1
|
Altieri MK, Badida R, Vaughan QM, Molino J, Akelman E, Crisco JJ. Biomechanical evaluation of the porcine carpus as a potential preclinical animal model for the human carpus. J Biomech 2024; 177:112429. [PMID: 39549476 PMCID: PMC11625608 DOI: 10.1016/j.jbiomech.2024.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/09/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Advancing successful treatments for carpal instabilities of the wrist are hindered due, in part, to limited preclinical animal models. The purpose of this study was to evaluate the forelimb of the Yucatan minipig (YP) as a potential preclinical animal model for the human wrist by quantifying carpal biomechanics in vitro in the intact and after two ligament transection conditions. Porcine wrist biomechanics (n = 12, 5M, 7F) were determined in 28 range of motion (ROM) directions, in pronation-supination, and in volar-dorsal translation using a six-axis robotic musculoskeletal simulator. Testing was implemented in three conditions - intact, and after sequential transection of the radial intermediate ligament (RIL) and the dorsal intercarpal ligament (DIC). Mixed models were employed to examine differences in direction and conditions among male and female specimens. The intact ROM envelope was elliptical in shape and oriented toward ulnar flexion with the largest ROM about 15° from the flexion-extension axis. Transection of RIL and DIC did not alter the ROM envelope orientation, however, subtle increases in ROM were observed in extension and radial deviation following transection of both RIL and DIC. Pronation in neutral was greater than supination in all three test conditions. Volar translation increased subtly in the RIL and DIC condition. This novel study investigated the multidirectional biomechanics of the YP forelimb. ROM in the general directions of extension, radial and ulnar deviation were less than in humans, while flexion was substantially larger. These specific ligament transections had minor effects on the biomechanics of the YP forelimb.
Collapse
Affiliation(s)
- Madison K Altieri
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA.
| | - Rohit Badida
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| | - Quianna M Vaughan
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA.
| | - Janine Molino
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA; Lifespan Biostatistics, Epidemiology, Research Design and Informatics Core, Rhode Island Hospital, Providence, RI 02903, USA
| | - Edward Akelman
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| | - Joseph J Crisco
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
2
|
Barton NE, Ref JE, Cook KE, Baldwin AL, Daugherty SL, Moukabary T, Grijalva A, Kazui S, Mostafizi P, Davis-Gorman GF, Lancaster JJ, Koevary JW, Goldman S. COVID-19 Pandemic Effects on the Activity Levels of Yucatan Mini-Swine (Sus scrofa domesticus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:662-668. [PMID: 39191492 PMCID: PMC11645881 DOI: 10.30802/aalas-jaalas-24-000017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
During the COVID-19 pandemic, unexpected activity patterns emerged among Yucatan mini-swine models for heart failure and atrial fibrillation. As part of our laboratory research, we tracked activity data by FitBark™ collars that the Yucatan mini-swine wore. Previously, staff engaged with the swine daily, such as applying lotion and conducting 6-min treadmill runs. However, pandemic restrictions reduced interaction to 1 or 2 times a week, often for less than 10 min each session. Contrary to expectations, there was a significant increase in the swine's activity levels during these minimal interaction periods. After cleaning, moisturizing, weighing, and FitBark data collection, staff engaged with the swine through feeding and play. Three time frames were analyzed: prepandemic, pandemic, and reentry. Prepandemic and reentry periods involved daily 15-min interactions with 2 staff members per swine to maintain cleanliness and health. During the pandemic, interaction was reduced to 1 or 2 times weekly. The hours between 1000 and 1400 were designated as 'passive activity', representing the swines' isolated behavior, unaffected by staff interaction. The chronic heart failure swine (n = 3) had an average passive activity area under the curve prepandemic value of 47.23 ± 2.52 compared with pandemic 57.09 ± 2.90, pandemic 57.09 ± 2.90 compared with reentry 50.44 ± 1.61, and prepandemic compared with reentry. The atrial fibrillation swine (n = 3) had an average passive activity area under the curve minimal interaction (mimicking pandemic) value of 59.27 ± 6.67 compared with interaction (mimicking prepandemic or reentry) 37.63 ± 1.74. The heightened activity levels during minimal interaction suggest physiologic and psychologic changes in the animals due to reduced socialization. This highlights the importance of enrichment and interaction in research animals and underscores the broader impact of the COVID-19 pandemic on research outcomes. These findings could also shed light on the effects of the pandemic on human behavior.
