1
|
Zhou Z, Fahlstedt M, Li X, Kleiven S. Peaks and Distributions of White Matter Tract-related Strains in Bicycle Helmeted Impacts: Implication for Helmet Ranking and Optimization. Ann Biomed Eng 2025; 53:699-717. [PMID: 39636379 PMCID: PMC11836146 DOI: 10.1007/s10439-024-03653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) in cyclists is a growing public health problem, with helmets being the major protection gear. Finite element head models have been increasingly used to engineer safer helmets often by mitigating brain strain peaks. However, how different helmets alter the spatial distribution of brain strain remains largely unknown. Besides, existing research primarily used maximum principal strain (MPS) as the injury parameter, while white matter fiber tract-related strains, increasingly recognized as effective predictors for TBI, have rarely been used for helmet evaluation. To address these research gaps, we used an anatomically detailed head model with embedded fiber tracts to simulate fifty-one helmeted impacts, encompassing seventeen bicycle helmets under three impact locations. We assessed the helmet performance based on four tract-related strains characterizing the normal and shear strain oriented along and perpendicular to the fiber tract, as well as the prevalently used MPS. Our results showed that both the helmet model and impact location affected the strain peaks. Interestingly, we noted that different helmets did not alter strain distribution, except for one helmet under one specific impact location. Moreover, our analyses revealed that helmet ranking outcome based on strain peaks was affected by the choice of injury metrics (Kendall's Tau coefficient: 0.58-0.93). Significant correlations were noted between tract-related strains and angular motion-based injury metrics. This study provided new insights into computational brain biomechanics and highlighted the helmet ranking outcome was dependent on the choice of injury metrics. Our results also hinted that the performance of helmets could be augmented by mitigating the strain peak and optimizing the strain distribution with accounting the selective vulnerability of brain subregions and more research was needed to develop region-specific injury criteria.
Collapse
Affiliation(s)
- Zhou Zhou
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden.
| | | | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| |
Collapse
|
2
|
Henry RJ, Loane DJ. Unraveling the complexity of microglial responses in traumatic brain and spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:113-132. [PMID: 40148040 DOI: 10.1016/b978-0-443-19102-2.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in neuroimmune signaling, neuroprotection, and neuroinflammation. In the healthy CNS, microglia adopt a surveillant and antiinflammatory phenotype characterized by a ramified scanning morphology that maintains CNS homeostasis. In response to acquired insults, such as traumatic brain injury (TBI) or spinal cord injury (SCI), microglia undergo a dramatic morphologic and functional switch to that of a reactive state. This microglial switch is initially protective and supports the return of the injured tissue to a physiologic homeostatic state. However, there is now a significant body of evidence that both TBI and SCI can result in a chronic state of microglial activation, which contributes to neurodegeneration and impairments in long-term neurologic outcomes in humans and animal models. In this review, we discuss the complex role of microglia in the pathophysiology of TBI and SCI, and recent advancements in knowledge of microglial phenotypic states in the injured CNS. Furthermore, we highlight novel therapeutic strategies targeting chronic microglial responses in experimental models and discuss how they may ultimately be translated to the clinic for human brain and SCI.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Pharmacology, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Zhou Z, Olsson C, Gasser TC, Li X, Kleiven S. The White Matter Fiber Tract Deforms Most in the Perpendicular Direction During In Vivo Volunteer Impacts. J Neurotrauma 2024; 41:2554-2570. [PMID: 39212616 DOI: 10.1089/neu.2024.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
