1
|
Gadolinium Oxide Nanoparticles Induce Toxicity in Human Endothelial HUVECs via Lipid Peroxidation, Mitochondrial Dysfunction and Autophagy Modulation. NANOMATERIALS 2020; 10:nano10091675. [PMID: 32859033 PMCID: PMC7559735 DOI: 10.3390/nano10091675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
In spite of the potential preclinical advantage of Gd2O3 nanoparticles (designated here as GO NPs) over gadolinium-based compounds in MRI, recent concerns of gadolinium deposits in various tissues undergoing MRI demands a mechanistic investigation. Hence, we chose human to measure umbilical vein endothelial cells (HUVECs) that line the vasculature and relevant biomarkers due to GO NPs exposure in parallel with the NPs of ZnO as a positive control of toxicity. GO NPs, as measured by TEM, had an average length of 54.8 ± 29 nm and a diameter of 13.7 ± 6 nm suggesting a fiber-like appearance. With not as pronounced toxicity associated with a 24-h exposure, GO NPs induced a concentration-dependent cytotoxicity (IC50 = 304 ± 17 µg/mL) in HUVECs when exposed for 48 h. GO NPs emerged as significant inducer of lipid peroxidation (LPO), reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and autophagic vesicles in comparison to that caused by ZnO NPs at its IC50 for the same exposure time (48 h). While ZnO NPs clearly appeared to induce apoptosis, GO NPs revealed both apoptotic as well as necrotic potentials in HUVECs. Intriguingly, the exogenous antioxidant NAC (N-acetylcysteine) co-treatment significantly attenuated the oxidative imbalance due to NPs preventing cytotoxicity significantly.
Collapse
|
2
|
Gooding J, Cao L, Ahmed F, Mwiza JM, Fernander M, Whitaker C, Acuff Z, McRitchie S, Sumner S, Ongeri EM. LC-MS-based metabolomics analysis to identify meprin-β-associated changes in kidney tissue from mice with STZ-induced type 1 diabetes and diabetic kidney injury. Am J Physiol Renal Physiol 2019; 317:F1034-F1046. [PMID: 31411076 PMCID: PMC6843037 DOI: 10.1152/ajprenal.00166.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
Meprin metalloproteases have been implicated in the pathophysiology of diabetic kidney disease (DKD). Single-nucleotide polymorphisms in the meprin-β gene have been associated with DKD in Pima Indians, a Native American ethnic group with an extremely high prevalence of DKD. In African American men with diabetes, urinary meprin excretion positively correlated with the severity of kidney injury. In mice, meprin activity decreased at the onset of diabetic kidney injury. Several studies have identified meprin targets in the kidney. However, it is not known how proteolytic processing of the targets by meprins impacts the metabolite milieu in kidneys. In the present study, global metabolomics analysis identified differentiating metabolites in kidney tissues from wild-type and meprin-β knockout mice with streptozotocin (STZ)-induced type 1 diabetes. Kidney tissues were harvested at 8 wk post-STZ and analyzed by hydrophilic interaction liquid chromatography ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Principal component analysis identified >200 peaks associated with diabetes. Meprin expression-associated metabolites with strong variable importance of projection scores were indoxyl sulfate, N-γ-l-glutamyl-l-aspartic acid, N-methyl-4-pyridone-3-carboxamide, inosine, and cis-5-decenedioic acid. N-methyl-4-pyridone-3-carboxamide has been previously implicated in kidney injury, and its isomers, 4-PY and 2-PY, are markers of peroxisome proliferation and inflammation that correlate with creatinine clearance and glucose tolerance. Meprin deficiency-associated differentiating metabolites with high variable importance of projection scores were cortisol, hydroxymethoxyphenylcarboxylic acid-O-sulfate, and isovaleryalanine. The data suggest that meprin-β activity enhances diabetic kidney injury in part by altering the metabolite balance in kidneys, favoring high levels of uremic toxins such as indoxyl sulfate and N-methyl-pyridone-carboxamide.
Collapse
Affiliation(s)
- Jessica Gooding
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Lei Cao
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Faihaa Ahmed
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Jean-Marie Mwiza
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Mizpha Fernander
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Courtney Whitaker
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Zach Acuff
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Susan McRitchie
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
- Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Susan Sumner
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
- Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Elimelda Moige Ongeri
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|