Collapse
Affiliation(s)
- Natasha E Barton
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | - Jacob E Ref
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Kyle E Cook
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | - Ann L Baldwin
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | | | - Talal Moukabary
- Sarver Heart Center, University of Arizona, Tucson, Arizona; and
| | | | - Saki Kazui
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | - Pouria Mostafizi
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Jen W Koevary
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
3
|
Liu X, Gutierrez AG, Vega A, Willms JO, Driskill J, Panthagani P, Sanchez J, Aguilera M, Backus B, Bailoo JD, Bergeson SE. The horizontal ladder test (HLT) protocol: a novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus. Front Behav Neurosci 2024; 18:1357363. [PMID: 38510830 PMCID: PMC10951394 DOI: 10.3389/fnbeh.2024.1357363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. To address this knowledge gap, an apparatus modeled after a horizontally placed ladder and where the height of the rungs could be adjusted was developed. The protocol that was employed within the apparatus mimicked the walk and turn test of the human standardized field sobriety test. Here, five Sinclair miniature pigs were trained to cross the horizontally placed ladder, starting at a rung height of six inches and decreasing to three inches in one-inch increments. It was demonstrated that pigs can reliably learn to cross the ladder, with few errors, under baseline/unimpaired conditions. These animals were then involved in a voluntary consumption of ethanol study where animals were longitudinally evaluated for motor coordination changes at baseline, 2.5, 5, 7.5, and 10% ethanol concentrations subsequently to consuming ethanol. Consistent with our predictions, relative to baseline performance, motor incoordination increased as voluntary consumption of escalating concentrations of ethanol increased. Together these data highlight that the horizontal ladder test (HLT) test protocol is a novel, optimized and reliable test for evaluating motor coordination as well as changes in motor coordination in pigs.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ana G. Gutierrez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Arlette Vega
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joshua O. Willms
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jackson Driskill
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jordan Sanchez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Aguilera
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brittany Backus
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, United States
| | - Jeremy D. Bailoo
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
4
|
Liu X, Gutierrez AG, Vega A, Willms JO, Driskill J, Panthagani P, Sanchez J, Aguilera M, Backus B, Bailoo JD, Bergeson SE. The Horizontal Ladder Test (HLT) protocol: A novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571517. [PMID: 38168162 PMCID: PMC10760169 DOI: 10.1101/2023.12.13.571517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. Here, we present a novel, optimized, and reliable horizontal ladder test (HLT) test protocol for evaluating motor coordination in pigs and an initial validation of its construct validity using voluntary alcohol consumption as an experimental manipulation.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ana G Gutierrez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Arlette Vega
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Joshua O Willms
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jackson Driskill
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jordan Sanchez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Monica Aguilera
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Brittany Backus
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, 79430, USA
| | - Jeremy D Bailoo
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Susan E Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
5
|
Ahmed RU, Medina‐Aguinaga D, Adams S, Knibbe CA, Morgan M, Gibson D, Kim J, Sharma M, Chopra M, Davison S, Sherwood LC, Negahdar M, Bert R, Ugiliweneza B, Hubscher C, Budde MD, Xu J, Boakye M. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury. Ann Clin Transl Neurol 2023; 10:1647-1661. [PMID: 37501362 PMCID: PMC10502634 DOI: 10.1002/acn3.51855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel Medina‐Aguinaga
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shawns Adams
- Department of NeurosurgeryDuke UniversityRaleighNorth CarolinaUSA
