1
|
Khan N, Graham T, Franciszkiewicz K, Bloch S, Nejman-Faleńczyk B, Wegrzyn A, Donaldson LW. The NMR structure of the Orf63 lytic developmental protein from lambda bacteriophage. Sci Rep 2024; 14:3793. [PMID: 38360900 PMCID: PMC10869804 DOI: 10.1038/s41598-024-54508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
The orf63 gene resides in a region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed during infection. In lambda phage and Shiga toxin (Stx) producing phages found in enterohemorrhagic Escherichia coli (EHEC) associated with food poisoning, Orf63 expression reduces the host survival and hastens the period between infection and lysis thereby giving it pro-lytic qualities. The NMR structure of dimeric Orf63 reveals a fold consisting of two helices and one strand that all make extensive intermolecular contacts. Structure-based data mining failed to identify any Orf63 homolog beyond the family of temperate bacteriophages. A machine learning approach was used to design an amphipathic helical ligand that bound a hydrophobic cleft on Orf63 with micromolar affinity. This approach may open a new path towards designing therapeutics that antagonize the contributions of Stx phages in EHEC outbreaks.
Collapse
Affiliation(s)
- Naushaba Khan
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Tavawn Graham
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | | | - Sylwia Bloch
- Department of Molecular Biology, University of Gdańsk, 80-308, Gdańsk, Poland
| | | | - Alicja Wegrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdańsk, 80-822, Gdańsk, Poland
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
2
|
Huang L, Tam KS, Xie W. Structural and Biochemical Studies of the Novel Hexameric Endoribonuclease YicC. ACS Chem Biol 2023; 18:1738-1747. [PMID: 37535940 DOI: 10.1021/acschembio.3c00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The decay of mRNA is an essential process to bacteria. The newly identified E. coli protein YicC is a founding member of the UPF0701 family, and biochemical studies indicated that it is an RNase involved in mRNA degradation. However, its biochemical properties and catalytic mechanism are poorly understood. Here, we report the crystal structure of YicC, which shows an extended shape consisting of modular domains. While the backbone trace of the monomer forms a unique, nearly closed loop, the three monomers present in the asymmetric unit make a "shoulder-by-shoulder" trimer. In vitro RNA cleavage assays indicated that this endoribonuclease mainly recognizes the consensus GUG motif, with a preference for an extended CGUG sequence. Additionally, the active enzyme exists as a hexamer in solution and assumes a funnel shape. Structural analysis indicated that the hexamer interface is mainly formed by the hexamerization domain consisting of D71-D124 and that the disruption of the oligomeric form greatly diminished the enzymatic activity. By studying the surface charge potential and the sequence conservation, we identified a series of residues that play critical functional roles, which helps to reveal the catalytic mechanism of this divalent metal-ion-dependent RNase. Last but not least, we discovered that the catalytic domain of YicC did not share similarity with any known nuclease fold, suggesting that the enzyme adopts a novel fold to perform its catalysis and in vivo functions. In summary, our investigations into YicC provide an in-depth understanding of the functions of the UPF0701 protein family and the DUF1732 domain in general.
Collapse
Affiliation(s)
- Lin Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - King Sing Tam
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
3
|
Stenum TS, Kumar AD, Sandbaumhüter FA, Kjellin J, Jerlström-Hultqvist J, Andrén PE, Koskiniemi S, Jansson E, Holmqvist E. RNA interactome capture in Escherichia coli globally identifies RNA-binding proteins. Nucleic Acids Res 2023; 51:4572-4587. [PMID: 36987847 PMCID: PMC10201417 DOI: 10.1093/nar/gkad216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.
Collapse
Affiliation(s)
- Thomas Søndergaard Stenum
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Ankith D Kumar
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Friederike A Sandbaumhüter
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Sanna Koskiniemi
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Erik T Jansson
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Erik Holmqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
4
|
Ingle S, Chhabra S, Chen J, Lazarus MB, Luo X, Bechhofer DH. Discovery and initial characterization of YloC, a novel endoribonuclease in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2022; 28:227-238. [PMID: 34815358 PMCID: PMC8906540 DOI: 10.1261/rna.078962.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.
