1
|
Zhou S, Liu L, Jin X, Dorikun D, Ma S. Biomarkers predicting postoperative adverse outcomes in children with congenital heart disease: a systematic review and meta-analysis. Front Pediatr 2025; 13:1508329. [PMID: 39896721 PMCID: PMC11782048 DOI: 10.3389/fped.2025.1508329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Objective To statistically analyze biomarkers predicting postoperative outcomes in children with congenital heart disease (CHD). Methods PubMed, Embase, Cochrane Library, and Web of Science were performed to search up to February 2024. The measured outcomes were biomarkers, mortality, length of hospital stay, complication rates, and infection rates. Adults with CHD were excluded. Standard deviation or odds ratio (OR) with 95% confidence interval (95% CI) were extracted. A random-effects model synthesized SMDs or ORs with 95% CIs. Sensitivity analysis investigated heterogeneity, and Egger's test assessed publication bias. Results Seventeen eligible articles were included, the biomarkers involved include serum lactate, NT-Pro BNP, PaO2, serum creatinine, C1-INH activity, ST2, serum chloride concentration, GH, glycemia, cTOI, NLR, serum albumin, and glucose levels, with 2,888 patients who underwent surgery(modified Norwood procedure, arterial switch procedure, biventricular repair etc.). Serum lactate was higher in the postoperative death group (SMD: 1.18, 95% CI: 0.59-1.77). Lower postoperative N-terminal pro-B-type natriuretic peptide (NT-pro BNP) levels were associated with lower mortality (OR: 0.23, 95% CI: 0.08-0.68) and shorter mechanical ventilation time (OR: 0.40, 95% CI: 0.18-0.90). Higher serum albumin levels were associated with longer hospital stays (OR: 3.12, 95% CI: 1.66-5.84). Significant heterogeneity was found in serum creatinine, B-type natriuretic peptide (BNP), serum lactate, and NT-Pro BNP. Publication bias was detected in some studies. Conclusion Serum lactate, NT-Pro BNP, and serum albumin are reliable biomarkers for predicting adverse outcomes in children with CHD after surgery. Systematic Review Registration PROSPERO [CRD42024512753].
Collapse
Affiliation(s)
- Shifan Zhou
- Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- College of Pediatrics, Xinjiang Medical University, Urumqi, China
| | - Lu Liu
- Hematology Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaochuang Jin
- Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Daniel Dorikun
- Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Songfeng Ma
- Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Zhu L, Chen M, Shi Y, Huang X, Ding H. Prenatal detection of novel compound heterozygous variants of the PLD1 gene in a fetus with congenital heart disease. Front Genet 2024; 15:1498485. [PMID: 39553471 PMCID: PMC11564120 DOI: 10.3389/fgene.2024.1498485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and heart valve defects are the most common cardiac defect, accounting for over 25% of all congenital heart diseases. To date, more than 400 genes have been linked to CHD, the genetic analysis of CHD cases is crucial for both clinical management and etiological determination. Patients with autosomal-recessive variants of PLD1 are predisposed to Cardiac Valvular Dysplasia-1 (CVDP1), which predominantly affects the right-sided heart valves, including the pulmonic, tricuspid, and mitral valves. Methods Databases were utilized to predict the impact of the c.1062-59A>G variant on splicing. Whole-exome sequencing (WES), reverse transcription polymerase chain reaction (RT-PCR), Sanger sequencing, and TA clone sequencing were conducted on both the parents and the fetus. Results A compound heterozygous variation in the PLD1(NM_002662.5):c.1937G>C (p. G646A) from the father and PLD1(NM_002662.5):c.1062-59A>G from the mother, was identified and confirmed in the fetus. The c.1937G>C (p. G646A) and the c.1062-59A>G variants were all classified as variant of uncertain significance (VUS) per ACMG guidelines. RT-PCR and TA clone sequencing revealed a 76-bp intronic insertion and exon 11 skipping in the proband and her mother's transcripts, causing a frameshift and premature stop codon in PLD1. Consequently, after being informed about the risks of their variant of unknown significance (VUS), the couple chose pre-implantation genetic testing for monogenic disorders (PGT-M) and had a healthy child. Conclusion Our study identified novel variants to expand the mutation spectrum of CHD and provided reliable evidence for the recurrent risk and reproductive care options.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yubo Shi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaxi Huang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huiqing Ding