White matter (WM) tract-related strains are increasingly used to quantify brain mechanical responses, but their dynamics in live human brains during in vivo impact conditions remain largely unknown. Existing research primarily looked into the normal strain along the WM fiber tracts (i.e., tract-oriented normal strain), but it is rarely the case that the fiber tract only endures tract-oriented normal strain during impacts. In this study, we aim to extend the in vivo measurement of WM fiber deformation by quantifying the normal strain perpendicular to the fiber tract (i.e., tract-perpendicular normal strain) and the shear strain along and perpendicular to the fiber tract (i.e., tract-oriented shear strain and tract-perpendicular shear strain, respectively). To achieve this, we combine the three-dimensional strain tensor from the tagged magnetic resonance imaging with the diffusion tensor imaging (DTI) from an open-access dataset, including 44 volunteer impacts under two head loading modes, i.e., neck rotations (N = 30) and neck extensions (N = 14). The strain tensor is rotated to the coordinate system with one axis aligned with DTI-revealed fiber orientation, and then four tract-related strain measures are calculated. The results show that tract-perpendicular normal strain peaks are the largest among the four strain types (p < 0.05, Friedman's test). The distribution of tract-related strains is affected by the head loading mode, of which laterally symmetric patterns with respect to the midsagittal plane are noted under neck extensions, but not under neck rotations. Our study presents a comprehensive in vivo strain quantification toward a multifaceted understanding of WM dynamics. We find that the WM fiber tract deforms most in the perpendicular direction, illuminating new fundamentals of brain mechanics. The reported strain images can be used to evaluate the fidelity of computational head models, especially those intended to predict fiber deformation under noninjurious conditions.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christoffer Olsson
- Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden
| | - T Christian Gasser
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Wang Y, Li D, Zhang L, Yin Z, Han Z, Ge X, Li M, Zhao J, Zhang S, Zuo Y, Xiong X, Gao H, Liu Q, Chen F, Lei P. Exosomes derived from microglia overexpressing miR-124-3p alleviate neuronal endoplasmic reticulum stress damage after repetitive mild traumatic brain injury. Neural Regen Res 2024; 19:2010-2018. [PMID: 38227530 DOI: 10.4103/1673-5374.391189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00033/figure1/v/2024-01-16T170235Z/r/image-tiff We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury. However, its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear. In this study, we first used an HT22 scratch injury model to mimic traumatic brain injury, then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p. We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress. Furthermore, luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α, while an IRE1α functional salvage experiment confirmed that miR-124-3p targeted IRE1α and reduced its expression, thereby inhibiting endoplasmic reticulum stress in injured neurons. Finally, we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced. These findings suggest that, after repetitive mild traumatic brain injury, miR-124-3 can be transferred from microglia-derived exosomes to injured neurons, where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress. Therefore, microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shishuang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zuo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangyang Xiong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Rubby MF, Fonder C, Uchayash S, Liang X, Sakaguchi DS, Que L. Assessment of the Behaviors of an In Vitro Brain Model On-Chip under Shockwave Impacts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33246-33258. [PMID: 38905518 DOI: 10.1021/acsami.4c08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Herein we report the assessment of the effects of shockwave (SW) impacts on adult rat hippocampal progenitor cell (AHPC) neurospheres (NSs), which are used as in vitro brain models, for enhancing our understanding of the mechanisms of traumatic brain injury (TBI). The assessment has been achieved by using culture dishes and a new microchip. The microchip allows the chemicals released from the brain models cultured inside the cell culture chamber under SW impacts to diffuse to the nanosensors in adjacent sensor chambers through built-in diffusion barriers, which are used to prevent the cells from entering the sensor chambers, thereby mitigating the biofouling issues of the sensor surface. Experiments showed the negative impact of the SW on the viability, proliferation, and differentiation of the cells within the NSs. A qPCR gene expression analysis was performed and appeared to confirm some of the immunocytochemistry (ICC) results. Finally, we demonstrated that the microchip can be used to monitor lactate dehydrogenase (LDH) released from the AHPC-NSs subjected to SW impacts. As expected, LDH levels changed when AHPC-NSs were injured by SW impacts, verifying this chip can be used for assessing the degrees of injuries to AHPC-NSs by monitoring LDH levels. Taken together, these results suggest the feasibility of using the chip to better understand the interactions between SW impacts and in vitro brain models, paving the way for potentially establishing in vitro TBI models on a chip.