Collapse
Affiliation(s)
- Shakti Ingle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Shivani Chhabra
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B Lazarus
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Xing Luo
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
5
|
Martins D, DiCandia MA, Mendes AL, Wetzel D, McBride SM, Henriques AO, Serrano M. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Sci Rep 2021; 11:7887. [PMID: 33846410 PMCID: PMC8041843 DOI: 10.1038/s41598-021-86878-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50-60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment.
Collapse
Affiliation(s)
- Diogo Martins
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal
| | - Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aristides L Mendes
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal
| | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriano O Henriques
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
6
|
Vior NM, Cea-Torrescassana E, Eyles TH, Chandra G, Truman AW. Regulation of Bottromycin Biosynthesis Involves an Internal Transcriptional Start Site and a Cluster-Situated Modulator. Front Microbiol 2020; 11:495. [PMID: 32273872 PMCID: PMC7113386 DOI: 10.3389/fmicb.2020.00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/06/2020] [Indexed: 01/18/2023] Open
Abstract
Bottromycin is a ribosomally synthesized and post-translationally modified peptide (RiPP) produced by several streptomycetes, including the plant pathogen Streptomyces scabies. There is significant interest in this molecule as it possesses strong antibacterial activity against clinically relevant multidrug resistant pathogens and is structurally distinct from all other antibiotics. However, studies into its efficacy are hampered by poor yields. An understanding of how bottromycin biosynthesis is regulated could aid the development of strategies to increase titres. Here, we use 5′-tag-RNA-seq to identify the transcriptional organization of the gene cluster, which includes an internal transcriptional start site that precedes btmD, the gene that encodes the bottromycin precursor peptide. We show that the gene cluster does not encode a master regulator that controls pathway expression and instead encodes a regulatory gene, btmL, which functions as a modulator that specifically affects the expression of btmD but not genes up- or downstream of btmD. In order to identify non-cluster associated proteins involved in regulation, proteins were identified that bind to the main promoter of the pathway, which precedes btmC. This study provides insights into how this deceptively complex pathway is regulated in the absence of a pathway specific master regulator, and how it might coordinate with the central metabolism of the cell.
Collapse
Affiliation(s)
- Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Tom H Eyles
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
7
|
Kriel NL, Heunis T, Sampson SL, Gey van Pittius NC, Williams MJ, Warren RM. Identifying nucleic acid-associated proteins in Mycobacterium smegmatis by mass spectrometry-based proteomics. BMC Mol Cell Biol 2020; 21:19. [PMID: 32293251 PMCID: PMC7092591 DOI: 10.1186/s12860-020-00261-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptional responses required to maintain cellular homeostasis or to adapt to environmental stress, is in part mediated by several nucleic-acid associated proteins. In this study, we sought to establish an affinity purification-mass spectrometry (AP-MS) approach that would enable the collective identification of nucleic acid-associated proteins in mycobacteria. We hypothesized that targeting the RNA polymerase complex through affinity purification would allow for the identification of RNA- and DNA-associated proteins that not only maintain the bacterial chromosome but also enable transcription and translation. RESULTS AP-MS analysis of the RNA polymerase β-subunit cross-linked to nucleic acids identified 275 putative nucleic acid-associated proteins in the model organism Mycobacterium smegmatis under standard culturing conditions. The AP-MS approach successfully identified proteins that are known to make up the RNA polymerase complex, as well as several other known RNA polymerase complex-associated proteins such as a DNA polymerase, sigma factors, transcriptional regulators, and helicases. Gene ontology enrichment analysis of the identified proteins revealed that this approach selected for proteins with GO terms associated with nucleic acids and cellular metabolism. Importantly, we identified several proteins of unknown function not previously known to be associated with nucleic acids. Validation of several candidate nucleic acid-associated proteins demonstrated for the first time DNA association of ectopically expressed MSMEG_1060, MSMEG_2695 and MSMEG_4306 through affinity purification. CONCLUSIONS Effective identification of nucleic acid-associated proteins, which make up the RNA polymerase complex as well as other DNA- and RNA-associated proteins, was facilitated by affinity purification of the RNA polymerase β-subunit in M. smegmatis. The successful identification of several transcriptional regulators suggest that our approach could be sensitive enough to investigate the nucleic acid-associated proteins that maintain cellular functions and mediate transcriptional and translational change in response to environmental stress.
