1
|
Shen Y, Jiang A, Chen R, Gao X, Song G, Lu H. MicroRNA-885-3p alleviates bronchial epithelial cell injury induced by lipopolysaccharide via toll-like receptor 4. Bioengineered 2022; 13:5305-5317. [PMID: 35156897 PMCID: PMC8974227 DOI: 10.1080/21655979.2022.2032939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Airway inflammation is one of the typical pathological characteristics of asthma. MicroRNAs (miRNAs) play important roles in regulating inflammation. Nevertheless, miRNA-885-3p (miR-885-3p)’s role in asthmatic inflammation and the underlying mechanism need to be explained. In this work, miR-885-3p expression and toll-like receptor 4 (TLR4) expression in asthma patients’ plasma and lipopolysaccharide (LPS)-treated 16HBE cells were detected through quantitative real-time PCR. The interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in 16HBE cell supernatant were examined via enzyme-linked immunosorbent assay. Cell counting kit-8 (CCK-8) assay and flow cytometry were employed to examine 16HBE cell viability and apoptosis, respectively. Western blotting was performed to examine the expression of TLR4, cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), nuclear factor-kappa B (NF-κB) p65, Bcl-2-related X protein (Bax), phosphorylated (p)-NF-κB p65 and myeloid differentiation primitive-response protein 88 (MyD88) in 16HBE cells. Furthermore, the targeted relationship between TLR4 and miR-885-3p in 16HBE cells was determined through dual-luciferase reporter gene assay. Compared with healthy volunteers, miR-885-3p expression in acute asthma patients’ plasma was significantly downregulated. In 16HBE cells, the stimulation of LPS reduced miR-885-3p expression. MiR-885-3p overexpression reduced LPS-stimulated 16HBE cell injury by enhancing cell viability, and suppressing the levels of inflammatory factors and apoptosis. Furthermore, TLR4 was identified as miR-885-3p’s target gene. TLR4 overexpression weakened the impacts of miR-885-3p on LPS-stimulated cell injury and NF-κB-MyD88 signaling. In conclusion, miR-885-3p can reduce LPS-induced 16HBE cell damage, via targeting TLR4 to suppress the NF-κB-MyD88 pathway.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Aigui Jiang
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Rong Chen
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xiaoyan Gao
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Guixian Song
- Department of Cardiology, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Huiyu Lu
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang J, Feng X, Fan Y, Zhu G, Bai C. Molecular hydrogen alleviates asthma through inhibiting IL-33/ILC2 axis. Inflamm Res 2021; 70:569-579. [PMID: 33852061 DOI: 10.1007/s00011-021-01459-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Asthma is one of the most common noninfectious chronic diseases characterized by type II inflammation. This study aimed to investigate the effects of molecular hydrogen on the pathogenesis of asthma. METHODS OVA sensitized asthma mouse model and house dust mite treated 16HBE cellular model were established and hydrogen/oxygen mixture was used to treat asthmatic mice and 16HBE cells. Serum and BALF cytokines were measured with specific ELISA assays. E-cadherin and ZO-1 were detected by immunohistochemical staining and expression of caspase 3 and 9, NF-κB, IL-33 and ST2 was assessed by quantitative real-time PCR, western blot and/or immunofluorescence. IL-33 promoter activity was analyzed by dual-luciferase assay. ILC2 population was assayed by flow cytometry and differentially expressed miRNAs were detected using miRNA array. RESULTS Serum and BALF levels of IL-33 and other alarmin and type II cytokines were greatly increased by OVA and inhibited by H2 in asthmatic mice. The expression of NF-κB (p65) and ST2 was upregulated by OVA and suppressed by H2. ILC2 population was markedly increased in OVA-induced asthmatic mice, and such increase was inhibited by H2. E-cadherin and ZO-1 levels in airway tissues of asthmatic mice were significantly lower than that of control mice, and the reduction was recovered by H2 treatment. H2 alleviated HDM induced apoptosis of 16HBE cells, upregulation of IL-33 and ST2, and elevation of IL-33 promoter activity. A group of miRNAs differentially expressed in HDM and HDM + H2 treated 16HBE cells were identified. CONCLUSIONS These data demonstrated that H2 is efficient in suppressing allergen-induced asthma and could be developed as a therapeutics for asthma and other conditions of type II inflammation.
Collapse
Affiliation(s)
- Jingxi Zhang
- Department of Respiratory Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China.
