1
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:12063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Yu X, Xu J. A 'Goldmine' for digging cancer-specific targets: the genes essential for embryo development but non-essential for adult life. J Mol Cell Biol 2021; 12:669-673. [PMID: 32470104 PMCID: PMC7749735 DOI: 10.1093/jmcb/mjaa024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Wu Q, Berglund AE, Etame AB. The Impact of Epigenetic Modifications on Adaptive Resistance Evolution in Glioblastoma. Int J Mol Sci 2021; 22:8324. [PMID: 34361090 PMCID: PMC8347012 DOI: 10.3390/ijms22158324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide (TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenetically dependent and often short-lived secondary to tumor resistance. Therapies that can provide synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adaptive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications. Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic modifications associated with GBM resistance is of utmost priority. In this review, we summarize the latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM to therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
4
|
Zhang L, Wang D, Han X, Tang F, Gao D. Mechanism of methylation and acetylation of high GDNF transcription in glioma cells: A review. Heliyon 2019; 5:e01951. [PMID: 31294105 PMCID: PMC6595186 DOI: 10.1016/j.heliyon.2019.e01951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most common primary malignant tumors in the central nervous system. High expression of glial cell line-derived neurotrophic factor (GDNF) is an important prerequisite for the initiation and development of gliomas. However, the underlying transcription mechanism is poorly understood. Epigenetic alterations are common and important hallmarks of various types of tumors, and lead to abnormal expression of genes. Several recent studies have suggested that epigenetic modifications contribute to increased GDNF transcription. Specifically, aberrant DNA methylation and histone acetylation in the promoter regions of GDNF are related to high GDNF transcription in glioma cells, where transcription factors have extremely important roles. Therefore, elucidating the importance and features of this underlying molecular mechanism will enhance our understanding and provide clues for the accurate diagnosis and efficacious treatment of gliomas. This review summarizes the latest thinking on the potential epigenetic mechanisms of high expression of GDNF in glioma cells focusing primarily on DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Lin Zhang
- School of Nursing of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China.,Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Dan Wang
- School of Medical Information of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Xiao Han
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Furong Tang
- Department of Psychiatry of Xuzhou Oriental People's Hospital, Xuzhou, Jiangsu province, 221004, China
| | - Dianshuai Gao
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| |
Collapse
|
5
|
Shafi A, Nguyen T, Peyvandipour A, Nguyen H, Draghici S. A Multi-Cohort and Multi-Omics Meta-Analysis Framework to Identify Network-Based Gene Signatures. Front Genet 2019; 10:159. [PMID: 30941158 PMCID: PMC6434849 DOI: 10.3389/fgene.2019.00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Although massive amounts of condition-specific molecular profiles are being accumulated in public repositories every day, meaningful interpretation of these data remains a major challenge. In an effort to identify the biomarkers that describe the key biological phenomena for a given condition, several approaches have been developed over the past few years. However, the majority of these approaches either (i) do not consider the known intermolecular interactions, or (ii) do not integrate molecular data of multiple types (e.g., genomics, transcriptomics, proteomics, epigenomics, etc.), and thus potentially fail to capture the true biological changes responsible for complex diseases (e.g., cancer). In addition, these approaches often ignore the heterogeneity and study bias present in independent molecular cohorts. In this manuscript, we propose a novel multi-cohort and multi-omics meta-analysis framework that overcomes all three limitations mentioned above in order to identify robust molecular subnetworks that capture the key dynamic nature of a given biological condition. Our framework integrates multiple independent gene expression studies, unmatched DNA methylation studies, and protein-protein interactions to identify methylation-driven subnetworks. We demonstrate the proposed framework by constructing subnetworks related to two complex diseases: glioblastoma and low-grade gliomas. We validate the identified subnetworks by showing their ability to predict patients' clinical outcome on multiple independent validation cohorts.