Collapse
Affiliation(s)
- Md Fazlay Rubby
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Catherine Fonder
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames, Iowa 50011, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Sajid Uchayash
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xiaogan Liang
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, Ann Arbor, Michigan 48109, United States
| | - Donald S Sakaguchi
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames, Iowa 50011, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Frost BL, Mintchev SM. A high-efficiency model indicating the role of inhibition in the resilience of neuronal networks to damage resulting from traumatic injury. J Comput Neurosci 2023; 51:463-474. [PMID: 37632630 DOI: 10.1007/s10827-023-00860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Recent investigations of traumatic brain injuries have shown that these injuries can result in conformational changes at the level of individual neurons in the cerebral cortex. Focal axonal swelling is one consequence of such injuries and leads to a variable width along the cell axon. Simulations of the electrical properties of axons impacted in such a way show that this damage may have a nonlinear deleterious effect on spike-encoded signal transmission. The computational cost of these simulations complicates the investigation of the effects of such damage at a network level. We have developed an efficient algorithm that faithfully reproduces the spike train filtering properties seen in physical simulations. We use this algorithm to explore the impact of focal axonal swelling on small networks of integrate and fire neurons. We explore also the effects of architecture modifications to networks impacted in this manner. In all tested networks, our results indicate that the addition of presynaptic inhibitory neurons either increases or leaves unchanged the fidelity, in terms of bandwidth, of the network's processing properties with respect to this damage.
Collapse
Affiliation(s)
- Brian L Frost
- Electrical Engineering, Columbia University, 500 W 120th St, New York, NY, 10027, USA.
| | | |
Collapse
|
7
|
Mitevska A, Santacruz C, Martin EJ, Jones IE, Ghiacy A, Dixon S, Mostafazadeh N, Peng Z, Kiskinis E, Finan JD. Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human in vitro Model of Neurotrauma. Neurotrauma Rep 2023; 4:682-692. [PMID: 37908320 PMCID: PMC10615064 DOI: 10.1089/neur.2023.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cells can reproduce human-specific pathophysiology, patient-specific vulnerability, and gene-environment interactions in neurological disease. Human in vitro models of neurotrauma therefore have great potential to advance the field. However, this potential cannot be realized until important biomaterials challenges are addressed. Status quo stretch injury models of neurotrauma culture cells on sheets of polydimethylsiloxane (PDMS) that are incompatible with long-term monoculture of hiPSC-derived neurons. Here, we overcame this challenge in an established human in vitro neurotrauma model by replacing PDMS with a highly biocompatible form of polyurethane (PU). This substitution allowed long-term monoculture of hiPSC-derived neurons. It also changed the biomechanics of stretch injury. We quantified these changes experimentally using high-speed videography and digital image correlation. We used finite element modeling to quantify the influence of the culture substrate's thickness, stiffness, and coefficient of friction on membrane stretch and concluded that the coefficient of friction explained most of the observed biomechanical changes. Despite these changes, we demonstrated that the modified model produced a robust, dose-dependent trauma phenotype in hiPSC-derived neuron monocultures. In summary, the introduction of this PU film makes it possible to maintain hiPSC-derived neurons in monoculture for long periods in a human in vitro neurotrauma model. In doing so, it opens new horizons in the field of neurotrauma by enabling the unique experimental paradigms (e.g., isogenic models) associated with hiPSC-derived neurons.