| | - Chase A. Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Monique Morgan
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Destiny Gibson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joo‐won Kim
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Mayur Sharma
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Manpreet Chopra
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Steven Davison
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Leslie C. Sherwood
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - M.J. Negahdar
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Robert Bert
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Charles Hubscher
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J. Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsinUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
6
|
Ahmed RU, Knibbe CA, Wilkins F, Sherwood LC, Howland DR, Boakye M. Porcine spinal cord injury model for translational research across multiple functional systems. Exp Neurol 2023; 359:114267. [PMID: 36356636 DOI: 10.1016/j.expneurol.2022.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Animal models are necessary to identify pathological changes and help assess therapeutic outcomes following spinal cord injury (SCI). Small animal models offer value in research in terms of their easily managed size, minimal maintenance requirements, lower cost, well-characterized genomes, and ability to power research studies. However, despite these benefits, small animal models have neurologic and anatomical differences that may influence translation of results to humans and thus limiting the success of their use in preclinical studies as a direct pipeline to clinical studies. Large animal models, offer an attractive intermediary translation model that may be more successful in translating to the clinic for SCI research. This is largely due to their greater neurologic and anatomical similarities to humans. The physical characteristics of pig spinal cord, gut microbiome, metabolism, proportions of white to grey matter, bowel anatomy and function, and urinary system are strikingly similar and provide great insight into human SCI conditions. In this review, we address the variety of existing porcine injury models and their translational relevance, benefits, and drawbacks in modeling human systems and functions for neurophysiology, cardiovascular, gastrointestinal and urodynamic functions.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| | - Chase A Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Felicia Wilkins
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, University of Louisville, Louisville, KY, USA
| | - Dena R Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
7
|
Hall P, Stubbs C, Anderson DE, Greenacre C, Crouch DL. Rabbit hindlimb kinematics and ground contact kinetics during the stance phase of gait. PeerJ 2022; 10:e13611. [PMID: 35734635 PMCID: PMC9208372 DOI: 10.7717/peerj.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/29/2022] [Indexed: 01/17/2023] Open
Abstract
Though the rabbit is a common animal model in musculoskeletal research, there are very limited data reported on healthy rabbit biomechanics. Our objective was to quantify the normative hindlimb biomechanics (kinematics and kinetics) of six New Zealand White rabbits (three male, three female) during the stance phase of gait. We measured biomechanics by synchronously recording sagittal plane motion and ground contact pressure using a video camera and pressure-sensitive mat, respectively. Both foot angle (i.e., angle between foot and ground) and ankle angle curves were unimodal. The maximum ankle dorsiflexion angle was 66.4 ± 13.4° (mean ± standard deviation across rabbits) and occurred at 38% stance, while the maximum ankle plantarflexion angle was 137.2 ± 4.8° at toe-off (neutral ankle angle = 90 degrees). Minimum and maximum foot angles were 17.2 ± 6.3° at 10% stance and 123.3 ± 3.6° at toe-off, respectively. The maximum peak plantar pressure and plantar contact area were 21.7 ± 4.6% BW/cm2 and 7.4 ± 0.8 cm2 respectively. The maximum net vertical ground reaction force and vertical impulse, averaged across rabbits, were 44.0 ± 10.6% BW and 10.9 ± 3.7% BW∙s, respectively. Stance duration (0.40 ± 0.15 s) was statistically significantly correlated (p < 0.05) with vertical impulse (Spearman's ρ = 0.76), minimum foot angle (ρ = -0.58), plantar contact length (ρ = 0.52), maximum foot angle (ρ = 0.41), and minimum foot angle (ρ = -0.30). Our study confirmed that rabbits exhibit a digitigrade gait pattern during locomotion. Future studies can reference our data to quantify the extent to which clinical interventions affect rabbit biomechanics.