Collapse
Affiliation(s)
- Adib Shafi
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Azam Peyvandipour
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
6
|
Wallace TC, Bultman S, D'Adamo C, Daniel CR, Debelius J, Ho E, Eliassen H, Lemanne D, Mukherjee P, Seyfried TN, Tian Q, Vahdat LT. Personalized Nutrition in Disrupting Cancer - Proceedings From the 2017 American College of Nutrition Annual Meeting. J Am Coll Nutr 2018; 38:1-14. [PMID: 30511901 DOI: 10.1080/07315724.2018.1500499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is a major public health problem and is the second leading cause of death in the United States and worldwide; nearly one in six deaths are attributable to cancer. Approximately 20% of all cancers diagnosed in the United States are attributable to unhealthy diet, excessive alcohol consumption, physical inactivity, and body fatness. Individual cancers are distinct disease states that are multifactorial in their causation, making them exceedingly cumbersome to study from a nutrition standpoint. Genetic influences are a major piece of the puzzle and personalized nutrition is likely to be most effective in disrupting cancer during all stages. Increasing evidence shows that after a cancer diagnosis, continuing standard dietary recommendations may not be appropriate. This is because powerful dietary interventions such as short-term fasting and carbohydrate restriction can disrupt tumor metabolism, synergizing with standard therapies such as radiation and drug therapy to improve efficacy and ultimately, cancer survival. The importance of identifying dietary interventions cannot be overstated, and the American College of Nutrition's commitment to advancing knowledge and research is evidenced by dedication of the 2017 ACN Annual Meeting to "Disrupting Cancer: The Role of Personalized Nutrition" and this resulting proceedings manuscript, which summarizes the meeting's findings.
Collapse
Affiliation(s)
- Taylor C Wallace
- a Department of Nutrition and Food Studies , George Mason University , Fairfax, VA , USA.,b Think Healthy Group, Inc , Washington, DC , USA
| | - Scott Bultman
- c Department of Genetics, University of North Carolina School of Medicine
| | - Chris D'Adamo
- d Departments of Family and Community Medicine and Epidemiology and Public Health , Center for Integrative Medicine, University of Maryland School of Medicine
| | - Carrie R Daniel
- e Department of Epidemiology, Division of Cancer Prevention and Population Sciences , The University of Texas MD Anderson Cancer Center
| | - Justine Debelius
- f Department of Medical Epidemiology and Biostatistics , Karolinska Institute , Stockholm , Sweden
| | - Emily Ho
- g Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University
| | - Heather Eliassen
- h Channing Division of Network Medicine , Brigham and Women's Hospital and Harvard Medical School.,i Harvard T.H. Chan School of Public Health
| | - Dawn Lemanne
- j Department of Medicine , University of Arizona , Tucson.,k National Institute of Integrative Medicine , Melbourne , Australia.,l Oregon Integrative Oncology , Ashland , Oregon
| | | | | | - Qiang Tian
- n Institute for Systems Biology, P4 Medicine Institute
| | | |
Collapse
|
7
|
Zhang Y, Zhang T, Chen Y. Comprehensive Analysis of Gene Expression Profiles and DNA Methylome reveals Oas1, Ppie, Polr2g as Pathogenic Target Genes of Gestational Diabetes Mellitus. Sci Rep 2018; 8:16244. [PMID: 30389953 PMCID: PMC6215015 DOI: 10.1038/s41598-018-34292-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) has a high incidence of pregnancy, which seriously affects the life quality of pregnant women and fetal health. DNA methylation is one of the most important epigenetic modification that can regulate the gene expression level, and thus affect the occurrence of various diseases. Increasing evidence has shown that gene expression changes caused by DNA methylation play an important role in metabolic diseases. Here we explored the mechanisms and biological processes that affect the occurrence and development of GDM through analyzing the gene expression profiles and DNA methylation data of GDM. We detected 24,577 differential CpG sites mapping to 9339 genes (DMGs, differential methylation gene) and 931 differential expressed genes (DEGs) between normal samples and GDM samples. GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of 326 overlapping genes between DMGs and DEGs showed obvious enrichment in terms related to metabolic disorders and immune responses. We identified Oas1, Ppie, Polr2g as possible pathogenic target genes of GDM by combining protein-protein interaction analysis. Our study provides possible targets for early diagnosis of GDM and information for clinical prevention of abnormal fetal development and type 2 diabetes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics & Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Tiancheng Zhang
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research (SIPPR), Fudan University Reproduction and Development Institution, Shanghai, China
| | - Yunyan Chen
- Department of Obstetrics & Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China.
