1
|
Karaokutan I, Ayvaz I. Effect of various surface treatments on relining bond strength of CAD-CAM denture base materials. J Prosthodont 2025; 34:422-428. [PMID: 38369895 PMCID: PMC11976688 DOI: 10.1111/jopr.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
PURPOSE The aim of this study was to analyze the impact of various surface treatments and production methods on the shear bond strength (SBS) between reline material and denture base resins. MATERIALS AND METHODS One-hundred-twenty specimens were produced using conventional heat-polymerization, subtractive, and additive techniques. Each group consisted of 40 specimens. The specimens were divided into four subgroups, each with 10 samples, for surface treatments. These subgroups were: (1) Control-only monomer application, (2) 50 μm airborne-particle abrasion, (3) 110 μm airborne-particle abrasion, and (4) Roughening with tungsten carbide bur. Representative specimens from each subgroup were examined under SEM. Then, auto-polymerized resin was condensed in the center of the specimens. Specimens were subjected to thermal aging (5000 cycles at 5-55°C). The SBS test was conducted and failure loads were recorded. The data were evaluated by two-way ANOVA and Tukey pairwise multiple comparisons method (p < 0.05). RESULTS The additively produced group showed significantly lower SBS than conventional and subtractive groups (p < 0.001), with no significant differences between the subtractive and conventional groups. Specimens that underwent monomer application only showed the lowest SBS among surface treatments, while 50 μm airborne-particle abrasion showed the highest SBS. Based on the partial eta-squared analysis results, the surface treatment mainly impacted SBS. CONCLUSIONS Among the surface treatment methods, treating denture bases with 50 μm airborne-particle abrasion is more effective for maintaining adhesion, especially in the additive technique.
Collapse
Affiliation(s)
- Isil Karaokutan
- Department of ProsthodonticsFaculty of DentistryPamukkale UniversityDenizliTurkey
| | - Ilayda Ayvaz
- Department of ProsthodonticsFaculty of DentistryPamukkale UniversityDenizliTurkey
| |
Collapse
|
2
|
Alhomsi NA, Almustafa A, Alzoubi H. Evaluation of different surface treatments on the bond strength of CAD/CAM PMMA denture teeth to heat-polymerized acrylic denture base. Sci Rep 2025; 15:1255. [PMID: 39779982 PMCID: PMC11711156 DOI: 10.1038/s41598-025-85840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
This in vitro study aims to evaluate various surface treatments on the shear bond strength and failure mode of CAD/CAM PMMA teeth to the heat-polymerized acrylic denture base. The study sample consisted of 100 teeth that were divided equally into five groups: Group 1: denture artificial teeth (control), Group 2: PMMA teeth without surface treatment, Group 3: PMMA teeth with MMA etching, Group 4: PMMA teeth with sandblasting (aluminum oxide particles), and Group 5: PMMA teeth with perpendicular grooves. The shear bond strength test was performed using a universal testing machine and the failure mode was recorded. Data were analyzed using ANOVA followed by Tukey's post-hoc tests (α = 0.05). MMA increased the shear bond strength compared with other surface treatments (sandblasting and perpendicular grooves; P < 0.001). Sandblasting and perpendicular grooves showed no significant difference in the shear bond strength (P = 0.548 and 0.061; respectively). There were statistically significant differences in the frequencies of failure mode between the studied groups (P < 0.001). The control, PMMA, and PMMA + Sandblasting groups showed the weakest bonding. MMA application improved the shear bond strength for CAD/CAM PMMA teeth, the perpendicular groove seems to be not sufficiently effective, while the sandblasting cannot be considered as a surface treatment.