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Maddhesiya J, Mohapatra B. Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1. Curr Cardiol Rep 2024; 26:147-165. [PMID: 38546930 DOI: 10.1007/s11886-024-02022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Congenital heart disease (CHD) is the most frequently occurring birth defect. Majority of the earlier reviews focussed on the association of genetic factors with CHD. A few epidemiological studies provide convincing evidence for environmental factors in the causation of CHD. Although the multifactorial theory of gene-environment interaction is the prevailing explanation, explicit understanding of the biological mechanism(s) involved, remains obscure. Nonetheless, integration of all the information into one platform would enable us to better understand the collective risk implicated in CHD development. RECENT FINDINGS Great strides in novel genomic technologies namely, massive parallel sequencing, whole exome sequencing, multiomics studies supported by system-biology have greatly improved our understanding of the aetiology of CHD. Molecular genetic studies reveal that cardiac specific gene variants in transcription factors or signalling molecules, or structural proteins could cause CHD. Additionally, non-hereditary contributors such as exposure to teratogens, maternal nutrition, parental age and lifestyle factors also contribute to induce CHD. Moreover, DNA methylation and non-coding RNA are also correlated with CHD. Here, we inform that a complex combination of genetic, environmental and epigenetic factors interact to interfere with morphogenetic processes of cardiac development leading to CHD. It is important, not only to identify individual genetic and non-inherited risk factors but also to recognize which factors interact mutually, causing cardiac defects.
Collapse
Affiliation(s)
- Jyoti Maddhesiya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
4
|
Maddhesiya J, Mohapatra B. Understanding the Genetic and Non-Genetic Interconnections in the Aetiology of Syndromic Congenital Heart Disease: An Updated Review: Part 2. Curr Cardiol Rep 2024; 26:167-178. [PMID: 38358608 DOI: 10.1007/s11886-024-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Approximately 30% of syndromic cases diagnosed with CHD, which lure us to further investigate the molecular and clinical challenges behind syndromic CHD (sCHD). The aetiology of sCHD in a majority of cases remains enigmatic due to involvement of multiple factors, namely genetic, epigenetic and environmental modifiable risk factors for the development of the disease. Here, we aim to update the role of genetic contributors including chromosomal abnormalities, copy number variations (CNVs) and single gene mutations in cardiac specific genes, maternal lifestyle conditions, environmental exposures and epigenetic modifiers in causing CHD in different genetic syndromes. RECENT FINDINGS The exact aetiology of sCHD is still unknown. With the advancement of next-generation technologies including WGS, WES, transcriptome, proteome and methylome study, numerous novel genes and pathways have been identified. Moreover, our recent knowledge regarding epigenetic and environmental regulation during cardiogenesis is still evolving and may solve some of the mystery behind complex sCHD. Here, we focus to understand how the complex combination of genetic, environmental and epigenetic factors interact to interfere with developmental pathways, culminating into cardiac and extracardiac defects in sCHD.
Collapse
Affiliation(s)
- Jyoti Maddhesiya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Chen X, Zhao S, Dong X, Liu J, Guo Y, Ju W, Chen P, Gao Y, Feng Q, Zhu X, Huang H, Lu X, Yang X, Yang F, Cheng C, Luo X, Cheng L, Zhong N. Incidence, distribution, disease spectrum, and genetic deficits of congenital heart defects in China: implementation of prenatal ultrasound screening identified 18,171 affected fetuses from 2,452,249 pregnancies. Cell Biosci 2023; 13:229. [PMID: 38115160 PMCID: PMC10731863 DOI: 10.1186/s13578-023-01172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Congenital heart defects (CHDs) are the most common birth defects. Assessment of the incidence, distribution, disease spectrum, and genetic deficits of fetal CHDs in China is urgently needed. METHODS A national echocardiography screening program for fetal CHDs was implemented in 92 prenatal screening-diagnostic centers in China. FINDINGS A total of 18,171 fetal CHD cases were identified from 2,452,249 pregnancies, resulting in 7·4/1,000 as the national incidence rate of fetal CHD. The incidences of fetal CHD in the six geographical regions, the southern, central, eastern, southwestern, northern, and northwestern, were 7·647 (CI: 7·383-7·915), 7·839 (CI: 7·680-8·000), 7·647 (CI: 7·383-7·915), 7·562 (CI: 7·225-7·907), 5·618 (CI: 5·337-5·906), and 4·716 (CI: 4·341-5·108), respectively, per 1,000 pregnancies. Overall, ventricular septal defect was the most common fetal CHD, accounting for 17.04% of screened pregnancies nationwide, and tetralogy of Fallot, the most common anomaly in the major defect of fetal CHD, was the second most common, accounting for 9.72%. A total of 76.24% cases of fetal CHD were found to be an isolated intracardiac single defect. The remaining 23.76% of cases of fetal CHD had multiple heart defects. Among all extracardiac malformations, the central nervous system (CNS) was the most common tissue with extracardiac anomalies associated with CHD, accounting for 22.89% of fetal CHD cases. Chromosomal karyotyping identified trisomy 18 as the most common chromosomal abnormality in fetal CHD. We also documented that CHD-containing syndromes could be identified with a comprehensive approach integrating prenatal ultrasound, MRI, pathological autopsy, and cytogenetics and molecular genetics. CONCLUSION Implementation of prenatal echocardiography as a practically feasible platform to screen fetal CHD will reduce the financial and emotional burden of CHD, which may facilitate intrauterine and neonatal intervention of CHD.
