1
|
Bhattacharya S, Fernandez CJ, Kamrul-Hasan ABM, Pappachan JM. Monogenic diabetes: An evidence-based clinical approach. World J Diabetes 2025; 16:104787. [DOI: 10.4239/wjd.v16.i5.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Monogenic diabetes is a heterogeneous disorder characterized by hyperglycemia arising from defects in a single gene. Maturity-onset diabetes of the young (MODY) is the most common type with 14 subtypes, each linked to specific mutations affecting insulin synthesis, secretion and glucose regulation. Common traits across MODY subtypes include early-onset diabetes, a family history of autosomal dominant diabetes, lack of features of insulin resistance, and absent islet cell autoimmunity. Many cases are misdiagnosed as type 1 and type 2 diabetes mellitus. Biomarkers and scoring systems can help identify candidates for genetic testing. GCK-MODY, a common subtype, manifests as mild hyperglycemia and doesn’t require treatment except during pregnancy. In contrast, mutations in HNF4A, HNF1A, and HNF1B genes lead to progressive beta-cell failure and similar risks of complications as type 2 diabetes mellitus. Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that usually presents within the first six months. Half of the cases are lifelong, while others experience transient remission. Permanent NDM is most commonly due to activating mutations in genes encoding the adenosine triphosphate-sensitive potassium channel (KCNJ11 or ABCC8) and can be transitioned to sulfonylurea after confirmation of diagnosis. Thus, in many cases, monogenic diabetes offers an opportunity to provide precision treatment. The scope has broadened with next-generation sequencing (NGS) technologies, replacing older methods like Sanger sequencing. NGS can be for targeted gene panels, whole-exome sequencing (WES), or whole-genome sequencing. Targeted gene panels offer specific information efficiently, while WES provides comprehensive data but comes with bioinformatic challenges. The surge in testing has also led to an increase in variants of unknown significance (VUS). Deciding whether VUS is disease-causing or benign can be challenging. Computational models, functional studies, and clinical knowledge help to determine pathogenicity. Advances in genetic testing technologies offer hope for improved diagnosis and personalized treatment but also raise concerns about interpretation and ethics.
Collapse
Affiliation(s)
| | - Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, Lincolnshire, United Kingdom
| | | | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, Greater Manchester, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
耿 荟, 汪 治. [Research advances in maturity-onset diabetes of the young]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2025; 27:121-126. [PMID: 39825662 PMCID: PMC11750248 DOI: 10.7499/j.issn.1008-8830.2408070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 01/20/2025]
Abstract
Maturity-onset diabetes of the young (MODY) is a special type of diabetes characterized by clinical features including early onset of diabetes (before 30 years of age), autosomal dominant inheritance, impaired glucose-induced insulin secretion, and hyperglycemia. So far, 14 types of MODY have been reported, accounting for about 1%-5% of the patients with diabetes. MODY often presents with an insidious onset, and although 14 subtypes have been identified for MODY, it is frequently misdiagnosed as type 1 or type 2 diabetes due to overlapping clinical features and high costs and limitations of genetic testing. This article reviews the clinical features of MODY subtypes in order to improve the accuracy of the diagnosis and treatment of MODY.
Collapse
Affiliation(s)
| | - 治华 汪
- 西安交通大学附属儿童医院内分泌遗传代谢科,陕西西安710003
| |
Collapse
|
3
|
Xu F, Chen X, Hu T, Sun R, Zhu F, Wu X. A novel BLK heterozygous mutation (p.Met121lle) in maturity-onset diabetes mellitus: A case report and literature review. Diabet Med 2025:e15491. [PMID: 39754319 DOI: 10.1111/dme.15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Maturity onset diabetes of the young (MODY) is a highly heterogeneous monogenic disease that occurs due to β-cell dysfunction. It is divided into different types depending on the gene mutated, and a total of 16 genes have been found to be associated with MODY. However, due to the current lack of understanding of monogenic diabetes, 90% of MODY is currently misdiagnosed and ignored in clinical practice. In this paper, we report the clinical data of a patient diagnosed with diabetes. Genetic testing revealed a novel BLK heterozygous mutation (c.363G>A) in the patient and in his father and son. He had no islet-specific autoantibodies and showed a reduced meal-induced response of insulin. Precise diagnosis of MODY individuals is important to the treatment.