Collapse
Affiliation(s)
- Patrick Hall
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee - Knoxville, Knoxville, Tennessee, United States
| | - Caleb Stubbs
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee - Knoxville, Knoxville, Tennessee, United States
| | - David E. Anderson
- Department of Large Animal Clinical Sciences, University of Tennessee - Knoxville, Knoxville, Tennessee, United States
| | - Cheryl Greenacre
- Department of Small Animal Clinical Sciences, University of Tennessee - Knoxville, Knoxville, Tennessee, United States
| | - Dustin L. Crouch
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee - Knoxville, Knoxville, Tennessee, United States
| |
Collapse
|
8
|
Mirkiani S, Roszko DA, O'Sullivan C, Faridi P, Hu DS, Fang D, Everaert DG, Toossi A, Konrad PE, Robinson K, Mushahwar VK. Overground gait kinematics and muscle activation patterns in the Yucatan mini pig. J Neural Eng 2022; 19. [PMID: 35172283 DOI: 10.1088/1741-2552/ac55ac] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
Objective The objectives of this study were to assess gait biomechanics and the effect of overground walking speed on gait parameters, kinematics, and electromyographic (EMG) activity in the hindlimb muscles of Yucatan Minipigs (YMPs). Approach Nine neurologically-intact, adult YMPs were trained to walk overground in a straight line. Whole-body kinematics and EMG activity of hindlimb muscles were recorded and analyzed at 6 different speed ranges (0.4-0.59, 0.6-0.79, 0.8-0.99, 1.0-1.19, 1.2-1.39, and 1.4-1.6 m/s). A MATLAB program was developed to detect strides and gait events automatically from motion-captured data. The kinematics and EMG activity were analyzed for each stride based on the detected events. Main results Significant decreases in stride duration, stance and swing times and an increase in stride length were observed with increasing speed. A transition in gait pattern occurred at the 1.0m/s walking speed. Significant increases in the range of motion of the knee and ankle joints were observed at higher speeds. Also, the points of minimum and maximum joint angles occurred earlier in the gait cycle as the walking speed increased. The onset of EMG activity in the biceps femoris muscle occurred significantly earlier in the gait cycle with increasing speed. Significance YMPs are becoming frequently used as large animal models for preclinical testing and translation of novel interventions to humans. A comprehensive characterization of overground walking in neurologically-intact YMPs is provided in this study. These normative measures set the basis against which the effects of future interventions on locomotor capacity in YMPs can be compared.
Collapse
Affiliation(s)
- Soroush Mirkiani
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| | - David A Roszko
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Carly O'Sullivan
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz, Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Pouria Faridi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - David S Hu
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Daniel Fang
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Dirk G Everaert
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Amirali Toossi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, PO Box 9183, Morgantown, West Virginia, 26506, UNITED STATES
| | - Kevin Robinson
- School of Physical Therapy, Belmont University, 341 McWhorter Hall, Nashville, Tennessee, 37212, UNITED STATES
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| |
Collapse
|
9
|
Shepard CT, Pocratsky AM, Brown BL, Van Rijswijck MA, Zalla RM, Burke DA, Morehouse JR, Riegler AS, Whittemore SR, Magnuson DSK. Silencing long ascending propriospinal neurons after spinal cord injury improves hindlimb stepping in the adult rat. eLife 2021; 10:e70058. [PMID: 34854375 PMCID: PMC8639151 DOI: 10.7554/elife.70058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long ascending propriospinal neurons (LAPNs) are a subpopulation of spinal cord interneurons that directly connect the lumbar and cervical enlargements. Previously we showed, in uninjured animals, that conditionally silencing LAPNs disrupted left-right coordination of the hindlimbs and forelimbs in a context-dependent manner, demonstrating that LAPNs secure alternation of the fore- and hindlimb pairs during overground stepping. Given the ventrolateral location of LAPN axons in the spinal cord white matter, many likely remain intact following incomplete, contusive, thoracic spinal cord injury (SCI), suggesting a potential role in the recovery of stepping. Thus, we hypothesized that silencing LAPNs after SCI would disrupt recovered locomotion. Instead, we found that silencing spared LAPNs post-SCI improved locomotor function, including paw placement order and timing, and a decrease in the number of dorsal steps. Silencing also restored left-right hindlimb coordination and normalized spatiotemporal features of gait such as stance and swing time. However, hindlimb-forelimb coordination was not restored. These data indicate that the temporal information carried between the spinal enlargements by the spared LAPNs post-SCI is detrimental to recovered hindlimb locomotor function. These findings are an illustration of a post-SCI neuroanatomical-functional paradox and have implications for the development of neuronal- and axonal-protective therapeutic strategies and the clinical study/implementation of neuromodulation strategies.
Collapse
Affiliation(s)
- Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Amanda M Pocratsky
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Morgan A Van Rijswijck
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Rachel M Zalla
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Johnny R Morehouse
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Amberley S Riegler
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - David SK Magnuson
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| |
Collapse
|
10
|
|
11
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
12
|
Cerro PD, Barriga-Martín A, Vara H, Romero-Muñoz LM, Rodríguez-De-Lope Á, Collazos-Castro JE. Neuropathological and Motor Impairments after Incomplete Cervical Spinal Cord Injury in Pigs. J Neurotrauma 2021; 38:2956-2977. [PMID: 34121450 DOI: 10.1089/neu.2020.7587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Andrés Barriga-Martín
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Hugo Vara
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Luis M Romero-Muñoz
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|