Collapse
Affiliation(s)
- Nour Alhouda Alhomsi
- Department of Removable Prosthodontics, Faculty of Dental Medicine, University of Damascus, Damascus, Syria
| | - Ammar Almustafa
- Department of Removable Prosthodontics, Faculty of Dental Medicine, University of Damascus, Damascus, Syria
| | - Hasan Alzoubi
- Department of Pediatric Dentistry Faculty of Dental Medicine, University of Damascus, Damascus, Syria.
| |
Collapse
|
3
|
Karaokutan I, Ayvaz I, Ozel GS. Effect of adhesives and mechanical surface treatments on the hard relining of CAD-CAM denture bases. J Prosthodont 2024. [PMID: 39215615 DOI: 10.1111/jopr.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/28/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The aim of this study was to evaluate the impact of mechanical roughening, adhesive applications, and aging on the bonding between CAD-CAM denture base materials with distinct chemical contents and hard relining material. MATERIALS AND METHODS A total of 300 denture base specimens were produced by additive, subtractive, and conventional heat-polymerization techniques (N = 100). The specimens have been classified into five subgroups based on the particular surface treatments administered (n = 20): (1) Hard relining material's adhesive application (control); (2) Tungsten carbide bur application for 1 min, and hard reline material's adhesive application; (3) Airborne-particle abrasion (APA) with 110 μm Al2O3, and hard reline material's adhesive application; (4) Scotchbond Universal application; and (5) Visio.link application. Representative specimens from each subgroup were examined under a Scanning Electron Microscope (SEM). Subsequently, self-cure hard relining material was condensed in the center of the specimens. Half of the specimens were thermally aged with 5000 cycles at 5°C-55°C. The shear bond strength (SBS) test was performed, and failure loads were recorded. The data was evaluated by Robust ANOVA and Bonferroni test (p < 0.05). RESULTS No statistically significant difference was obtained between the production techniques (p = 0.051). The lowest SBS was observed in the control group among surface treatments, while mechanical surface treatments and universal adhesive showed the highest SBS for both aged and non-aged groups. Aging caused a significant decrease for all test groups (p = 0.001). CONCLUSIONS Mechanical surface treatments and universal adhesive applications are more effective for maintaining adhesion across all production techniques.
Collapse
Affiliation(s)
- Isil Karaokutan
- Department of Prosthodontics, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Ilayda Ayvaz
- Department of Prosthodontics, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Gulsum Sayin Ozel
- Department of Prosthodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
4
|
Dimitrova M, Vlahova A, Hristov I, Kazakova R. Bonding Efficiency between Artificial Teeth and Denture Base in CAD/CAM and Conventional Complete Removable Dentures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3138. [PMID: 38998221 PMCID: PMC11242212 DOI: 10.3390/ma17133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
A common challenge encountered with both traditional and digitally produced dentures involves the extraction of artificial teeth from the denture base. This narrative review seeks to present an updated perspective on the adherence of synthetic teeth for denture base materials, employing diverse methods. Dental technicians often employ chemical approaches and mechanical techniques (including abrasion, laser treatment, and abrasive blasting) to augment the retention of denture teeth. However, the efficacy of these treatments remains uncertain. In certain instances, specific combinations of Denture Base Resin (DBR) materials and artificial teeth exhibit improved performance in conventional heat-cured dentures following these treatments. The primary reasons for failure are attributed to material incompatibility and inadequate copolymerization. As new denture fabrication techniques and materials continue to emerge, further research is imperative to identify optimal tooth-DBR combinations. Notably, 3D-printed tooth-DBR combinations have demonstrated reduced bond strength and less favorable failure patterns, while utilizing milled and traditional combinations appears to be a more prudent choice until advancements in additive manufacturing enhance the reliability of 3D-printing methods.