Collapse
Affiliation(s)
- Fenjuan Xu
- Department of Endocrinology, Tongxiang First People's Hospital, Tongxiang, China
| | - Xiaoting Chen
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Tingting Hu
- Department of Endocrinology, Tongxiang First People's Hospital, Tongxiang, China
| | - Ruqiong Sun
- Department of Endocrinology, Tongxiang First People's Hospital, Tongxiang, China
| | - Fangying Zhu
- Department of Endocrinology, Tongxiang First People's Hospital, Tongxiang, China
| | - Xiaohong Wu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
4
|
Yilmaz-Aydogan H, Kanca-Demirci D, Gul N, Aydogan C, Poyrazoglu S, Tutuncu Y, Malikova F, Ozturk O, Satman I. Target gene variations of PPAR isoforms may contribute to MODY heterogeneity: A preliminary comparative study with type 2 diabetes. Diabetes Res Clin Pract 2024; 218:111932. [PMID: 39551189 DOI: 10.1016/j.diabres.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
AIMS The objective of this study was to evaluate the associations of several genetic variants of peroxisome proliferator-activated receptors (PPARs) on clinical and laboratory parameters in patients with maturity-onset diabetes of the young (MODY), and possible contribution to heterogeneity of the disease. METHODS The study groups comprised patients with MODY (genetically confirmed (n = 28), clinically relevant but genetically unconfirmed; MODYX (n = 56)), type 2 diabetes mellitus (T2DM; n = 94) and healthy controls (n = 153). PPARA-L162V-(rs1800206), PPARG-C161T-(rs3856806), P12A-(rs1801282), and PPARB/D + 294 T/C-(rs2016520) polymorphisms were genotyped by real-time-PCR. RESULTS The results demonstrated that the frequencies of PPARA-LL162 (p = 0.002), PPARG-CC161 (p = 0.002), and PPARG-ProPro (p = 0.012) genotypes were significantly higher in the MODY group compared to the controls. Furthermore, total-MODY and MODYX groups had a higher frequency of PPARA-LL162 genotype than T2DM (p = 0.005 and p = 0.006, respectively). The frequency of the PPARB/D + 294 T allele was significantly higher in individuals with T2DM than in genetically-determined MODY group (p = 0.019). The PPARA-LL162 genotype was associated with early-onset diabetes in total-MODY (p = 0.022) and T2DM (p < 0.05) groups. CONCLUSIONS The association of PPARA-L162V polymorphism with early-onset diabetes in both T2DM and MODY is a noteworthy finding. Considering these results, we suggested that genetic polymorphisms in PPAR isoforms may contribute to the clinical and metabolic heterogeneity of MODY.
Collapse
Affiliation(s)
- Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Deniz Kanca-Demirci
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Türkiye.
| | - Nurdan Gul
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Sukran Poyrazoglu
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Yıldız Tutuncu
- Department of KUTTAM Immunology, Faculty of Medicine, Koc University, Istanbul, Türkiye.
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Ilhan Satman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
5
|
Lv X, Gao J, Yang J, Zou Y, Chen J, Sun Y, Song J, Liu Y, Wang L, Xia L, Yu S, Wei Z, Chen L, Hou X. Clinical and functional characterization of a novel KCNJ11 (c.101G > A, p.R34H) mutation associated with maturity-onset diabetes mellitus of the young type 13. Endocrine 2024; 86:515-527. [PMID: 38761346 DOI: 10.1007/s12020-024-03873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE This study aimed to describe the clinical features, diagnostic and therapeutic course of a patient with MODY13 caused by KCNJ11 (c.101G > A, p.R34H) and how it contributes to the pathogenesis of MODY13, and to explore new therapeutic targets. METHODS Whole-exome sequencing was used to screen prediagnosed individuals and family members with clinically suspected KCNJ11 mutations. Real-time fluorescence quantitative PCR, western blotting, thallium flux of potassium channels, glucose-stimulated insulin secretion (GSIS), and immunofluorescence assays were used to analyze the regulation of insulin secretion by the KCNJ11 mutant in MIN6 cells. Daily blood glucose levels were continuously monitored for 14 days in the proband using the ambulatory blood glucose meter (SIBIONICS). RESULTS Mutation screening of the entire exon of the gene identified a heterozygous KCNJ11 (c.101G > A, p.R34H) mutation in the proband and his mother. Cell-based GSIS assays after transfection of MIN6 using wild-type and mutant plasmids revealed that this mutation impaired insulin secretory function. Furthermore, we found that this impaired secretory function is associated with reduced functional activity of the mutant KCNJ11 protein and reduced expression of the insulin secretion-associated exocytosis proteins STXBP1 and SNAP25. CONCLUSION For the first time, we revealed the pathogenic mechanism of KCNJ11 (c.101G > A, p.R34H) associated with MODY13. This mutant can cause alterations in KATP channel activity, reduce sensitivity to glucose stimulation, and impair pancreatic β-cell secretory function by downregulating insulin secretion-associated exocytosis proteins. Therefore, oral sulfonylurea drugs can lower blood glucose levels through pro-insulinotropic effects and are more favorable for patients with this mutation.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiran Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shijia Yu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zichun Wei
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Sanyal D. Exploring the genetic basis of childhood monogenic diabetes. World J Diabetes 2024; 15:1829-1832. [PMID: 39280182 PMCID: PMC11372639 DOI: 10.4239/wjd.v15.i9.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1% to 5% of children, and early detection and genetically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and management.