| |
Collapse
|
8
|
Iwadate Y, Suganami A, Tamura Y, Matsutani T, Hirono S, Shinozaki N, Hiwasa T, Takiguchi M, Saeki N. The Pluripotent Stem-Cell Marker Alkaline Phosphatase is Highly Expressed in Refractory Glioblastoma with DNA Hypomethylation. Neurosurgery 2018; 80:248-256. [PMID: 28173571 DOI: 10.1093/neuros/nyw026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/27/2016] [Indexed: 11/14/2022] Open
Abstract
Background Hypomethylation of genomic DNA induces stem-cell properties in cancer cells and contributes to the treatment resistance of various malignancies. Objective To examine the correlation between the methylation status of stem-cell-related genes and the treatment outcomes in patients with glioblastoma (GBM). Methods The genome-wide DNA methylation status was determined using HumanMethylation450 BeadChips, and the methylation status was compared between a group of patients with good prognosis (survival > 4 yr) and a group with poor prognosis (survival < 1 yr). Immunohistochemistry for proteins translated from hypomethylated genes, including alkaline phosphatase (ALPL), CD133, and CD44, was performed in 70 GBMs and 60 oligodendroglial tumors. Results The genomic DNA in refractory GBM was more hypomethylated than in GBM from patients with relatively long survival (P = .0111). Stem-cell-related genes including ALPL, CD133, and CD44 were also significantly hypomethylated. A validation study using immunohistochemistry showed that DNA hypomethylation was strongly correlated with high protein expression of ALPL, CD133, and CD44. GBM patients with short survival showed high expression of these stem-cell markers. Multivariate analysis confirmed that co-expression of ALPL + CD133 or ALPL + CD44 was a strong predictor of short survival. Anaplastic oligodendroglial tumors without isocitrate dehydrogenase 1 mutation were significantly correlated with high ALPL expression and poor survival. Conclusion Accumulation of stem-cell properties due to aberrant DNA hypomethylation is associated with the refractory nature of GBM.
Collapse
Affiliation(s)
- Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Seiichiro Hirono
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Natsuki Shinozaki
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Takiguchi
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naokatsu Saeki
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
9
|
Gastric Cancer With Primitive Enterocyte Phenotype: An Aggressive Subgroup of Intestinal-type Adenocarcinoma. Am J Surg Pathol 2017; 41:989-997. [PMID: 28505005 DOI: 10.1097/pas.0000000000000869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A primitive cell-like gene expression signature is associated with aggressive phenotypes of various cancers. We assessed the expression of phenotypic markers characterizing primitive cells and its correlation with clinicopathologic and molecular characteristics in gastric cancer. Immunohistochemical analysis of a panel of primitive phenotypic markers, including embryonic stem cell markers (OCT4, NANOG, SALL4, CLDN6, and LIN28) and known oncofetal proteins (AFP and GPC3), was performed using tissue microarray on 386 gastric cancers. On the basis of the expression profiles, the 386 tumors were clustered into 3 groups: group 1 (primitive phenotype, n=93): AFP, CLDN6, GPC3, or diffuse SALL4 positive; group 2 (SALL4-focal, n=56): only focal SALL4 positive; and group 3 (negative, n=237): all markers negative. Groups 1 and 2 predominantly consisted of intestinal-type adenocarcinoma, including 13 fetal gut-like adenocarcinomas exclusively in group 1. Group 1 was significantly associated with higher T-stage, presence of vascular invasion and nodal metastasis when compared with groups 2 and 3. Group 1 was associated with patients' poor prognosis and was an independent risk factor for disease-free survival. Group 1 showed frequent TP53 overexpression and little association with Epstein-Barr virus or mismatch repair deficiency. Further analysis of the Cancer Genome Atlas data set validated our observations and revealed that tumors with primitive phenotypes were mostly classified as "chromosomal instability" in the Cancer Genome Atlas' molecular classification. We identified gastric cancer with primitive enterocyte phenotypes as an aggressive subgroup of intestinal-type/chromosomal instability gastric cancer. Therapeutic strategies targeting primitive markers, such as GPC3, CLDN6, and SALL4, are highly promising.