Collapse
Affiliation(s)
- Nastassja L Kriel
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa.
| | - Tiaan Heunis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Samantha L Sampson
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Nico C Gey van Pittius
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Monique J Williams
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
- Present address: Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
8
|
Tarry MJ, Harmel C, Taylor JA, Marczynski GT, Schmeing TM. Structures of GapR reveal a central channel which could accommodate B-DNA. Sci Rep 2019; 9:16679. [PMID: 31723182 PMCID: PMC6853979 DOI: 10.1038/s41598-019-52964-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/25/2019] [Indexed: 12/04/2022] Open
Abstract
GapR is a nucleoid-associated protein required for the cell cycle of Caulobacter cresentus. We have determined new crystal structures of GapR to high resolution. As in a recently published structure, a GapR monomer folds into one long N-terminal α helix and two shorter α helices, and assembles into a tetrameric ring with a closed, positively charged, central channel. In contrast to the conclusions drawn from the published structures, we observe that the central channel of the tetramer presented here could freely accommodate B-DNA. Mutation of six conserved lysine residues lining the cavity and electrophoretic mobility gel shift experiments confirmed their role in DNA binding and the channel as the site of DNA binding. Although present in our crystals, DNA could not be observed in the electron density maps, suggesting that DNA binding is non-specific, which could be important for tetramer-ring translocation along the chromosome. In conjunction with previous GapR structures we propose a model for DNA binding and translocation that explains key published observations on GapR and its biological functions.
Collapse
Affiliation(s)
- Michael J Tarry
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Christoph Harmel
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - James A Taylor
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth 15 Road, Ottawa, ON, K1H 8L1, Canada
| | - Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
9
|
Kim WS, Shin MK, Shin SJ. MAP1981c, a Putative Nucleic Acid-Binding Protein, Produced by Mycobacterium avium subsp. paratuberculosis, Induces Maturation of Dendritic Cells and Th1-Polarization. Front Cell Infect Microbiol 2018; 8:206. [PMID: 29977867 PMCID: PMC6021526 DOI: 10.3389/fcimb.2018.00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative pathogen of chronic granulomatous enteropathy (Johne's disease) in animals, and has been focused on its association with various autoimmune diseases in humans, including Crohn's disease. The discovery of novel mycobacterial antigens and exploring their role in host immunity can contribute to the advancement of effective defense strategies including vaccines and diagnostic tools. In a preliminary study, we identified cellular extract proteins of MAP that strongly react with the blood of patients with Crohn's disease. In particular, MAP1981c, a putative nucleic acid-binding protein, showed high expression levels and strong reactivity to IgG and IgM in the sera of patients. Here, we investigated the immunological features of MAP1981c and focused on its interaction with dendritic cells (DCs), confirming its immunomodulatory ability. MAP1981c was shown to recognize Toll-like receptor (TLR) 4, and induce DC maturation and activation by increasing the expression of co-stimulatory (CD80 and CD86) and MHC class I/II molecules and the secretion of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in DCs. This DC activation by MAP1981c was mediated by downstream signaling of TLR4 via MyD88- and TRIF-, MAP kinase-, and NF-κB-dependent signaling pathways. In addition, MAP1981c-treated DCs activated naïve T cells and induced the differentiation of CD4+ and CD8+ T cells to express T-bet, IFN-γ, and/or IL-2, but not GATA-3 and IL-4, thus indicating that MAP1981c contributes to Th1-type immune responses both in vitro and in vivo. Taken together, these results suggest that MAP1981c is a novel immunocompetent antigen that induces DC maturation and a Th1-biased response upon DC activation, suggesting that MAP1981c can be an effective vaccine and diagnostic target.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Kumar A, Karthikeyan S. Crystal structure of the MSMEG_4306 gene product from Mycobacterium smegmatis. Acta Crystallogr F Struct Biol Commun 2018; 74:166-173. [PMID: 29497021 PMCID: PMC5947703 DOI: 10.1107/s2053230x18002236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
The MSMEG_4306 gene from Mycobacterium smegmatis encodes a protein of unknown function with 242 amino-acid residues that contains a conserved zinc-ribbon domain at its C-terminus. Here, the crystal structure of MSMEG_4306 determined by the single-wavelength anomalous dispersion method using just one zinc ion co-purified with the protein is reported. The crystal structure of MSMEG_4306 shows a coiled-coil helix domain in the N-terminal region and a zinc-ribbon domain in the C-terminal region. A structural similarity search against the Protein Data Bank using MSMEG_4306 as a query revealed two similar structures, namely CT398 from Chlamydia trachomatis and HP0958 from Helicobacter pylori, although they share only ∼15% sequence identity with MSMEG_4306. Based on comparative analysis, it is predicted that MSMEG_4306 may be involved in secretion systems, possibly by interacting with multiple proteins or nucleic acids.