Collapse
Affiliation(s)
- Debmalya Sanyal
- Department of Endocrinology, KPC Medical College, Kolkata Pin 700032, West Bengal, India
- Department of Endocrinology, NH RTIICS, Kolkata Pin 700099, West Bengal, India
- School of Medicine, University of New Castle, Callaghan NSW 2308, Australia
| |
Collapse
|
7
|
Sun S, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Clinical and genetic characteristics of CEL-MODY (MODY8): a literature review and screening in Chinese individuals diagnosed with early-onset type 2 diabetes. Endocrine 2024; 83:99-109. [PMID: 37726640 DOI: 10.1007/s12020-023-03512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xirui Wang
- Beijing Airport Hospital, No. 49, Shuangyu Street, Beijing, 101318, China
| | - Fang Wang
- Capital Medical University Beijing Tiantan Hospital, No. 119, Nansihuan West Street, Beijing, 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yufeng Li
- Beijing Pinggu Hospital, No. 59, Xinping North Street, Beijing, 101200, China
| | - Liyong Zhong
- Capital Medical University Beijing Tiantan Hospital, No. 119, Nansihuan West Street, Beijing, 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
8
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
9
|
Lian H, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Prevalence and Clinical Characteristics of PDX1 Variant Induced Diabetes in Chinese Early-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:e1686-e1694. [PMID: 37279936 DOI: 10.1210/clinem/dgad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
CONTEXT Maturity-onset diabetes of the young 4 (MODY4) is caused by mutations of PDX1; its prevalence and clinical features are not well known. OBJECTIVE This study aimed to investigate the prevalence and clinical characteristics of MODY4 in Chinese people clinically diagnosed with early-onset type 2 diabetes (EOD), and to evaluate the relationship between the PDX1 genotype and the clinical phenotype. METHOD The study cohort consisted of 679 patients with EOD. PDX1 mutations were screened by DNA sequencing, and their pathogenicity was evaluated by functional experiments and American College of Medical Genetics and Genomics guidelines. MODY4 was diagnosed in individuals with diabetes who carry a pathogenic or likely pathogenic PDX1 variant. All reported cases were reviewed for analyzing the genotype-phenotype relationship. RESULT 4 patients with MODY4 were identified, representing 0.59% of this Chinese EOD cohort. All the patients were diagnosed before 35 years old, either obese or not obese. Combined with previously reported cases, the analysis revealed that the carriers of homeodomain variants were diagnosed earlier than those with transactivation domain variants (26.10 ± 11.00 vs 41.85 ± 14.66 years old, P < .001), and the proportions of overweight and obese individuals with missense mutation were higher than those with nonsense or frameshift mutations (27/34 [79.4%] vs 3/8 [37.5%], P = .031). CONCLUSION Our study suggested that MODY4 was prevalent in 0.59% of patients with EOD in a Chinese population. It was more difficult to identify clinically than other MODY subtypes owning to its clinical similarity to EOD. Also, this study revealed that there is some relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Hong Lian
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xirui Wang
- Department of Endocrinology, Beijing Airport Hospital. No. 49, Beijing 101318, China
| | - Fang Wang
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital. No. 59, Beijing 101200, China
| | - Liyong Zhong
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| |
Collapse
|
10
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Liu J, Fu J, Xie Z, Ding L, Wang D, Yu M, Zhang Q, Xie T, Xiao X. Serum metabolomics identified metabolite biomarkers and distinguished maturity-onset diabetes of the young from type 1 diabetes in the Chinese population. Clin Chim Acta 2023; 539:250-258. [PMID: 36584766 DOI: 10.1016/j.cca.