Collapse
Affiliation(s)
- Xinlin Chen
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Sheng Zhao
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Juntao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yulin Guo
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Peiwen Chen
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yanduo Gao
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Qian Feng
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xia Zhu
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Hui Huang
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaojun Lu
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaohong Yang
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fan Yang
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Chen Cheng
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xishun Luo
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Longxian Cheng
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.
| |
Collapse
|
6
|
Yang Y, Yang H, Lian X, Yang S, Shen H, Wu S, Wang X, Lyu G. Circulating microRNA: Myocardium-derived prenatal biomarker of ventricular septal defects. Front Genet 2022; 13:899034. [PMID: 36035156 PMCID: PMC9403759 DOI: 10.3389/fgene.2022.899034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, circulating microRNAs (miRNAs) from maternal blood and amniotic fluid have been used as biomarkers for ventricular septal defect (VSD) diagnosis. However, whether circulating miRNAs are associated with fetal myocardium remains unknown.Methods: Dimethadione (DMO) induced a VSD rat model. The miRNA expression profiles of the myocardium, amniotic fluid and maternal serum were analyzed. Differentially expressed microRNAs (DE-microRNAs) were verified by qRT–PCR. The target gene of miR-1-3p was confirmed by dual luciferase reporter assays. Expression of amniotic fluid-derived DE-microRNAs was verified in clinical samples.Results: MiRNAs were differentially expressed in VSD fetal rats and might be involved in cardiomyocyte differentiation and apoptosis. MiR-1-3p, miR-1b and miR-293-5p were downregulated in the myocardium and upregulated in amniotic fluid/maternal serum. The expression of amniotic fluid-derived DE-microRNAs (miR-1-3p, miR-206 and miR-184) was verified in clinical samples. Dual luciferase reporter assays confirmed that miR-1-3p directly targeted SLC8A1/NCX1.Conclusion: MiR-1-3p, miR-1b and miR-293-5p are downregulated in VSD myocardium and upregulated in circulation and may be released into circulation by cardiomyocytes. MiR-1-3p targets SLC8A1/NCX1 and participates in myocardial apoptosis. MiR-1-3p upregulation in circulation is a direct and powerful indicator of fetal VSD and is expected to serve as a prenatal VSD diagnostic marker.
Collapse
Affiliation(s)
- Yiru Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xihua Lian
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shuping Yang
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Haolin Shen
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Shufen Wu
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Xiali Wang
- Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou Medical College, Quanzhou, Fujian, China
- *Correspondence: Guorong Lyu,
| |
Collapse
|
7
|
Boccuto L, Mitz A, Abenavoli L, Sarasua SM, Bennett W, Rogers C, DuPont B, Phelan K. Phenotypic Variability in Phelan–McDermid Syndrome and Its Putative Link to Environmental Factors. Genes (Basel) 2022; 13:genes13030528. [PMID: 35328081 PMCID: PMC8950073 DOI: 10.3390/genes13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Phelan–McDermid syndrome (PMS) is a multi-systemic disorder characterized by both genetic and phenotypic variability. Genetic abnormalities causing PMS span from pathogenic variants of the SHANK3 gene to chromosomal rearrangements affecting the 22q13 region and leading to the loss of up to over nine megabases. The clinical presentation of individuals with PMS includes intellectual disability, neonatal hypotonia, delayed or absent speech, developmental delay, and minor dysmorphic facial features. Several other features may present with differences in age of onset and/or severity: seizures, autism, regression, sleep disorders, gastrointestinal problems, renal disorders, dysplastic toenails, and disrupted thermoregulation. Among the causes of this phenotypic variability, the size of the 22q13 deletion has effects that may be influenced by environmental factors interacting with haploinsufficiency or hemizygous variants of certain genes. Another mechanism linking environmental factors and phenotypic variability in PMS involves the loss of one copy of genes like BRD1 or CYP2D6, located at 22q13 and involved in the regulation of genomic methylation or pharmacokinetics, which are also influenced by external agents, such as diet and drugs. Overall, several non-mutually exclusive genetic and epigenetic mechanisms interact with environmental factors and may contribute to the clinical variability observed in individuals with PMS. Characterization of such factors will help to better manage this disorder.