Collapse
Affiliation(s)
- Adarsh Kumar
- CSIR – Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160 036, India
| | - Subramanian Karthikeyan
- CSIR – Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160 036, India
| |
Collapse
|
11
|
Bartholomae M, Buivydas A, Viel JH, Montalbán-López M, Kuipers OP. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol Microbiol 2017; 106:186-206. [DOI: 10.1111/mmi.13764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Andrius Buivydas
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology; University of Granada, C. Fuentenueva s/n; 18071 Granada Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| |
Collapse
|
12
|
Porto W, Pires A, Franco O. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol Adv 2017; 35:337-349. [DOI: 10.1016/j.biotechadv.2017.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
|
13
|
Arias-Cartin R, Dobihal GS, Campos M, Surovtsev IV, Parry B, Jacobs-Wagner C. Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in Caulobacter. EMBO J 2016; 36:301-318. [PMID: 28011580 DOI: 10.15252/embj.201695513] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
In bacteria, chromosome dynamics and gene expression are modulated by nucleoid-associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation. GapR also affects global gene expression with a chromosomal bias from origin to terminus, which is associated with a similar general bias in GapR binding activity along the chromosome. Strikingly, this asymmetric localization cannot be explained by the distribution of GapR binding sites on the chromosome. Instead, we present a mechanistic model in which the spatiotemporal dynamics of GapR are primarily driven by the progression of the replication forks. This model represents a simple mechanism of cell cycle regulation, in which DNA-binding activity is intimately linked to the action of DNA replication.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Genevieve S Dobihal
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Bradley Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale Medical School, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Barta ML, Battaile KP, Lovell S, Hefty PS. Hypothetical protein CT398 (CdsZ) interacts with σ(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis. Protein Sci 2015; 24:1617-32. [PMID: 26173998 DOI: 10.1002/pro.2746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
A significant challenge to bacteriology is the relatively large proportion of proteins that lack sufficient sequence similarity to support functional annotation (i.e. hypothetical proteins). The aim of this study was to apply protein structural homology to gain insights into a candidate protein of unknown function (CT398) within the medically important, obligate intracellular bacterium Chlamydia trachomatis. C. trachomatis is a major human pathogen responsible for numerous infections throughout the world that can lead to blindness and infertility. A 2.12 Å crystal structure of hypothetical protein CT398 was determined that was comprised of N-terminal coiled-coil and C-terminal Zn-ribbon domains. The structure of CT398 displayed a high degree of structural similarity to FlgZ (Flagellar-associated zinc-ribbon domain protein) from Helicobacter pylori. This observation directed analyses of candidate protein partners of CT398, revealing interactions with two paralogous type III secretion system (T3SS) ATPase-regulators (CdsL and FliH) and the alternative sigma factor RpoN (σ(54) ). Furthermore, genetic introduction of a conditional expression, affinity-tagged construct into C. trachomatis enabled the purification of a CT398-RpoN-holoenzyme complex, suggesting a potential role for CT398 in modulating transcriptional activity during infection. The interactions reported here, in tandem with previous FlgZ studies in H. pylori, indicate that CT398 functions as a regulator of several key areas of chlamydial biology throughout the developmental cycle. Accordingly, we propose that CT398 be named CdsZ (Contact-dependent secretion-associated zinc-ribbon domain protein).