Collapse
|
10
|
Riester M, Wu HJ, Zehir A, Gönen M, Moreira AL, Downey RJ, Michor F. Distance in cancer gene expression from stem cells predicts patient survival. PLoS One 2017; 12:e0173589. [PMID: 28333954 PMCID: PMC5363813 DOI: 10.1371/journal.pone.0173589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
The degree of histologic cellular differentiation of a cancer has been associated with prognosis but is subjectively assessed. We hypothesized that information about tumor differentiation of individual cancers could be derived objectively from cancer gene expression data, and would allow creation of a cancer phylogenetic framework that would correlate with clinical, histologic and molecular characteristics of the cancers, as well as predict prognosis. Here we utilized mRNA expression data from 4,413 patient samples with 7 diverse cancer histologies to explore the utility of ordering samples by their distance in gene expression from that of stem cells. A differentiation baseline was obtained by including expression data of human embryonic stem cells (hESC) and human mesenchymal stem cells (hMSC) for solid tumors, and of hESC and CD34+ cells for liquid tumors. We found that the correlation distance (the degree of similarity) between the gene expression profile of a tumor sample and that of stem cells orients cancers in a clinically coherent fashion. For all histologies analyzed (including carcinomas, sarcomas, and hematologic malignancies), patients with cancers with gene expression patterns most similar to that of stem cells had poorer overall survival. We also found that the genes in all undifferentiated cancers of diverse histologies that were most differentially expressed were associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes. Thus, a stem cell-oriented phylogeny of cancers allows for the derivation of a novel cancer gene expression signature found in all undifferentiated forms of diverse cancer histologies, that is competitive in predicting overall survival in cancer patients compared to previously published prediction models, and is coherent in that gene expression was associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes associated with regulation of the multicellular state.
Collapse
Affiliation(s)
- Markus Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Ahmet Zehir
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Andre L. Moreira
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Robert J. Downey
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
- * E-mail: (RJD); (FM)
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
- * E-mail: (RJD); (FM)
| |
Collapse
|
11
|
Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W, Hu G. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget 2017; 8:58231-58246. [PMID: 28938551 PMCID: PMC5601647 DOI: 10.18632/oncotarget.16447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin specific peptidase 44 (USP44) has been identified as an important component of spindle assemble checkpoint (SAC) to prevent the formation of aneuploidy. However, recent study raised a controversy about the effect of USP44 in tumor. Here, we first confirmed the intranuclear localization of USP44 by testing several specific antibodies to recognize endogenous USP44. Then, data from IHC and qRT-PCR assay indicated that the high expression of USP44 existed in high-grade glioma tissues and signified a poor prognosis. Knockdown of USP44 inhibited proliferation, migration and invasion, induced apoptosis, and arrested cell cycle in G2/M phase in the established glioma cell lines. Down-regulation of oncoprotein securin was detected in USP44 deficient cells, and the interaction of endogenous USP44 and securin was confirmed by immunoprecipitation in U251MG cells, which indicated that securin was a substrate of USP44, and might be stabilized by USP44. In vivo, knockdown of USP44 inhibited the tumorigenicity of U87MG cells significantly. Consequently, our findings suggested that overexpression of USP44 could enhance the malignancy of glioma via securin. USP44 might serve as a predictive biomarker, and the USP44-securin pathway might provide a new therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Yongxiang Zou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Guanzhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, PR China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Zheng Cai
