates of corticosteroid use for acute SCI in NACTN sites after 2009. Of note, this analysis may not reflect the impact of the 2017 AO Spine Clinical Practice guidelines, which suggested the use of methylprednisolone as a valid practice option for acute SCI, especially for cervical injuries. Enhanced patient involvement in the clinical decision-making process and opportunities to personalize SCI management exist in reference to the use of MPSS in acute SCI.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, and University of Toronto, Toronto, Ontario, Canada
| | - Bizhan Aarabi
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chris J Neal
- Division of Neurosurgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | - Shekar N Kurpad
- Neuroscience Institute. The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - James D Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Elizabeth G Toups
- Department of Neurosurgery, Houston Methodist Hospital, Houston Texas, USA
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Division of Spine and Peripheral Nerve Surgery, and Delaware Valley SCI Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, and University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Quan X, Ma T, Guo K, Wang H, Yu CY, Qi CC, Song BQ. Hydralazine Promotes Central Nervous System Recovery after Spinal Cord Injury by Suppressing Oxidative Stress and Inflammation through Macrophage Regulation. Curr Med Sci 2023; 43:749-758. [PMID: 37558864 DOI: 10.1007/s11596-023-2767-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/08/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE This study aims to investigate the effects of hydralazine on inflammation induced by spinal cord injury (SCI) in the central nervous system (CNS) and its mechanism in promoting the structural and functional recovery of the injured CNS. METHODS A compressive SCI mouse model was utilized for this investigation. Immunofluorescence and quantitative real-time polymerase chain reaction were employed to examine the levels of acrolein, acrolein-induced inflammation-related factors, and macrophages at the injury site and within the CNS. Western blotting was used to evaluate the activity of the phosphoinositide 3-kinase (PI3K)/AKT pathway to study macrophage regulation. The neuropathic pain and motor function recovery were evaluated by glutamic acid decarboxylase 65/67 (GAD65/67), vesicular glutamate transporter 1 (VGLUT1), paw withdrawal response, and Basso Mouse Scale score. Nissl staining and Luxol Fast Blue (LFB) staining were performed to investigate the structural recovery of the injured CNS. RESULTS Hydralazine downregulated the levels of acrolein, IL-1β, and TNF-α in the spinal cord. The downregulation of acrolein induced by hydralazine promoted the activation of the PI3K/AKT pathway, leading to M2 macrophage polarization, which protected neurons against SCI-induced inflammation. Additionally, hydralazine promoted the structural recovery of the injured spinal cord area. Mitigating inflammation and oxidative stress by hydralazine in the animal model alleviated neuropathic pain and altered neurotransmitter expression. Furthermore, hydralazine facilitated motor function recovery following SCI. Nissl staining and LFB staining indicated that hydralazine promoted the structural recovery of the injured CNS. CONCLUSION Hydralazine, an acrolein scavenger, significantly mitigated SCI-induced inflammation and oxidative stress in vivo, modulated macrophage activation, and consequently promoted the structural and functional recovery of the injured CNS.
Collapse
Affiliation(s)
- Xin Quan
- Department of Plastic Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China.
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Wang
- Department of Respiratory Medicine, Xi'an Hospital of Traditional Medicine, Xi'an, 710000, China
| | - Cai-Yong Yu
- Department of Neurobiology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Chu-Chu Qi
- Department of Neurobiology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Bao-Qiang Song
- Department of Plastic Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Willis EF, Gillespie ER, Guse K, Zuercher AW, Käsermann F, Ruitenberg MJ, Vukovic J. Intravenous immunoglobulin (IVIG) promotes brain repair and improves cognitive outcomes after traumatic brain injury in a FcγRIIB receptor-dependent manner. Brain Behav Immun 2023; 109:37-50. [PMID: 36581304 DOI: 10.1016/j.bbi.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a promising immune-modulatory therapy for limiting harmful inflammation and associated secondary tissue loss in neurotrauma. Here, we show that IVIG therapy attenuates spatial learning and memory deficits following a controlled cortical impact mouse model of traumatic brain injury (TBI). These improvements in cognitive outcomes were associated with increased neuronal survival, an overall reduction in brain tissue loss, and a greater preservation of neural connectivity. Furthermore, we demonstrate that the presence of the main inhibitory FcγRIIB receptor is required for the beneficial effects of IVIG treatment in TBI, with our results simultaneously highlighting the role of this receptor in reducing secondary damage arising from brain injury.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten Guse
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Marc J Ruitenberg
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Zhao X, Wang H, Zou Y, Xue W, Zhuang Y, Gu R, Shen H, Dai J. Optimized, visible light-induced crosslinkable hybrid gelatin/hyaluronic acid scaffold promotes complete spinal cord injury repair. Biomed Mater 2021; 17. [PMID: 34937000 DOI: 10.1088/1748-605x/ac45ec] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Severe microenvironmental changes after spinal cord injury (SCI) present serious challenges in neural regeneration and tissue repair. Gelatin (GL)- and hyaluronic acid (HA)-based hydrogels are attractive scaffolds because they are major components of the extracellular matrix and can provide a favorable adjustable microenvironment for neurogenesis and motor function recovery. In this study, three-dimensional hybrid GL/HA hydrogel scaffolds were prepared and optimized. The hybrid hydrogels could undergo in-situ gelation and fit the defects perfectly via visible light- induced crosslinking in the complete SCI rats. We found that the transplantation of the hybrid hydrogel scaffold significantly reduced the inflammatory responses and suppressed glial scar formation in an HA concentration-dependent manner. Moreover, the hybrid hydrogel with GL/HA ratios less than 8/2 effectively promoted endogenous neural stem cell migration and neurogenesis, as well as improved neuron maturation and axonal regeneration. The results showed locomotor function improved 60 days after transplantation, thus suggesting that GL/HA hydrogels can be considered as a promising scaffold for complete SCI repair.