Collapse
Affiliation(s)
- Angela Mitevska
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Citlally Santacruz
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eric J. Martin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ian E. Jones
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Arian Ghiacy
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Dixon
- Biomer Technology Ltd., Warrington, United Kingdom
| | - Nima Mostafazadeh
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
9
|
Lu D, Wang Y, Liu G, Wang S, Duan A, Wang Z, Wang J, Sun X, Wu Y, Wang Z. Armcx1 attenuates secondary brain injury in an experimental traumatic brain injury model in male mice by alleviating mitochondrial dysfunction and neuronal cell death. Neurobiol Dis 2023:106228. [PMID: 37454781 DOI: 10.1016/j.nbd.2023.106228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Yu Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Zhao Q, Zhang J, Li H, Li H, Xie F. Models of traumatic brain injury-highlights and drawbacks. Front Neurol 2023; 14:1151660. [PMID: 37396767 PMCID: PMC10309005 DOI: 10.3389/fneur.2023.1151660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause for high morbidity and mortality rates in young adults, survivors may suffer from long-term physical, cognitive, and/or psychological disorders. Establishing better models of TBI would further our understanding of the pathophysiology of TBI and develop new potential treatments. A multitude of animal TBI models have been used to replicate the various aspects of human TBI. Although numerous experimental neuroprotective strategies were identified to be effective in animal models, a majority of strategies have failed in phase II or phase III clinical trials. This failure in clinical translation highlights the necessity of revisiting the current status of animal models of TBI and therapeutic strategies. In this review, we elucidate approaches for the generation of animal models and cell models of TBI and summarize their strengths and limitations with the aim of exploring clinically meaningful neuroprotective strategies.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
11
|
Adams AA, Li Y, Kim HA, Pfister BJ. Dorsal root ganglion neurons recapitulate the traumatic axonal injury of CNS neurons in response to a rapid stretch in vitro. Front Cell Neurosci 2023; 17:1111403. [PMID: 37066078 PMCID: PMC10090399 DOI: 10.3389/fncel.2023.1111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: In vitro models of traumatic brain injury (TBI) commonly use neurons isolated from the central nervous system. Limitations with primary cortical cultures, however, can pose challenges to replicating some aspects of neuronal injury associated with closed head TBI. The known mechanisms of axonal degeneration from mechanical injury in TBI are in many ways similar to degenerative disease, ischemia, and spinal cord injury. It is therefore possible that the mechanisms that result in axonal degeneration in isolated cortical axons after in vitro stretch injury are shared with injured axons from different neuronal types. Dorsal root ganglia neurons (DRGN) are another neuronal source that may overcome some current limitations including remaining healthy in culture for long periods of time, ability to be isolated from adult sources, and myelinated in vitro. Methods: The current study sought to characterize the differential responses between cortical and DRGN axons to mechanical stretch injury associated with TBI. Using an in vitro model of traumatic axonal stretch injury, cortical and DRGN neurons were injured at a moderate (40% strain) and severe stretch (60% strain) and acute alterations in axonal morphology and calcium homeostasis were measured. Results: DRGN and cortical axons immediately form undulations in response to severe injury, experience similar elongation and recovery within 20 min after the initial injury, and had a similar pattern of degeneration over the first 24 h after injury. Additionally, both types of axons experienced comparable degrees of calcium influx after both moderate and severe injury that was prevented through pre-treatment with tetrodotoxin in cortical neurons and lidocaine in DRGNs. Similar to cortical axons, stretch injury also causes calcium activated proteolysis of sodium channel in DRGN axons that is prevented by treatment with lidocaine or protease inhibitors. Discussion: These findings suggest that DRGN axons share the early response of cortical neurons to a rapid stretch injury and the associated secondary injury mechanisms. The utility of a DRGN in vitro TBI model may allow future studies to explore TBI injury progression in myelinated and adult neurons.
Collapse
Affiliation(s)
- Alexandra A. Adams
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| | - Ying Li
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Haesun A. Kim
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| | - Bryan J. Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| |
Collapse
|
12
|
Zargari M, Meyer LJ, Riess ML, Li Z, Barajas MB. P188 Therapy in In Vitro Models of Traumatic Brain Injury. Int J Mol Sci 2023; 24:3334. [PMID: 36834743 PMCID: PMC9961452 DOI: 10.3390/ijms24043334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to severe. TBI pathophysiology is classically separated into a primary injury that is characterized by local tissue destruction as a result of the initial blow, followed by a secondary phase of injury constituted by a score of incompletely understood cellular processes including reperfusion injury, disruption to the blood-brain barrier, excitotoxicity, and metabolic dysregulation. There are currently no effective pharmacological treatments in the wide-spread use for TBI, in large part due to challenges associated with the development of clinically representative in vitro and in vivo models. Poloxamer 188 (P188), a Food and Drug Administration-approved amphiphilic triblock copolymer embeds itself into the plasma membrane of damaged cells. P188 has been shown to have neuroprotective properties on various cell types. The objective of this review is to provide a summary of the current literature on in vitro models of TBI treated with P188.