Collapse
Affiliation(s)
- Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Ilian Hristov
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Alhamdan MM. Application of Laser Treatment in Adhesive Bonding of Liners to Polymethyl Methacrylate Denture Resins: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg 2023; 41:608-621. [PMID: 37910776 DOI: 10.1089/photob.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Objective: This systematic review and meta-analysis aimed to assess the influence of laser treatment on adhesive bonding of liners to polymethyl methacrylate (PMMA) denture base resins. Methods: The focused question was: "Does the application of laser treatment (Intervention) influence the adhesive bonding strength (Outcome) of liners to PMMA denture base resins (Population) as compared with untreated or unconditioned surfaces (Control)?" In vitro and clinical reports as well as reports on influence of laser treatments on bonding strength of liners to PMMA denture resins in comparison with untreated surfaces were included. Reports without any control group[s], without any application of laser[s] for PMMA denture bases that did not utilize PMMA denture bases, and not evaluate bond strength of PMMA denture base resins were excluded. An electronic search was conducted on PubMed, Scopus, and Web of Science. Meta-analyses were performed for calculating the standard mean difference (SMD) with a 95% confidence interval (95% CI). Results: Nine of the 12 included studies found that laser irradiation treatment produced significant surface texture alterations of the PMMA denture base and improved the adhesion between the PMMA denture base and soft lining. According to the meta-analysis, tensile bond strength showed an SMD of -2.49% (95% CI: -3.89 to -1.08; p = 0.0005), suggesting a statistically significant difference between the control and test groups (i.e., favoring laser-treated samples than untreated samples). Regarding shear bond strength scores, the outcomes showed an SMD of -2.24% (95% CI: -3.79 to -0.69; p = 0.005), suggesting a statistically significant difference between the control and test groups (i.e., favoring laser-treated samples than untreated samples). Conclusions: Despite the high heterogeneity among the included studies, it can be concluded that laser treatment might improve the bonding strengths of liners to PMMA denture base resins as compared with untreated surfaces. To validate the aforementioned conclusions, further verification is required through the implementation of well-designed randomized controlled trials with large sample sizes.
Collapse
Affiliation(s)
- Mai M Alhamdan
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Erbulak Z, Ergun G. The effects of different surface treatments applied to milled PMMA denture base material on repair bond strength. Odontology 2023; 111:953-970. [PMID: 37016128 DOI: 10.1007/s10266-023-00806-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
The high cost of CAD/CAM systems and materials is a severe economic burden. Therefore, repair of CAD/CAM PMMA, selecting appropriate repair materials, and surface modifications are clinically important. This study aims to evaluate the shear bond strength of PMMA repair materials after various surface treatments on CAD/CAM PMMA denture base material. For this purpose, a total of 480 CAD/CAM PMMA denture base test specimens were manufactured. Then all test specimens were divided into 6 groups, and different surface treatments were applied. Group A: sandblasting, Group B: 4% hydro fluoric acid, Group C: tungsten carbide bur, Group D: dichloromethane + methyl methacrylate mixture, Group E: dichloromethane and methyl methacrylate, Group F: no surface treatment. Each group is then divided into 4 different subcategories; repair processes were performed using; heat-cured acrylic resin (n:20), auto-polymerized acrylic resin (n:20), gingiva composite (n:20), and CAD/CAM PMMA tooth material (n:20). After repairs, thermal aging was applied to half of the test specimens in each subcategory. The shear bond strength value was measured with a universal test device. Sandblasting group showed the highest surface roughness value in all test specimens (p < 0.001). Heat-cured acrylic resin with sandblasting exhibited the highest bond strength, while the untreated gingiva composite resin exhibited the lowest value. Thermal aging decreased bond strength in all repair materials (p < 0.001). Among the surface treatment groups, sandblasting with Al2O3 particles exhibited the highest surface roughness value and repair bond strength. The application of organic solvents to the surface increased the surface roughness and repair bond strength. Applying dichloromethane and methyl methacrylate monomer separately is more effective than applying it as a mixture. The ideal bonding among repair materials was obtained with heat-cured acrylic resin.
