1
|
Di Maio A, Cioce A, Achilli S, Thépaut M, Vivès C, Fieschi F, Rojo J, Reichardt NC. Controlled density glycodendron microarrays for studying carbohydrate-lectin interactions. Org Biomol Chem 2021; 19:7357-7362. [PMID: 34387640 DOI: 10.1039/d1ob00872b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.
Collapse
Affiliation(s)
- Antonio Di Maio
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Cao R, Zhang TC, Chen YR, Cao C, Chen H, Huang YF, Fujita M, Liu L, Voglmeir J. Aberration of Serum and Tissue N-Glycans in Mouse β1,4-GalT1 Y286L Mutant Variants. Glycoconj J 2020; 37:767-775. [PMID: 32926333 DOI: 10.1007/s10719-020-09946-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022]
Abstract
β1,4-GalT1 is a type II membrane glycosyltransferase. It catalyzes the production of lactose in the lactating mammary gland and is supposedly also involved in the galactosylation of terminal GlcNAc of complex-type N-glycans. In-vitro studies of the bovine β4Gal-T1 homolog showed that replacing a single residue of tyrosine with leucine at position 289 alters the donor substrate specificity from UDP-Gal to UDP-N-acetyl-galactosamine (UDP-GalNAc). The effect of this peculiar change in β1,4GalT1 specificity was investigated in-vivo, by generating biallelic Tyr286Leu β1,4GalT1 mice using CRISPR/Cas9 and crossbreeding. Mice bearing this mutation showed no appreciable defects when compared to wild-type mice, with the exception of biallelic female B4GALT1 mutant mice, which were unable to produce milk. The detailed comparison of wild-type and mutant mice derived from liver, kidney, spleen, and intestinal tissues showed only small differences in their N-glycan pattern. Comparable N-glycosylation was also observed in HEK 293 wild-type and knock-out B4GALT1 cells. Remarkably and in contrast to the other analyzed tissue samples, sialylation and galactosylation of serum N-glycans of biallelic Tyr286Leu GalT1 mice almost disappeared completely. These results suggest that β1,4GalT1 plays a special role in the synthesis of serum N-glycans. The herein described Tyr286Leu β1,4GalT1 mutant mouse model may, therefore, prove useful in the investigation of the mechanism which regulates tissue-dependent galactosylation.
Collapse
Affiliation(s)
- Ran Cao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian-Chan Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ya-Ran Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cui Cao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
4
|
Dos Santos Silva PM, Albuquerque PBS, de Oliveira WF, Coelho LCBB, Dos Santos Correia MT. Glycosylation products in prostate diseases. Clin Chim Acta 2019; 498:52-61. [PMID: 31400314 DOI: 10.1016/j.cca.2019.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Although prostate cancer is notable for its high incidence and mortality in men worldwide, its identification remains a challenge. Biomarkers have been useful tools for the specific detection of prostate cancer. Unfortunately, benign prostate diseases cause similar alterations in screening assays thus reducing the potential for early and specific diagnosis. Changes in glycan and glycoprotein expression have often been associated with the onset and progression of cancer. Abnormal glycans and glycoproteins have been reported as new biomarkers of prostate metabolism that can distinguish benign prostate disease and cancer in non-aggressive and aggressive stages. Carbohydrate-binding proteins known as lectins have been valuable tools to detect these changes, investigate potential biomarkers and improve our understanding aberrant glycosylation in cancer. Here we review progress in elucidating prostate disease and discuss the roles of glycans in the differential detection of benign and cancerous prostate disease. We also summarize the lectin-based tools for detecting glycosylation changes.
Collapse
Affiliation(s)
- Priscila Marcelino Dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | | | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
5
|
Gray CJ, Sánchez-Ruíz A, Šardzíková I, Ahmed YA, Miller RL, Reyes Martinez JE, Pallister E, Huang K, Both P, Hartmann M, Roberts HN, Šardzík R, Mandal S, Turnbull JE, Eyers CE, Flitsch SL. Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins. Anal Chem 2017; 89:4444-4451. [PMID: 28318230 DOI: 10.1021/acs.analchem.6b04122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Antonio Sánchez-Ruíz
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Ivana Šardzíková
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Yassir A Ahmed
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Rebecca L Miller
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Juana E Reyes Martinez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato , Col. Noria Alta S/N, Guanajuato 36050, México
| | - Edward Pallister
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Kun Huang
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Peter Both
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Mirja Hartmann
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Hannah N Roberts
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Robert Šardzík
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Santanu Mandal
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jerry E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Sabine L Flitsch
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
6
|
Electrochemical sensing of concanavalin A and ovalbumin interaction in solution. Anal Chim Acta 2016; 935:97-103. [DOI: 10.1016/j.aca.2016.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 02/08/2023]
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
8
|
Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL. Enzymatic reactions on immobilised substrates. Chem Soc Rev 2014; 42:6378-405. [PMID: 23579870 DOI: 10.1039/c3cs60018a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Road, Manchester, M1 7DN, UK
| | | | | | | |
Collapse
|
9
|
Yu Y, Song X, Smith DF, Cummings RD. Applications of Glycan Microarrays to Functional Glycomics. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62651-6.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Olkhov RV, Weissenborn MJ, Flitsch SL, Shaw AM. Glycosylation characterization of human and porcine fibrinogen proteins by lectin-binding biophotonic microarray imaging. Anal Chem 2013; 86:621-8. [PMID: 24328092 DOI: 10.1021/ac402872t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lectin binding has been studied using the particle plasmon light-scattering properties of gold nanoparticles printed into an array format. Performance of the kinetic assay is evaluated from a detailed analysis of the binding of concanavalin A (ConA) and wheat germ agglutinin (WGA) to their target monosaccharides indicating affinity constants in the order of KD ∼10 nM for the lectin-monosaccharide interaction. The detection limits for the lectins following a 200 s injection time were determined as 10 ng/mL or 0.23 nM and 100 ng/mL or 0.93 nM, respectively. Subsequently, a nine-lectin screen was performed on the porcine and human fibrinogen glycoproteins. The observed spectra of lectin-protein specific binding rates result in characteristic patterns that evidently correlate with the structure of the glycans and allow one to distinguish between glycosylation of the porcine and human fibrinogens. The array technology has the potential to perform a multilectin screen of large numbers of proteins providing information on protein glycosylation and their microheterogeneity.