Collapse
Affiliation(s)
- Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
- Correspondence: ; Tel.: +1-864-6561437
| | - Andrew Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Sara M. Sarasua
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - William Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, IN 46202, USA;
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (C.R.); (B.D.)
| | - Barbara DuPont
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (C.R.); (B.D.)
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists &Research Institute, Fort Myers, FL 33916, USA;
| |
Collapse
|
8
|
DNA Methylation Levels of the TBX5 Gene Promoter Are Associated with Congenital Septal Defects in Mexican Paediatric Patients. BIOLOGY 2022; 11:biology11010096. [PMID: 35053095 PMCID: PMC8773106 DOI: 10.3390/biology11010096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
The TBX5 gene regulates morphological changes during heart development, and it has been associated with epigenetic abnormalities observed in congenital heart defects (CHD). The aim of this research was to evaluate the association between DNA methylation levels of the TBX5 gene promoter and congenital septal defects. DNA methylation levels of six CpG sites in the TBX5 gene promoter were evaluated using pyrosequencing analysis in 35 patients with congenital septal defects and 48 controls. Average methylation levels were higher in individuals with congenital septal defects than in the controls (p < 0.004). In five CpG sites, we also found higher methylation levels in patients than in the controls (p < 0.05). High methylation levels were associated with congenital septal defects (OR = 3.91; 95% CI = 1.02–14.8; p = 0.045). The analysis of Receiver Operating Characteristic (ROC) showed that the methylation levels of the TBX5 gene could be used as a risk marker for congenital septal defects (AUC = 0.68, 95% CI = 0.56–0.80; p = 0.004). Finally, an analysis of environmental factors indicated that maternal infections increased the risk (OR = 2.90; 95% CI = 1.01–8.33; p = 0.048) of congenital septal defects. Our data suggest that a high DNA methylation of the TBX5 gene could be associated with congenital septal defects.
Collapse
|
9
|
Sun M, Wang T, Huang P, Diao J, Zhang S, Li J, Luo L, Li Y, Chen L, Liu Y, Wei J, Song X, Sheng X, Qin J. Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring. BMC Cardiovasc Disord 2021; 21:298. [PMID: 34126931 PMCID: PMC8204503 DOI: 10.1186/s12872-021-02117-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although many studies showed that the risk of congenital heart disease (CHD) was closely related to genetic factors, the exact pathogenesis is still unknown. Our study aimed to comprehensively assess the association of single nucleotide polymorphisms (SNPs) of maternal MTHFR gene with risk of CHD and its three subtypes in offspring. METHODS A case-control study involving 569 mothers of CHD cases and 652 health controls was conducted. Thirteen SNPs were detected and analyzed. RESULTS Our study showed that genetic polymorphisms of maternal MTHFR gene at rs4846052 and rs1801131 were significantly associated with risk of CHD in the homozygote comparisons (TT vs. CC at rs4846052: OR = 7.62 [95%CI 2.95-19.65]; GG vs. TT at rs1801131: OR = 5.18 [95%CI 2.77-9.71]). And six haplotypes of G-C (involving rs4846048 and rs2274976), A-C (involving rs1801133 and rs4846052), G-T (involving rs1801133 and rs4846052), G-T-G (involving rs2066470, rs3737964 and rs535107), A-C-G (involving rs2066470, rs3737964 and rs535107) and G-C-G (involving rs2066470, rs3737964 and rs535107) were identified to be significantly associated with risk of CHD. Additionally, we observed that a two-locus model involving rs2066470 and rs1801131 as well as a three-locus model involving rs227497, rs1801133 and rs1801131 were significantly associated with risk of CHD in the gene-gene interaction analyses. For three subtypes including atrial septal defect, ventricular septal defect and patent ductus arteriosus, similar results were observed. CONCLUSIONS Our study indicated genetic polymorphisms of maternal MTHFR gene were significantly associated with risk of fetal CHD in the Chinese population. Additionally, there were significantly interactions among different SNPs on risk of CHD. However, how these SNPs affect the development of fetal heart remains unknown, and more studies in different ethnic populations and with a larger sample are required to confirm these findings.