Collapse
Affiliation(s)
- Michael Zargari
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Matthias L. Riess
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew B. Barajas
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Establishment and Application of a Novel In Vitro Model of Microglial Activation in Traumatic Brain Injury. J Neurosci 2023; 43:319-332. [PMID: 36446585 PMCID: PMC9838700 DOI: 10.1523/jneurosci.1539-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mechanical impact-induced primary injury after traumatic brain injury (TBI) leads to acute microglial pro-inflammatory activation and consequently mediates neurodegeneration, which is a major secondary brain injury mechanism. However, the detailed pathologic cascades have not been fully elucidated, partially because of the pathologic complexity in animal TBI models. Although there are several in vitro TBI models, none of them closely mimic post-TBI microglial activation. In the present study, we aimed to establish an in vitro TBI model, specifically reconstituting the pro-inflammatory activation and associated neurodegeneration following TBI. We proposed three sets of experiments. First, we established a needle scratch injured neuron-induced microglial activation and neurodegeneration in vitro model of TBI. Second, we compared microglial pro-inflammatory cytokines profiles between the in vitro TBI model and TBI in male mice. Additionally, we validated the role of injured neurons-derived damage-associated molecular patterns in amplifying microglial pro-inflammatory pathways using the in vitro TBI model. Third, we applied the in vitro model for the first time to characterize the cellular metabolic profile of needle scratch injured-neuron-activated microglia, and define the role of metabolic reprogramming in mediating pro-inflammatory microglial activation and mediated neurodegeneration. Our results showed that we successfully established a novel in vitro TBI model, which closely mimics primary neuronal injury-triggered microglial pro-inflammatory activation and mediated neurodegeneration after TBI. This in vitro model provides an advanced and highly translational platform for dissecting interactions in the pathologic processes of neuronal injury-microglial activation-neuronal degeneration cascade, and elucidating the detailed underlying cellular and molecular insights after TBI.SIGNIFICANCE STATEMENT Microglial activation is a key component of acute neuroinflammation that leads to neurodegeneration and long-term neurologic outcome deficits after TBI. However, it is not feasible to truly dissect primary neuronal injury-induced microglia activation, and consequently mediated neurodegeneration in vivo Furthermore, there is currently lacking of in vitro TBI models closely mimicking the TBI primary injury-mediated microglial activation. In this study, we successfully established and validated a novel in vitro TBI model of microglial activation, and for the first time, characterized the cellular metabolic profile of microglia in this model. This novel microglial activation in vitro TBI model will help in elucidating microglial inflammatory activation and consequently associated neurodegeneration after TBI.
Collapse
|
14
|
Modeling Central Nervous System Injury In Vitro: Current Status and Promising Future Strategies. Biomedicines 2022; 11:biomedicines11010094. [PMID: 36672601 PMCID: PMC9855387 DOI: 10.3390/biomedicines11010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The central nervous system (CNS) injury, which occurs because of mechanical trauma or ischemia/hypoxia, is one of the main causes of mortality and morbidity in the modern society. Until know, despite the fact that numerous preclinical and clinical studies have been undertaken, no significant neuroprotective strategies have been discovered that could be used in the brain trauma or ischemia treatment. Although there are many potential explanations for the failure of those studies, it is clear that there are questions regarding the use of experimental models, both in vivo and in vitro, when studying CNS injury and searching new therapeutics. Due to some ethical issues with the use of live animals in biomedical research, implementation of experimental strategies that prioritize the use of cells and tissues in the in vitro environment has been encouraged. In this review, we examined some of the most commonly used in vitro models and the most frequently utilized cellular platforms in the research of traumatic brain injury and cerebral ischemia. We also proposed some future strategies that could improve the usefulness of these studies for better bench-to-bedside translational outcomes.