Collapse
Affiliation(s)
- Xinhao Zhao
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Huiru Wang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Weiwei Xue
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Yang Zhuang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - He Shen
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| |
Collapse
|
9
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Jogia T, Lübstorf T, Jacobson E, Scriven E, Atresh S, Nguyen QH, Liebscher T, Schwab JM, Kopp MA, Walsham J, Campbell KE, Ruitenberg MJ. Prognostic value of early leukocyte fluctuations for recovery from traumatic spinal cord injury. Clin Transl Med 2021; 11:e272. [PMID: 33463065 PMCID: PMC7805435 DOI: 10.1002/ctm2.272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute traumatic spinal cord injury (SCI) induces a systemic immune response involving circulating white blood cells (WBCs). How this response is influenced by overall trauma severity, the neurological level of injury and/or correlates with patient outcomes is poorly understood. The objective of this study was to identify relationships between early changes in circulating WBCs, injury characteristics and long-term patient outcomes in individuals with traumatic SCI. METHODS We retrospectively analysed data from 161 SCI patients admitted to Brisbane's Princess Alexandra Hospital (exploration cohort). Logistic regression models in conjunction with receiver operating characteristic (ROC) analyses were used to assess the strength of specific links between the WBC response, respiratory infection incidence and neurological outcomes (American Spinal Injury Association Impairment Scale (AIS) grade conversion). An independent validation cohort from the Trauma Hospital Berlin, Germany (n = 49) was then probed to assess the robustness of effects and disentangle centre effects. RESULTS We find that the extent of acute neutrophilia in human SCI patients is positively correlated with New Injury Severity Scores but inversely with the neurological outcome (AIS grade). Multivariate analysis demonstrated that acute SCI-induced neutrophilia is an independent predictor of AIS grade conversion failure, with an odds ratio (OR) of 4.16 and ROC area under curve (AUC) of 0.82 (P < 0.0001). SCI-induced lymphopenia was separately identified as an independent predictor of better recovery (OR = 24.15; ROC AUC = 0.85, P < 0.0001). Acute neutrophilia and increased neutrophil-lymphocyte ratios were otherwise significantly associated with respiratory infection presentation in both patient cohorts. CONCLUSIONS Our findings demonstrate the prognostic value of modelling early circulating neutrophil and lymphocyte counts with patient characteristics for predicting the longer term recovery after SCI.
Collapse
Affiliation(s)
- Trisha Jogia
- School of Biomedical SciencesFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Tom Lübstorf
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology)Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinGermany
| | - Esther Jacobson
- School of Biomedical SciencesFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Elissa Scriven
- Trauma ServicePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Sridhar Atresh
- Spinal Injuries UnitPrincess Alexandra HospitalBrisbaneQueenslandAustralia
- Princess Alexandra Hospital – Southside Clinical SchoolFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Quan H. Nguyen
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord InjuriesTrauma Hospital BerlinGermany
| | - Jan M. Schwab
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology)Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinGermany
- Belford Center for Spinal Cord InjuryThe Ohio State University, Wexner Medical CenterColumbusOhio
- Department of Neurology, Spinal Cord Injury DivisionThe Ohio State University, Wexner Medical CenterColumbusOhio
- Department of Physical Medicine and RehabilitationThe Ohio State University, Wexner Medical CenterColumbusOhio
- Department of NeuroscienceThe Ohio State University, Wexner Medical CenterColumbusOhio
- The Neuroscience InstituteThe Ohio State University, Wexner Medical CenterColumbusOhio
| | - Marcel A. Kopp
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology)Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinGermany
- QUEST – Center for Transforming Biomedical ResearchBerlin Institute of HealthBerlinGermany
| | - James Walsham
- Princess Alexandra Hospital – Southside Clinical SchoolFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
- Intensive Care UnitPrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Kate E. Campbell
- Princess Alexandra Hospital – Southside Clinical SchoolFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
- Orthopaedic DepartmentPrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Marc J. Ruitenberg
- School of Biomedical SciencesFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
- Trauma, Critical Care and RecoveryBrisbane Diamantina Health PartnersBrisbaneQueenslandAustralia
| |
Collapse
|