Collapse
Affiliation(s)
- Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 78 Xiangchun Road, Changsha, 410008, Hunan, China.
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, Hunan, China
| | - Jingyi Diao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jinqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Liu Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yihuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Letao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Xiaoqi Sheng
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 78 Xiangchun Road, Changsha, 410008, Hunan, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 78 Xiangchun Road, Changsha, 410008, Hunan, China. .,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China. .,Hunan Provincial Key Laboratory of Clinical Epidemiology, Hunan, China.
| |
Collapse
|
10
|
Ricciardello A, Tomaiuolo P, Persico AM. Genotype-phenotype correlation in Phelan-McDermid syndrome: A comprehensive review of chromosome 22q13 deleted genes. Am J Med Genet A 2021; 185:2211-2233. [PMID: 33949759 PMCID: PMC8251815 DOI: 10.1002/ajmg.a.62222] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022]
Abstract
Phelan‐McDermid syndrome (PMS, OMIM #606232), also known as chromosome 22q13 deletion syndrome, is a rare genetic disorder characterized by intellectual disability, hypotonia, delayed or absent speech, motor impairment, autism spectrum disorder, behavioral anomalies, and minor aspecific dysmorphic features. Haploinsufficiency of SHANK3, due to intragenic deletions or point mutations, is sufficient to cause many neurobehavioral features of PMS. However, several additional genes located within larger 22q13 deletions can contribute to the great interindividual variability observed in the PMS phenotype. This review summarizes the phenotypic contributions predicted for 213 genes distributed along the largest 22q13.2‐q13.33 terminal deletion detected in our sample of 63 PMS patients by array‐CGH analysis, spanning 9.08 Mb. Genes have been grouped into four categories: (1) genes causing human diseases with an autosomal dominant mechanism, or (2) with an autosomal recessive mechanism; (3) morphogenetically relevant genes, either involved in human diseases with additive co‐dominant, polygenic, and/or multifactorial mechanisms, or implicated in animal models but not yet documented in human pathology; (4) protein coding genes either functionally nonrelevant, with unknown function, or pathogenic through mechanisms other than haploinsufficiency; piRNAs, noncoding RNAs, miRNAs, novel transcripts and pseudogenes. Our aim is to understand genotype–phenotype correlations in PMS patients and to provide clinicians with a conceptual framework to promote evidence‐based genetic work‐ups, clinical assessments, and therapeutic interventions.
Collapse
Affiliation(s)
- Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Mao L, Guo J, Hu L, Li L, Bennett S, Xu J, Zou J. Circular RNAs in childhood-related diseases and cancers: A review. Cell Biochem Funct 2020; 39:458-467. [PMID: 33354822 DOI: 10.1002/cbf.3611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022]
Abstract
Research into the diagnosis, treatment and prevention of childhood-related diseases is the key to reducing their morbidity and mortality. Circular RNAs (circRNAs) play critical roles, both in physiology and pathology, and there is ample evidence to show that they play varying roles in tissue development and gene regulation. Studies on circRNAs in different childhood-related diseases have confirmed their great potential for disease prevention and treatment. These breakthroughs highlight the pathological role of circRNAs in cancers, as well as cardiovascular and hereditary childhood illnesses. In this review, we summarize the role of circRNAs in childhood-related diseases and cancer, and provide an update of the possible diagnostic and therapeutic application of circRNAs.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Linghui Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lexuan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This article reviews the current understanding and limitations in knowledge of the effect genetics and genetic diagnoses have on perioperative and postoperative surgical outcomes in patients with congenital heart disease (CHD). RECENT FINDINGS Presence of a known genetic diagnosis seems to effect multiple significant outcome metrics in CHD surgery including length of stay, need for extracorporeal membrane oxygenation, mortality, bleeding, and heart failure. Data regarding the effects of genetics in CHD is complicated by lack of standard genetic assessment resulting in inaccurate risk stratification of patients when analyzing data. Only 30% of variation in CHD surgical outcomes are explained by currently measured variables, with 2.5% being attributed to diagnosed genetic disorders, it is thought a significant amount of the remaining outcome variation is because of unmeasured genetic factors. SUMMARY Genetic diagnoses clearly have a significant effect on surgical outcomes in patients with CHD. Our current understanding is limited by lack of consistent genetic evaluation and assessment as well as evolving knowledge and discovery regarding the genetics of CHD. Standardizing genetic assessment of patients with CHD will allow for the best risk stratification and ultimate understanding of these effects.
