1
|
Kruczek M, Gumul D, Korus A, Buksa K, Ziobro R. Phenolic Compounds and Antioxidant Status of Cookies Supplemented with Apple Pomace. Antioxidants (Basel) 2023; 12:antiox12020324. [PMID: 36829883 PMCID: PMC9952554 DOI: 10.3390/antiox12020324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The post-production leftovers after the pressing of apple juice are a rich source of health-promoting compounds, which could be used in the food industry for the manufacture of dietary foods, applicable also for people with celiac disease. This raw material is currently little used, and the cost of its disposal is considerable. Therefore, an attempt was made to enrich gluten-free cookies with different proportions of apple pomace. The content of individual polyphenols determined by the UPLC-PDA-MS/MS method, basic chemical composition, physical properties of cookies with 15%, 30%, 45%, and 60% apple pomace, were evaluated. It was found that apple pomace in gluten-free cookies caused an increase in the content of phenolic acids, quercetin derivatives, flavan-3-ols and dihydrochalcones. An elevation in protein, fat, and minerals was also observed. The growing share of apple pomace caused a significant increase in the content of total fiber, soluble, and insoluble fractions, but resulted in an increase in the hardness and darkening of the cookies while reducing their volume.
Collapse
Affiliation(s)
- Marek Kruczek
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Anna Korus
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Krzysztof Buksa
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Rafał Ziobro
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence:
| |
Collapse
|
2
|
Martínez-Pinteño A, Gassó P, Prohens L, Segura AG, Parellada M, Saiz-Ruiz J, Cuesta MJ, Bernardo M, Lafuente A, Mas S, Rodríguez N. Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data. Front Pharmacol 2021; 12:729474. [PMID: 34483940 PMCID: PMC8414590 DOI: 10.3389/fphar.2021.729474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
Antipsychotics (APs) are associated with weight gain and other metabolic abnormalities such as hyperglycemia, dyslipidemia and metabolic syndrome. This translational study aimed to uncover the underlying molecular mechanisms and identify the key genes involved in AP-induced metabolic effects. An integrative gene expression analysis was performed in four different mouse tissues (striatum, liver, pancreas and adipose) after risperidone or olanzapine treatment. The analytical approach combined the identification of the gene co-expression modules related to AP treatment, gene set enrichment analysis and protein-protein interaction network construction. We found several co-expression modules of genes involved in glucose and lipid homeostasis, hormone regulation and other processes related to metabolic impairment. Among these genes, EP300, which encodes an acetyltransferase involved in transcriptional regulation, was identified as the most important hub gene overlapping the networks of both APs. Then, we explored the genetically predicted EP300 expression levels in a cohort of 226 patients with first-episode psychosis who were being treated with APs to further assess the association of this gene with metabolic alterations. The EP300 expression levels were significantly associated with increases in body weight, body mass index, total cholesterol levels, low-density lipoprotein cholesterol levels and triglyceride concentrations after 6 months of AP treatment. Taken together, our analysis identified EP300 as a key gene in AP-induced metabolic abnormalities, indicating that the dysregulation of EP300 function could be important in the development of these side effects. However, more studies are needed to disentangle the role of this gene in the mechanism of action of APs.
Collapse
Affiliation(s)
- Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Llucia Prohens
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Alex G Segura
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - Manuel J Cuesta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miguel Bernardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Santosh Kumar HS, Kumar V, Pattar S, Telkar S. Towards the construction of an interactome for Human WD40 protein family. Bioinformation 2016; 12:54-61. [PMID: 28104961 PMCID: PMC5237648 DOI: 10.6026/97320630012054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
WD40 proteins are involved in a variety of protein-protein interactions as part of a multi-protein assembly modulating diverse and critical cellular process. It is known that several proteins of this family have been implicated in different disorders such as developmental abnormalities and cancer. However, molecular functions of many proteins in this family are yet unknown and it is of clinical interest. Therefore, it is of interest to define, construct, understand, analyze, evaluate, redefine and refine an interactome for WD40 protein family. We used data from literature mining using Cytoscape followed by linear regression analysis between Betweenness centrality and stress scores to define a model to filter the nodes in a representative WD40 interactome construction. We identified 10 ranked nodes in this analysis and subsequent microarray data selected three of them in insulin resistance that is further demonstrated in HepG2 cell culture models. We also observed the expression of GRWD1, RBBP5 and WDR5 genes during perturbation. Thus, we report hub nodes of WD40 interactome in insulin resistance. It should be noted that the pipeline using protein interaction network help find new proteins of clinical importance.
Collapse
Affiliation(s)
| | - Vadlapudi Kumar
- Department of Biochemistry, Davanagere University, Shivagangothri, Davanagere - 577002, Karnataka, India
| | - Sharath Pattar
- National Bureau of Agriculturally Important Insects, Hebbal, Bengaluru, Karnataka, India
| | - Sandeep Telkar
- Department of Biotechnology and Bioinformatics, Kuvempu University,Shankaraghatta - 577451, Karnataka, India
| |
Collapse
|
4
|
Rana S, Bhushan S. Apple phenolics as nutraceuticals: assessment, analysis and application. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:1727-38. [PMID: 27413201 PMCID: PMC4926896 DOI: 10.1007/s13197-015-2093-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/20/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
Humankind is presently engulfed by convenience quench, modern life style and urbanized diet system leading to progression in array of health disorders. The past decade confronted cardiometabolic disorder (21.8 %), lower respiratory and chronic obstructive lung disease (12.5 %) as the major causes of death world over. In anticipation, scientific communities' have demonstrated the role of healthy diets, especially those rich in fruits and vegetables, for management of such health related issues. These horticultural crops are considered as a good source of polyphenols such as dihydrochalcones, flavanols, flavonols, anthocyanins and phenolic acids. The present article reviews the efforts made to assess the potential of apple phenolic compounds present in fresh fruits, leaves, bark and pomace as dietary polyphenols. Considering the positive impact of such phytochemicals on human health, various nutraceuticals, dietary supplements and phenolic-rich food products are presently available on market shelves. On analytical front, improved instrumentation based on liquid chromatography (HPLC, UPLC, LC/MS/MS) have made the assessment of phenolics more rapid and reliable. Thus, owing to the emergent interest in natural compounds, it is pertinent to discuss the latest significant research findings on therapeutic aspects along with probable metabolic mechanisms of dietary polyphenols found in apples and their implications on human health.
Collapse
Affiliation(s)
- Shalika Rana
- />Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
- />Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| | - Shashi Bhushan
- />Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
- />Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| |
Collapse
|