Collapse
Affiliation(s)
- Rouslan V Olkhov
- College of Life and Environmental Sciences, University of Exeter , Exeter, Devon EX4 4QD, United Kingdom
| | | | | | | |
Collapse
|
11
|
Yan 闫石 S, Serna S, Reichardt NC, Paschinger K, Wilson IBH. Array-assisted characterization of a fucosyltransferase required for the biosynthesis of complex core modifications of nematode N-glycans. J Biol Chem 2013; 288:21015-21028. [PMID: 23754284 DOI: 10.1074/jbc.m113.479147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N'-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.
Collapse
Affiliation(s)
- Shi Yan 闫石
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and
| | - Sonia Serna
- the Biofunctional Nanomaterials Unit, CICbiomaGUNE, 20009 San Sebastian, Spain
| | | | - Katharina Paschinger
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and
| | - Iain B H Wilson
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and.
| |
Collapse
|
12
|
Bertók T, Katrlík J, Gemeiner P, Tkac J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Mikrochim Acta 2013; 180:1-13. [PMID: 27239071 PMCID: PMC4883647 DOI: 10.1007/s00604-012-0876-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb "identity cards". In fact, glycans can form more "words" or "codes" (i.e., unique sequences) from the same number of "letters" (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or - even more challenging - to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the "glycocode". Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics. This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells.
Collapse
Affiliation(s)
- Tomáš Bertók
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Weissenborn MJ, Wehner JW, Gray CJ, Šardzík R, Eyers CE, Lindhorst TK, Flitsch SL. Formation of carbohydrate-functionalised polystyrene and glass slides and their analysis by MALDI-TOF MS. Beilstein J Org Chem 2012; 8:753-62. [PMID: 23015824 PMCID: PMC3388864 DOI: 10.3762/bjoc.8.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/02/2012] [Indexed: 01/25/2023] Open
Abstract
Glycans functionalised with hydrophobic trityl groups were synthesised and adsorbed onto polystyrene and glass slides in an array format. The adsorbed glycans could be analysed directly on these minimally conducting surfaces by MALDI-TOF mass spectrometry analysis after aluminium tape was attached to the underside of the slides. Furthermore, the trityl group appeared to act as an internal matrix and no additional matrix was necessary for the MS analysis. Thus, trityl groups can be used as simple hydrophobic, noncovalently linked anchors for ligands on surfaces and at the same time facilitate the in situ mass spectrometric analysis of such ligands.
Collapse
Affiliation(s)
- Martin J Weissenborn
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Johannes W Wehner
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Christopher J Gray
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Robert Šardzík
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Claire E Eyers
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Sabine L Flitsch
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
15
|
Wehner JW, Weissenborn MJ, Hartmann M, Gray CJ, Šardzík R, Eyers CE, Flitsch SL, Lindhorst TK. Dual purpose S-trityl-linkers for glycoarray fabrication on both polystyrene and gold. Org Biomol Chem 2012; 10:8919-26. [DOI: 10.1039/c2ob26118a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Fang Y, Xu W, Wu J, Xu ZK. Enzymatic transglycosylation of PEG brushes by β-galactosidase. Chem Commun (Camb) 2012; 48:11208-10. [DOI: 10.1039/c2cc35369e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
18
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Šardzík R, Sharma R, Kaloo S, Voglmeir J, Crocker PR, Flitsch SL. Chemoenzymatic synthesis of sialooligosaccharides on arrays for studies of cell surface adhesion. Chem Commun (Camb) 2011; 47:5425-7. [PMID: 21468399 PMCID: PMC3252816 DOI: 10.1039/c1cc10745c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/17/2011] [Indexed: 11/21/2022]
Abstract
Sialooligosaccharides were generated by direct enzymatic glycosylation on arrays and the resulting surfaces were suitable for the study of carbohydrate-specific cell adhesion.
Collapse
Affiliation(s)
- Róbert Šardzík
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| | - Ritu Sharma
- College of Life Sciences , University of Dundee , Dow Street , Dundee , DD1 5EH , UK
| | - Sara Kaloo
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| | - Josef Voglmeir
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| | - Paul R. Crocker
- College of Life Sciences , University of Dundee , Dow Street , Dundee , DD1 5EH , UK
| | - Sabine L. Flitsch
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| |
Collapse
|