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) patients have unique clinical manifestations and need individualized treatments. We identified novel serum metabolic biomarkers to distinguish MODY and explore the possible mechanism of the clinical manifestation and complications of MODY. METHODS Fasting serum samples were collected from MODY3 (n = 17), MODY2 (n = 33), type 1 diabetes (T1DM) (n = 34) and healthy individuals (n = 30), and were analyzed using the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolomic platform. RESULTS 4 metabolites were found significantly fluctuated between groups, including glycerophosphocholine, LysoPC(18:2(9Z,12Z)), sphinganine and l-Phenylalanine. Glycerophosphocholine was selected as a diagnostic biomarker. The the area under the ROC curve (AUC) for distinguishing MODYs from healthy controls and differentiating MODY3 from T1DM reached 1.0. The combination of metabolites also gained good diagnostic value. The AUC of the combination of LysoPC(18:2(9Z,12Z)), sphinganine and l-Phenylalanine for discriminating MODY3 from T1DM was 0.983. Besides, the combination of clinical indices and metabolites helped to better differentiate the 2 MODY subtypes. CONCLUSIONS We identified the metabolic profiles of MODY2 and MODY3 and found promising biomarkers for distinguishing MODY from T1DM, which provides evidence for the pathogenesis and characteristic clinical manifestations of patients with MODY2 and MODY3.
Collapse
Affiliation(s)
- Jieying Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Junling Fu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ziyan Xie
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lu Ding
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongmei Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
12
|
Billings LK, Shi Z, Resurreccion WK, Wang C, Wei J, Pollin TI, Udler MS, Xu J. Statistical evidence for high-penetrance MODY-causing genes in a large population-based cohort. Endocrinol Diabetes Metab 2022; 5:e372. [PMID: 36208030 PMCID: PMC9659663 DOI: 10.1002/edm2.372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022] Open
Abstract
AIMS Numerous genes have been proposed as causal for maturity-onset diabetes of the young (MODY). Scoring systems to annotate mutation pathogenicity have been widely used; however, statistical evidence for being a highly penetrant MODY gene has not been well-established. METHODS Participants were from the UK Biobank with whole-exome sequencing data, including 14,622 with and 185,509 without diagnosis of diabetes. Pathogenic/likely pathogenic (P/LP) mutations in 14 reported and 3 possible MODY genes were annotated using American College of Medical Genetics criteria. Evidence for being a high-penetrant MODY gene used two statistical criteria: frequency of aggregate P/LP mutations in each gene are (1) significantly more common in participants with a diagnosis of diabetes than without using the SKAT-O (p < .05) and (2) lower than the maximum credible frequency in the general population. RESULTS Among the 17 genes, 6 (GCK, HNF1A, HNF4A, NEUROD1, KCNJ11 and HNF1B) met both criteria, 7 (ABCC8, KLF11, RFX6, PCBD1, WFS1, INS and PDX1) met only one criterion, and the remaining 4 (CEL, BLK, APPL1 and PAX4) failed both criteria, and were classified as 'consistent', 'inconclusive' and 'inconsistent' for being highly penetrant diabetes genes, respectively. Diabetes participants with mutations in the 'consistent' genes had clinical presentations that were most consistent with MODY. In contrast, the 'inconclusive' and 'inconsistent' genes did not differ clinically from non-carriers in diabetes-related characteristics. CONCLUSIONS Data from a large population-based study provided novel statistical evidence to identify 6 MODY genes as consistent with being highly penetrant. These results have potential implications for interpreting genetic testing results and clinical diagnosis of MODY.
Collapse
Affiliation(s)
- Liana K. Billings
- Department of MedicineNorthShore University HealthSystemSkokieIllinoisUSA
- University of Chicago Pritzker School of MedicineChicagoIllinoisUSA
| | - Zhuqing Shi
- Program for Personalized Cancer CareNorthShore University HealthSystemEvanstonIllinoisUSA
| | - W. Kyle Resurreccion
- Program for Personalized Cancer CareNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Chi‐Hsiung Wang
- Program for Personalized Cancer CareNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Jun Wei
- Program for Personalized Cancer CareNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Toni I. Pollin
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program in Personalized and Genomic MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Miriam S. Udler
- Diabetes UnitMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Jianfeng Xu
- University of Chicago Pritzker School of MedicineChicagoIllinoisUSA
- Program for Personalized Cancer CareNorthShore University HealthSystemEvanstonIllinoisUSA
| |
Collapse
|