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Wei Sun
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
12
|
Vymetalkova V, Vodicka P, Pardini B, Rosa F, Levy M, Schneiderova M, Liska V, Vodickova L, Nilsson TK, Farkas SA. Epigenome-wide analysis of DNA methylation reveals a rectal cancer-specific epigenomic signature. Epigenomics 2016; 8:1193-207. [DOI: 10.2217/epi-2016-0044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of the present study is to address a genome-wide search for novel methylation biomarkers in the rectal cancer (RC), as only scarce information on methylation profile is available. Materials & methods: We analyzed methylation status in 25 pairs of RC and adjacent healthy mucosa using the Illumina Human Methylation 450 BeadChip. Results: We found significantly aberrant methylation in 33 genes. After validation of our results by pyrosequencing, we found a good agreement with our findings. The BPIL3 and HBBP1 genes resulted hypomethylated in RC, whereas TIFPI2, ADHFE1, FLI1 and TLX1 were hypermethylated. An external validation by TCGA datasets confirmed the results. Conclusion: Our study, with external validation, has demonstrated the feasibility of using specific methylated DNA signatures for developing biomarkers in RC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | | | - Fabio Rosa
- Human Genetics Foundation, (HuGeF), Torino, Italy
| | - Miroslav Levy
- Department of Surgery, 1st Faculty of Medicine, Charles University & Thomayer Hospital, Prague, Czech Republic
| | | | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Department of Surgery, Teaching Hospital & Medical School in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | | | - Sanja A Farkas
- Department of Laboratory Medicine, Örebro University; Örebro, Sweden
| |
Collapse
|
13
|
Markwardt NA, Haj-Hosseini N, Hollnburger B, Stepp H, Zelenkov P, Rühm A. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. JOURNAL OF BIOPHOTONICS 2016; 9:901-12. [PMID: 26564058 DOI: 10.1002/jbio.201500195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 05/23/2023]
Abstract
Fluorescence diagnosis may be used to improve the safety and reliability of stereotactic brain tumor biopsies using biopsy needles with integrated fiber optics. Based on 5-aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence, vital tumor tissue can be localized in vivo during the excision procedure to reduce the number of necessary samples for a reliable diagnosis. In this study, the practical suitability of two different PpIX excitation wavelengths (405 nm, 633 nm) was investigated on optical phantoms. Violet excitation at 405 nm provides a 50-fold higher sensitivity for the bulk tumor; this factor increases up to 100 with decreasing fluorescent volume as shown by ray tracing simulations. Red excitation at 633 nm, however, is noticeably superior with regard to blood layers obscuring the fluorescence. Experimental results on the signal attenuation through blood layers of well-defined thicknesses could be confirmed by ray tracing simulations. Typical interstitial fiber probe measurements were mimicked on agarose-gel phantoms. Even in direct contact, blood layers of 20-40 µm between probe and tissue must be expected, obscuring 405-nm-excited PpIX fluorescence almost completely, but reducing the 633-nm-excited signal only by 25.5%. Thus, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy. PpIX signal attenuation through clinically relevant blood layers for 405 nm (violet) and 633 nm (red) excitation.
Collapse
Affiliation(s)
- Niklas A Markwardt
- Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany.
| | - Neda Haj-Hosseini
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Bastian Hollnburger
- Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany
| | | | - Adrian Rühm
- Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
14
|
Abstract
Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes.