| | - Xiumin Feng
- Department of Respiratory Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| | - Yunxin Fan
- Department of Respiratory Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| | - Guanglin Zhu
- Department of Respiratory Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| | - Chong Bai
- Department of Respiratory Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| |
Collapse
|
3
|
Huang XP, Qin CY, Gao YM. miR-135a inhibits airway inflammatory response in asthmatic mice via regulating JAK/STAT signaling pathway. ACTA ACUST UNITED AC 2021; 54:e10023. [PMID: 33470387 PMCID: PMC7812909 DOI: 10.1590/1414-431x202010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the inhibitory effect of miR-135a in regulating JAK/STAT signaling pathway on airway inflammation in asthmatic mice. An asthma model was established by sensitization and stimulation with ovalbumin (OVA), and the corresponding drug intervention was given from the day of stimulation by means of nasal drops. Airway hyperresponsiveness was tested. The content of miR-135a in the lung tissue of mice was detected by RT-PCR. The pathological changes of lung tissue were evaluated by HE staining. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-5, and eotaxin in bronchoalveolar lavage fluid (BALF) and lung tissue were detected by ELISA and immunohistochemistry, respectively. The expression of JAK/STAT signaling pathway-related protein in lung tissue was detected by western blot. To further validate the effect of miR-135a overexpression on the JAK/STAT signaling pathway, pathway activators and inhibitors were added. Compared with the OVA group, the airway hyperresponsiveness of the mice was significantly decreased after treatment with the miR-135a agonist. The expression of miR-135a was significantly increased in the lung tissue and the pathological changes of the lung tissue were alleviated. The contents of TNF-α, IL-6, IL-5, and eotaxin in BALF and lung tissues were decreased. The expression of JAK/STAT signaling pathway-related proteins p-JAK3/JAK3, p-STAT1/STAT1, and p-STAT3/STAT3 were significantly reduced in lung tissue (P<0.05). Addition of JAK inhibitor AG490 reduced airway inflammation in asthmatic mice. miR-135a agonists inhibit airway inflammation in asthmatic mice by regulating the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xue-Peng Huang
- Respiratory Department, People's Hospital of Rizhao Lanshan, Rizhao, Shandong, China
| | - Cheng-Yu Qin
- Respiratory Department, People's Hospital of Rizhao Lanshan, Rizhao, Shandong, China
| | - Yue-Ming Gao
- Respiratory Department, People's Hospital of Rizhao Lanshan, Rizhao, Shandong, China
| |
Collapse
|
4
|
Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, Sparks J, Matar M, Fewell J, Gerthoffer WT. Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1000-1014. [PMID: 32044723 PMCID: PMC7013130 DOI: 10.1016/j.omtn.2019.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
To address the problem of poor asthma control due to drug resistance, an antisense oligonucleotide complementary to mmu-miR-145a-5p (antimiR-145) was tested in a house dust mite mouse model of mild/moderate asthma. miR-145 was targeted to reduce inflammation, regulate epithelial-mesenchymal transitions, and promote differentiation of structural cells. In addition, several chemical variations of a nontargeting oligonucleotide were tested to define sequence-dependent effects of the miRNA antagonist. After intravenous administration, oligonucleotides complexed with a pegylated cationic lipid nanoparticle distributed to most cells in the lung parenchyma but were not present in smooth muscle or the mucosal epithelium of the upper airways. Treatment with antimiR-145 and a nontargeting oligonucleotide both reduced eosinophilia, reduced obstructive airway remodeling, reduced mucosal metaplasia, and reduced CD68 immunoreactivity. Poly(A) RNA-seq verified that antimiR-145 increased levels of many miR-145 target transcripts. Genes upregulated in human asthma and the mouse model of asthma were downregulated by oligonucleotide treatments. However, both oligonucleotides significantly upregulated many genes of interferon signaling pathways. These results establish effective lung delivery and efficacy of locked nucleic acid/DNA oligonucleotides administered intravenously, and suggest that some of the beneficial effects of oligonucleotide therapy of lung inflammation may be due to normalization of interferon response pathways.
Collapse
Affiliation(s)
- Sabrina C Ramelli
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Jared M McLendon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Lydia L Sandy
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Andrew P Ferretti
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Jeff Sparks
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - Majed Matar
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - Jason Fewell
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
5
|
Pasquini G, Kunej T. A Map of the microRNA Regulatory Networks Identified by Experimentally Validated microRNA-Target Interactions in Five Domestic Animals: Cattle, Pig, Sheep, Dog, and Chicken. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:448-456. [PMID: 31381467 DOI: 10.1089/omi.2019.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Domestic animals are members of the broader ecological context, in which humans are situated. Yet, genomics and systems science research have lagged behind and been relatively underappreciated in domestic animals compared to human genetics/genomics. Harnessing big data calls for omics data mapping studies in a broad range of mammals. To this end, microRNAs (miRNAs) regulate posttranscriptional expression of target genes, hence, governing different biological pathways and physiological processes. The knowledge of miRNA regulatory networks and maps is important for understanding regulation of gene expression and functions in both humans and domestic animals. However, complete miRNA regulatory networks have not yet been described in all species, particularly in domestic animals. We report here an original analysis so as to map the miRNA regulatory networks in domestic animals based on miRNA-target interactions (MTIs). Validated MTIs for five species; cattle, pig, sheep, dog, and chicken were extracted from the miRTarBase. miRNA regulomes were visualized using the Cytoscape software. The data in cattle, chicken, and pig were sufficient to visualize networks, identify central molecules, and subnetworks associated with the same phenotype; however, the MTI data in dog and sheep are still limited. We found several hub genes with large number of interactions, for example, 1 miRNA (bta-miR-17-5p) interacting with 27 genes and 7 miRNAs interacting with the same gene (tumor necrosis factor [TNF]) in cattle. In addition, two single-nucleotide polymorphisms were identified within the seed region of a previously demonstrated MTI, namely, between HMGB3 (high mobility group box 3) gene and bta-miR-17-5p. In summary, this miRNA regulome mapping study will enable and guide further studies of genome function in mammals with a view to applications in human as well as veterinary medicine. Furthermore, these miRNA regulomes can help to clarify fundamental pathways in cell biology and reveal molecular insights on phenotypic trait variability in common complex diseases and response phenotypes of drugs or other health interventions for precision medicine in the future.
Collapse
Affiliation(s)
- Giacomo Pasquini
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
6
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|