Collapse
|
15
|
Wu YH, Park TIH, Kwon E, Feng S, Schweder P, Dragunow M, Shim V, Rosset S. Analyzing pericytes under mild traumatic brain injury using 3D cultures and dielectric elastomer actuators. Front Neurosci 2022; 16:994251. [PMID: 36440264 PMCID: PMC9684674 DOI: 10.3389/fnins.2022.994251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/26/2022] [Indexed: 08/05/2024] Open
Abstract
Traumatic brain injury (TBI) is defined as brain damage due to an external force that negatively impacts brain function. Up to 90% of all TBI are considered in the mild severity range (mTBI) but there is still no therapeutic solution available. Therefore, further understanding of the mTBI pathology is required. To assist with this understanding, we developed a cell injury device (CID) based on a dielectric elastomer actuator (DEA), which is capable of modeling mTBI via injuring cultured cells with mechanical stretching. Our injury model is the first to use patient-derived brain pericyte cells, which are ubiquitous cells in the brain involved in injury response. Pericytes were cultured in our CIDs and mechanically strained up to 40%, and by at least 20%, prior to gene expression analysis. Our injury model is a platform capable of culturing and stretching primary human brain pericytes. The heterogeneous response in gene expression changes in our result may suggest that the genes implicated in pathological changes after mTBI could be a patient-dependent response, but requires further validation. The results of this study demonstrate that our CID is a suitable tool for simulating mTBI as an in vitro stretch injury model, that is sensitive enough to induce responses from primary human brain pericytes due to mechanical impacts.
Collapse
Affiliation(s)
- Yi-Han Wu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Eryn Kwon
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Sheryl Feng
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Mike Dragunow
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
17
|
Fiber orientation downsampling compromises the computation of white matter tract-related deformation. J Mech Behav Biomed Mater 2022; 132:105294. [DOI: 10.1016/j.jmbbm.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/13/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
|
18
|
Imboden M, Chen S, Gudozhnik O, Pollock C, Javor J, Bishop D, Shea H, Rosset S. The Integration of Optical Stimulation in a Mechanically Dynamic Cell Culture Substrate. Front Bioeng Biotechnol 2022; 10:934756. [PMID: 35928941 PMCID: PMC9344002 DOI: 10.3389/fbioe.2022.934756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
A cell culture well with integrated mechanical and optical stimulation is presented. This is achieved by combining dielectric elastomer soft actuators, also known as artificial muscles, and a varifocal micro-electromechanical mirror that couples light from an optical fiber and focuses it onto the transparent cell substrate. The device enables unprecedented control of in vitro cell cultures by allowing the experimenter to tune and synchronize mechanical and optical stimuli, thereby enabling new experimental assays in optogenetics, fluorescent microscopy, or laser stimulation that include dynamic mechanical strain as a controlled input parameter.
Collapse
Affiliation(s)
- Matthias Imboden
- Soft Transducers Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Sophia Chen
- Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Olexandr Gudozhnik
- Soft Transducers Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Corey Pollock
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Josh Javor
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - David Bishop
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Herbert Shea
- Soft Transducers Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Samuel Rosset
- Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Rogers EA, Beauclair T, Thyen A, Shi R. Utilizing novel TBI-on-a-chip device to link physical impacts to neurodegeneration and decipher primary and secondary injury mechanisms. Sci Rep 2022; 12:11838. [PMID: 35821510 PMCID: PMC9276772 DOI: 10.1038/s41598-022-14937-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
While clinical observations have confirmed a link between the development of neurodegenerative diseases and traumatic brain injuries (TBI), there are currently no treatments available and the underlying mechanisms remain elusive. In response, we have developed an in vitro pendulum trauma model capable of imparting rapid acceleration injuries to neuronal networks grown on microelectrode arrays within a clinically relevant range of g forces, with real-time electrophysiological and morphological monitoring. By coupling a primary physical insult with the quantification of post-impact levels of known biochemical pathological markers, we demonstrate the capability of our system to delineate and investigate the primary and secondary injury mechanisms leading to post-impact neurodegeneration. Specifically, impact experiments reveal significant, force-dependent increases in the pro-inflammatory, oxidative stress marker acrolein at 24 h post-impact. The elevation of acrolein was augmented by escalating g force exposures (30-200 g), increasing the number of rapidly repeated impacts (4-6 s interval, 3, 5 and 10×), and by exposing impacted cells to 40 mM ethanol, a known comorbidity of TBI. The elevated levels of acrolein following multiple impacts could be reduced by increasing time-intervals between repeated hits. In addition, we show that conditioned media from maximally-impacted cultures can cause cellular acrolein elevation when introduced to non-impact, control networks, further solidifying acrolein's role as a diffusive-factor in post-TBI secondary injuries. Finally, morphological data reveals post-impact acrolein generation to be primarily confined to soma, with some emergence in cellular processes. In conclusion, this novel technology provides accurate, physical insults with a unique level of structural and temporal resolution, facilitating the investigation of post-TBI neurodegeneration.