Collapse
|
13
|
Thomford NE, Biney RP, Okai E, Anyanful A, Nsiah P, Frimpong PG, Boakye DO, Adongo CA, Kruszka P, Wonkam A. Clinical Spectrum of congenital heart defects (CHD) detected at the child health Clinic in a Tertiary Health Facility in Ghana: a retrospective analysis. JOURNAL OF CONGENITAL CARDIOLOGY 2020. [DOI: 10.1186/s40949-020-00034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart defects (CHD) are the singular most common congenital anomalies and account for a significant fraction of childhood mortality and morbidity. CHD occurs in ~ 1% of livebirths globally and often requires surgical interventions to improve quality of life and survival of patients. The prevalence and clinical presentations of CHD within specific populations provide a clearer overview of the burden of CHD and informs appropriate interventions. However, there is limited data on clinical presentation and occurrence of CHD in African countries such as Ghana where most cases are either diagnosed late or missed entirely resulting in increased mortality. In this retrospective study, we assessed the clinical presentations, associated comorbidities, and prescription patterns of diagnosed CHD in a tertiary facility in Ghana.
Method
This retrospective study utilized data from electronic health records (EHR) from the child health clinic of the Cape Coast Teaching Hospital - a tertiary health facility in Ghana from January 2018 to October 2019. All suspected or provisionally diagnosed cases including those confirmed with echocardiography were included in our analysis.
Results
Over 10, 000 records were reviewed, CHD was diagnosed in 79 cases, and 51 cases had complete clinical records including the type of CHD and clinical presentation. Male to female ratio was approximately 1:1 and 77.2% of the diagnoses were in children below 5 years. Acyanotic congenital heart defects were most commonly diagnosed with ventricular septal defects (VSD) and patent ductus arteriosus (PDA) being the simplest singular CHD. Tetralogy of Fallot, was the most common complex CHD accounting for 25.5% (13) of cases. Bronchopneumonia, upper respiratory infections and pneumonia were the most commonly diagnosed comorbidities accounting for over 35% of non-cardiac sequalae based on antibiotic and diuretic use.
Conclusion
Our study showed that over 75% of CHD cases were diagnosed under 5 years with VSD and TOF being the most commonly diagnosed acyanotic and cyanotic lesions, respectively. This study presents preliminary data that give an overview of CHD burden in Ghana that will inform future research and appropriate interventions.
Collapse
|
14
|
Xu C, Su X, Chen Y, Xu Y, Wang Z, Mo X. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients. Ital J Pediatr 2020; 46:64. [PMID: 32430045 PMCID: PMC7236322 DOI: 10.1186/s13052-020-00831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/11/2020] [Indexed: 11/23/2022] Open
Abstract
Objective Patent ductus arteriosus (PDA) is a congenital heart defect with an unclear etiology that occurs commonly among newborns. Adequately understanding the molecular pathogenesis of PDA can contribute to improved treatment and prevention. Plasma proteins may provide evidence to explore the molecular mechanisms of abnormal cardiac development. Methods Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics technology was used to measure different plasma proteins in PDA patients (n = 4) and controls (n = 4). The candidate protein was validated by ELISA and Western blot (WB) assays in a larger sample. Validation of the location and expression of this protein was performed in mouse heart sections. Results There were three downregulated proteins and eight upregulated proteins identified in the iTRAQ proteomics data. Among these, protein disulfide-isomerase A6 (PDIA6) was further analyzed for validation. The plasma PDIA6 concentrations (3.2 ± 0.7 ng/ml) in PDA patients were significantly lower than those in normal controls (5.8 ± 1.2 ng/ml). In addition, a WB assay also supported these results. PDIA6 was widely expressed in mouse heart outflow tract on embryonic day 14.5. Conclusion Plasma proteomics profiles suggested novel candidate molecular markers for PDA. The findings may allow development of a new strategy to investigate the mechanism and etiology of PDA.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaoqi Su
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yong Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zhiqi Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
15
|