Collapse
|
15
|
Singh V, Singh LC, Vasudevan M, Chattopadhyay I, Borthakar BB, Rai AK, Phukan RK, Sharma J, Mahanta J, Kataki AC, Kapur S, Saxena S. Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:688-99. [DOI: 10.1089/omi.2015.0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Virendra Singh
- National Institute of Pathology (ICMR), New Delhi, India
| | | | | | | | | | | | - Rup Kumar Phukan
- Regional Medical Research Centre (RMRC), Dibrugadh, Assam, India
| | | | - Jagadish Mahanta
- Regional Medical Research Centre (RMRC), Dibrugadh, Assam, India
| | | | - Sujala Kapur
- National Institute of Pathology (ICMR), New Delhi, India
| | - Sunita Saxena
- National Institute of Pathology (ICMR), New Delhi, India
| |
Collapse
|
16
|
Mehrian-Shai R, Yalon M, Simon AJ, Eyal E, Pismenyuk T, Moshe I, Constantini S, Toren A. High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genomics 2015; 8:68. [PMID: 26493598 PMCID: PMC4618994 DOI: 10.1186/s12920-015-0137-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor. Even with vigorous surgery, radiation and chemotherapy treatment, survival rates of GBM are very poor and predictive markers for prognosis are currently lacking. Methods We performed whole genome expression studies of 67 fresh frozen untreated GBM tumors and validated results by 210 GBM samples’ expression data from The Cancer Genome Atlas. Results and discussion Here we show that in GBM patients, high metallothionein (MT) expression is associated with poor survival whereas low MT levels correspond to good prognosis. Furthermore we show that in U87 GBM cell line, p53 is found to be in an inactive mutant-like conformation concurrently with more than 4 times higher MT3 expression level than normal astrocytes and U251GBM cell line. We then show that U87- p53 inactivity can be rescued by zinc (Zn). Conclusions Taken together, these data suggest that MT expression may be a potential novel prognostic biomarker for GBM, and that U87 cells may be a good model for patients with non active WT p53 resulting from high levels of MTs.
Collapse
Affiliation(s)
- Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Amos J Simon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Eran Eyal
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Tatyana Pismenyuk
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Itai Moshe
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Tel-Aviv, Israel.
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Sherwani SI, Khan HA. Role of 5-hydroxymethylcytosine in neurodegeneration. Gene 2015; 570:17-24. [PMID: 26115768 DOI: 10.1016/j.gene.2015.06.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
The recent discovery of 5-hydroxymethylcytosine (5hmC), an epigenetic modifier and oxidation product of 5-methylcytosine (5mC), has broadened the scope and understanding of neural development and neurodegenerative diseases. By virtue of their functional groups, 5mC and 5hmC exert opposite effects on gene expression; the former is generally associated with gene silencing whereas the latter is mainly involved in up-regulation of gene expression affecting the cellular processes such as differentiation, development, and aging. Although DNA methylation plays an important role in normal neural development and neuroprotection, an altered pathway due to complex interaction with environmental and genetic factors may cause severe neurodegeneration. The levels of 5hmC in brain increase progressively from birth until death, while in patients with neurodegenerative disorders, the levels are found to be highly compromised. This article discusses the recent developments in the area of hydroxymethylation, with particular emphasis on the role of 5hmC in neurodegenerative diseases including Alzheimer's disease, Parkinson's diseases and Huntington's disease. We have also included recent findings on the role of 5hmC in brain tumors (gliomas). Despite compelling evidence on the involvement of 5hmC in neurodegeneration, it is yet to be established whether this epigenetic molecule is the cause or the effect of the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shariq I Sherwani
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
18
|
Thompson MJ, Rubbi L, Dawson DW, Donahue TR, Pellegrini M. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One 2015; 10:e0128814. [PMID: 26039411 PMCID: PMC4454596 DOI: 10.1371/journal.pone.0128814] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.
Collapse
Affiliation(s)
- Michael J. Thompson
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - Timothy R. Donahue
- Department of Surgery, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- * E-mail:
| |
Collapse
|
19
|
New biomolecular approaches to the treatment of glioblastoma multiforme. Bull Exp Biol Med 2015; 158:794-9. [PMID: 25894780 DOI: 10.1007/s10517-015-2864-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 10/23/2022]
Abstract
The mechanisms of therapeutic resistance of human glioblastoma multiforme are analyzed. The authors make an attempt at systematization and scientific theoretical validation of new approaches to creation of biomedical cellular preparations, based on the oncoproteomic technologies, for personified therapy of the glial tumors. A new approach to the treatment of glioblastoma multiforme with due consideration for the molecular biological characteristics of the tumor stem cells is suggested. It is shown that the tumor stem cell proteome can be regarded as the main target for cell therapy.
Collapse
|