Collapse
Affiliation(s)
- Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66045
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| |
Collapse
|
15
|
Ishizuka A, Hasegawa Y, Ishida K, Yanaka K, Nakagawa S. Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cells 2015; 19:704-21. [PMID: 25145264 PMCID: PMC4255692 DOI: 10.1111/gtc.12169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 06/28/2014] [Indexed: 12/19/2022]
Abstract
Gomafu/MIAT/Rncr2 is a long noncoding RNA that has been proposed to control retinal cell specification, stem cell differentiation and alternative splicing of schizophrenia-related genes. However, how Gomafu controls these biological processes at the molecular level has remained largely unknown. In this study, we identified the RNA-binding protein Celf3 as a novel Gomafu-associating protein. Knockdown of Celf3 led to the down-regulation of Gomafu, and cross-link RNA precipitation analysis confirmed specific binding between Celf3 and Gomafu. In the neuroblastoma cell line Neuro2A, Celf3 formed novel nuclear bodies (named CS bodies) that colocalized with SF1, another Gomafu-binding protein. Gomafu, however, was not enriched in the CS bodies; instead, it formed distinct nuclear bodies in separate regions in the nucleus. These observations suggest that Gomafu indirectly modulates the function of the splicing factors SF1 and Celf3 by sequestering these proteins into separate nuclear bodies.
Collapse
Affiliation(s)
- Akira Ishizuka
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
16
|
Martín-Galiano AJ, Yuste J, Cercenado MI, de la Campa AG. Inspecting the potential physiological and biomedical value of 44 conserved uncharacterised proteins of Streptococcus pneumoniae. BMC Genomics 2014; 15:652. [PMID: 25096389 PMCID: PMC4143570 DOI: 10.1186/1471-2164-15-652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The major Gram-positive coccoid pathogens cause similar invasive diseases and show high rates of antimicrobial resistance. Uncharacterised proteins shared by these organisms may be involved in virulence or be targets for antimicrobial therapy. RESULTS Forty four uncharacterised proteins from Streptococcus pneumoniae with homologues in Enterococcus faecalis and/or Staphylococcus aureus were selected for analysis. These proteins showed differences in terms of sequence conservation and number of interacting partners. Twenty eight of these proteins were monodomain proteins and 16 were modular, involving domain combinations and, in many cases, predicted unstructured regions. The genes coding for four of these 44 proteins were essential. Genomic and structural studies showed one of the four essential genes to code for a promising antibacterial target. The strongest impact of gene removal was on monodomain proteins showing high sequence conservation and/or interactions with many other proteins. Eleven out of 40 knockouts (one for each gene) showed growth delay and 10 knockouts presented a chaining phenotype. Five of these chaining mutants showed a lack of putative DNA-binding proteins. This suggest this phenotype results from a loss of overall transcription regulation. Five knockouts showed defective autolysis in response to penicillin and vancomycin, and attenuated virulence in an animal model of sepsis. CONCLUSIONS Uncharacterised proteins make up a reservoir of polypeptides of different physiological importance and biomedical potential. A promising antibacterial target was identified. Five of the 44 examined proteins seemed to be virulence factors.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Yuste
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María I Cercenado
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Adela G de la Campa
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- />Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Mello LV, Rigden DJ. A new family of bacterial DNA repair proteins annotated by the integration of non-homology, distant homology and structural bioinformatic methods. FEBS Lett 2012; 586:3908-13. [DOI: 10.1016/j.febslet.2012.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
18
|
Crone WJK, Leeper FJ, Truman AW. Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides. Chem Sci 2012. [DOI: 10.1039/c2sc21190d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|