Ma J, Chen S, Hao L, Sheng W, Chen W, Ma X, Zhang B, Ma D, Huang G. Hypermethylation-mediated down-regulation of lncRNA TBX5-AS1:2 in Tetralogy of Fallot inhibits cell proliferation by reducing TBX5 expression. J Cell Mol Med 2020; 24:6472-6484. [PMID: 32368852 PMCID: PMC7294119 DOI: 10.1111/jcmm.15298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) with uncertain cause. Although long non‐coding RNAs (lncRNAs) have been implicated in heart development and several CHDs, their role in TOF is not well understood. This study aimed to investigate how dysregulated lncRNAs contribute to TOF. Using Gene Expression Omnibus data mining, bioinformatics analysis and clinical heart tissue sample detecting, we identified a novel antisense lncRNA TBX5‐AS1:2 with unknown function that was significantly down‐regulated in injured cardiac tissues from TOF patients. LncRNA TBX5‐AS1:2 was mainly located in the nucleus of the human embryonic kidney 293 (HEK293T) cells and formed an RNA‐RNA double‐stranded structure in the overlapping region with its sense mRNA T‐box transcription factor 5 (TBX5), which is an important regulator in heart development. Knock‐down of lncRNA TBX5‐AS1:2 via promoter hypermethylation reduced TBX5 expression at both the mRNA and protein levels by affecting its mRNA stability through RNA‐RNA interaction. Moreover, lncRNA TBX5‐AS1:2 knock‐down inhibited the proliferation of HEK293T cells. In conclusion, these results indicated that lncRNA TBX5‐AS1:2 may be involved in TOF by affecting cell proliferation by targeting TBX5.
Collapse
Affiliation(s)
- Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shiyu Chen
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lili Hao
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China
| | - WeiCheng Chen
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhang
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zimmerman M, Sable C. Congenital heart disease in low-and-middle-income countries: Focus on sub-Saharan Africa. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:36-46. [PMID: 32026623 DOI: 10.1002/ajmg.c.31769] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The etiology of congenital heart disease (CHD) is multifactorial. The birth prevalence of CHD is shaped by a wide variety of maternal, fetal, and neonatal risk factors, along with the rates of prenatal diagnosis and terminations of pregnancy, all of which have geographic variability Epidemiology data availability from low-and-middle-income countries (LMIC) on CHD prevalence, morbidity, and mortality are far more limited than from high income countries. Data on specific genetic, environmental, and prenatal risk associated with CHD are almost nonexistent. In this article, we will focus on defining what data are available, genetic risk factors, birth and overall prevalence, morbidity, and the impact of limited access to interventions, both surgery and cardiac catheterizations. We will highlight CHD in sub-Saharan Africa to detail epidemiology studies in the poorest regions of the world. Existing literature as well as estimates from the Global Burden of Disease Study (http://ghdx.healthdata.org) form the basis for this review. The intersection of poverty, high fertility rates, and limited access to care results in a unique profile of CHD in LMIC. CHD is not a preventable disease (by most standards), so early detection and access are our key interventions to improve the dire outcomes for children in low-resources settings of the world.
Collapse
Affiliation(s)
| | - Craig Sable
- Children's National Health System, Washington, District of Columbia
| |
Collapse
|
17
|
Dasouki MJ, Wakil SM, Al-Harazi O, Alkorashy M, Muiya NP, Andres E, Hagos S, Aldusery H, Dzimiri N, Colak D. New Insights into the Impact of Genome-Wide Copy Number Variations on Complex Congenital Heart Disease in Saudi Arabia. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 24:16-28. [PMID: 31855513 DOI: 10.1089/omi.2019.0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Congenital heart diseases (CHDs) are complex traits that manifest in diverse clinical phenotypes such as the Tetralogy of Fallot (TOF), valvular and ventricular/atrial septal defects. Genetic mechanisms of CHDs have remained largely unclear to date. Copy number variations (CNVs) have been implicated in many complex diseases but their impact has not been examined extensively in various forms of CHD lesions. We report in this study, to the best of our knowledge, the largest cohort of Saudi Arab CHD patients to date who were evaluated using genome-wide CNV analysis. In a sample of 134 Saudi Arab patients with CHD, 66 exhibited pathogenic or likely pathogenic CNVs. Notably, 21 copy number gains and 11 copy number losses were detected that encompassed 141 genes and 146 genes, respectively. The most frequent gains were on 17q21.31, 8p11.21, and 22q11.23, whereas the losses were primarily localized to 16p11.2. Interestingly, all lesions have had gains at 17q21.31. Septal defects had also gains at 8p11.21 and 22q11.23, valvular lesions at 8p11.21, 22q11.23, and 2q13, and TOF at 16p11.2. Functional and network analyses demonstrated that cardiovascular and nervous system development and function as well as cell death/survival were most significantly associated with CNVs, thus highlighting the potentially important genes likely to be involved in CHD, including NPHP1, PLCB1, KANSL1, and NR3C1. In conclusion, this genome-wide analysis identifies a high frequency of CNVs mostly in patients with septal defects, primarily influencing cardiovascular developmental and functional pathways, thereby offering a deeper insight into the complex networks involved in CHD pathogenesis.