Collapse
Affiliation(s)
- Edmond A Rogers
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Timothy Beauclair
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew Thyen
- Indiana University School of Medicine, Indianapolis, IN, 46033, USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Mazur RA, Yokosawa R, VandeVord PJ, Lampe KJ. The Need for Tissue Engineered Models to Facilitate the Study of Oligodendrocyte Progenitor Cells in Traumatic Brain Injury and Repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Sun C, Qi L, Cheng Y, Zhao Y, Gu C. Immediate induction of varicosities by transverse compression but not uniaxial stretch in axon mechanosensation. Acta Neuropathol Commun 2022; 10:7. [PMID: 35074017 PMCID: PMC8785443 DOI: 10.1186/s40478-022-01309-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/05/2022] [Indexed: 01/12/2023] Open
Abstract
Uniaxial stretch is believed to drive diffuse axonal injury (DAI) in mild traumatic brain injury (mTBI). Axonal varicosities are enlarged structures along axonal shafts and represent a hallmark feature of DAI. Here we report that axonal varicosities initiate in vivo immediately after head impact and are mainly induced by transverse compression but not uniaxial stretch. Vertical and lateral impacts to the mouse head induced axonal varicosities in distinct brain regions before any changes of microglial markers. Varicosities preferentially formed along axons perpendicular to impact direction. In cultured neurons, whereas 50% uniaxial strain was needed to rapidly induce axonal varicosities in a nanowrinkled stretch assay, physiologically-relevant transverse compression effectively induced axonal varicosities in a fluid puffing assay and can generate large but nonuniform deformation simulated by finite element analysis. Therefore, impact strength and direction may determine the threshold and spatial pattern of axonal varicosity initiation, respectively, partially resulting from intrinsic properties of axon mechanosensation.
Collapse
|
22
|
Streubel-Gallasch L, Zyśk M, Beretta C, Erlandsson A. Traumatic brain injury in the presence of Aβ pathology affects neuronal survival, glial activation and autophagy. Sci Rep 2021; 11:22982. [PMID: 34837024 PMCID: PMC8626479 DOI: 10.1038/s41598-021-02371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) presents a widespread health problem in the elderly population. In addition to the acute injury, epidemiological studies have observed an increased probability and earlier onset of dementias in the elderly following TBI. However, the underlying mechanisms of the connection between TBI and Alzheimer's disease in the aged brain and potential exacerbating factors is still evolving. The aim of this study was to investigate cellular injury-induced processes in the presence of amyloid β (Aβ) pathology. For this purpose, a co-culture system of cortical stem-cell derived astrocytes, neurons and oligodendrocytes were exposed to Aβ42 protofibrils prior to a mechanically induced scratch injury. Cellular responses, including neurodegeneration, glial activation and autophagy was assessed by immunoblotting, immunocytochemistry, ELISA and transmission electron microscopy. Our results demonstrate that the combined burden of Aβ exposure and experimental TBI causes a decline in the number of neurons, the differential expression of the key astrocytic markers glial fibrillary acidic protein and S100 calcium-binding protein beta, mitochondrial alterations and prevents the upregulation of autophagy. Our study provides valuable information about the impact of TBI sustained in the presence of Aβ deposits and helps to advance the understanding of geriatric TBI on the cellular level.
Collapse
Affiliation(s)
- Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Marlena Zyśk
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Chiara Beretta
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|