Collapse
Affiliation(s)
- Majed J Dasouki
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Departments Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maarab Alkorashy
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nzioka P Muiya
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Editha Andres
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Samya Hagos
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haya Aldusery
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nduna Dzimiri
- Departments Genetics and Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Departments Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Jerves T, Beaton A, Kruszka P. The genetic workup for structural congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 184:178-186. [PMID: 31833661 DOI: 10.1002/ajmg.c.31759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect and is the result of multiple etiologies including genetic and environmental causes. This article reviews the genetic workup for structural CHD in the clinical setting, beginning with CHD epidemiology and etiology and then moving to genetic testing, clinical evaluation, and genetic counseling. An algorithm is presented as a guide to genetic test selection, and available tests are explained with their respective advantages and limitations. Finally, future advances are discussed. As this review focuses on structural heart disease, isolated cardiomyopathies, inherited primary arrhythmia syndromes and aortopathies are not discussed.
Collapse
Affiliation(s)
- Teodoro Jerves
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Beaton
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Fang T, Zhu Y, Xu A, Zhang Y, Wu Q, Huang G, Sheng W, Chen M. Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro. Mol Med Rep 2019; 20:2325-2331. [PMID: 31322241 PMCID: PMC6691264 DOI: 10.3892/mmr.2019.10481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease (CHD) is the most common type of developmental defect, with high rates of morbidity in infants. The transcription factor GATA‑binding factor 4 (GATA4) has been reported to serve a critical role in embryogenesis and cardiac development. Our previous study reported a heterozygous GATA4 c.1306C>T (p.H436Y) mutation in four Chinese infants with congenital heart defects. In the present study, functional analysis of the GATA4 H436Y mutation was performed in vitro. The functional effect of GATA4 mutation was compared with GATA4 wild‑type using a dual‑luciferase reporter assay system and immunofluorescence. Electrophoretic mobility‑shift assays were performed to explore the binding affinity of the mutated GATA4 to the heart and neural crest derivatives expressed 2 (HAND2) gene. The results revealed that the mutation had no effect on normal nuclear localization, but resulted in diminished GATA‑binding affinity to HAND2 and significantly decreased gene transcriptional activation. These results indicated that this GATA4 mutation may not influence cellular localization in transfected cells, but may affect the affinity of the GATA‑binding site on HAND2 and decrease transcriptional activity, thus suggesting that the GATA4 mutation may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Tao Fang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanjie Zhu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Anlan Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanli Zhang
- Department of Neonatology, Anhui Women and Child Health Care Hospital, Hefei, Anhui 230027, P.R. China
| | - Qingfa Wu
- Department of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Mingwu Chen
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The aim of this study is to review genetics of congenital heart disease (CHD) with a focus on clinical applications, genetic testing and clinical challenges. RECENT FINDINGS With improved clinical care, there is a rapidly expanding population of adults, especially women, with CHD who have not undergone contemporary genetic assessment and do not understand their risk for having a child with CHD. Many patients have never undergone assessment or had genetic testing. A major barrier is medical geneticist availability, resulting in this burden of care shifting to providers outside of genetics. Even with current understanding, the cause for the majority of cases of CHD is still not known. There are significant gaps in knowledge in the realms of more complex causes such as noncoding variants, multigenic contribution and small structural chromosomal anomalies. SUMMARY Standard assessment of patients with CHD, including adult survivors, is indicated. The best first-line genetic assessment for most patients with CHD is a chromosomal microarray, and this will soon evolve to be genomic sequencing with copy number variant analysis. Due to lack of medical geneticists, creative solutions to maximize the number of patients with CHD who undergo assessment with standard protocols and plans for support with result interpretation need to be explored.
Collapse
|