Collapse
Affiliation(s)
- Zahıde Erbulak
- Department of Prosthodontics, Faculty of Dentistry, Gazi University, Bişkek Cad. 1.Sk. No:4 06490 Emek, Ankara, Turkey.
| | - Gulfem Ergun
- Department of Prosthodontics, Faculty of Dentistry, Gazi University, Bişkek Cad. 1.Sk. No:4 06490 Emek, Ankara, Turkey
| |
Collapse
|
7
|
Tzanakakis EG, Pandoleon P, Sarafianou A, Kontonasaki E. Adhesion of Conventional, 3D-Printed and Milled Artificial Teeth to Resin Substrates for Complete Dentures: A Narrative Review. Polymers (Basel) 2023; 15:polym15112488. [PMID: 37299286 DOI: 10.3390/polym15112488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND One type of failure in complete or partial dentures is the detachment of resin teeth from denture base resin (DBR). This common complication is also observed in the new generation of digitally fabricated dentures. The purpose of this review was to provide an update on the adhesion of artificial teeth to denture resin substrates fabricated by conventional and digital methods. METHODS A search strategy was applied to retrieve relevant studies in PubMed and Scopus. RESULTS Chemical (monomers, ethyl acetone, conditioning liquids, adhesive agents, etc.) and mechanical (grinding, laser, sandblasting, etc.) treatments are commonly used by technicians to improve denture teeth retention with controversial benefits. Better performance in conventional dentures is realized for certain combinations of DBR materials and denture teeth after mechanical or chemical treatment. CONCLUSIONS The incompatibility of certain materials and lack of copolymerization are the main reasons for failure. Due to the emerging field of new techniques for denture fabrication, different materials have been developed, and further research is needed to elaborate the best combination of teeth and DBRs. Lower bond strength and suboptimal failure modes have been related to 3D-printed combinations of teeth and DBRs, while milled and conventional combinations seem to be a safer choice until further improvements in printing technologies are developed.
Collapse
Affiliation(s)
- Emmanouil-George Tzanakakis
- Department of Prosthodontics, Faculty of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Pandoleon
- Department of Prosthodontics, Faculty of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aspasia Sarafianou
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., 11527 Athens, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
The Shear Bond Strength between Milled Denture Base Materials and Artificial Teeth: A Systematic Review. Dent J (Basel) 2023; 11:dj11030066. [PMID: 36975564 PMCID: PMC10046986 DOI: 10.3390/dj11030066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
The data about bond strength between digitally produced denture base resins and artificial teeth are scarce. Several studies investigated shear bond strength values of milled denture base resins and different types of artificial teeth. The purpose of the present study was to compare and evaluate the available evidence through a systematic review. A bibliographic search was conducted in PubMed, Scopus, and Web of Science to assess adequate studies published up to 1 June 2022. This review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The appropriate studies that determined the shear bond strength values between milled denture base resins and artificial teeth were selected. The initial search identified 103 studies, which were included in the PRISMA 2020 flow diagram for new systematic reviews. Three studies met the inclusion criteria, and all of them present a moderate risk of bias (score 6). Two studies found no statistical differences between heat-polymerized and CAD/CAM (milled) denture base materials when attached with different types of artificial teeth, while one study showed higher values of CAD/CAM (milled) denture base materials. Bonding agents ensure bonding strength at least similar to the conventional methods. In order to improve the quality of future studies, it would be advantageous to use a larger number of specimens with standardized dimensions and a blinded testing machine operator to decrease the risk of bias.
Collapse
|
9
|
Taczała-Warga J, Sawicki J, Krasowski M, Sokołowski J. The Effect of Acrylic Surface Preparation on Bonding Denture Teeth to Cellulose Fiber-Reinforced Denture Base Acrylic. J Funct Biomater 2022; 13:183. [PMID: 36278652 PMCID: PMC9590047 DOI: 10.3390/jfb13040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Patients who require dental prosthetic restoration using frame dentures in the front part of the mouth very frequently report that teeth fall out of their dentures. However, the available scientific papers are insufficient to compare the various methods of improving the connection between the denture base and the artificial tooth and choosing the best solution. This paper focuses on providing all parameters, enabling the reproduction of tests, and accounting for all variables. The paper uses an original method of creating grooves, sandpaper, sandblasting, and cutting the acrylate layer with a burr in one and two directions. Developed surfaces were additionally subjected to detailed examination. This study used 180 specimens divided into three groups and subjected to various environments (dry, artificial saliva, and thermocycles). Shearing and tensile strength tests were performed. The best results were obtained with a carbide burr. The increase in connection durability was as follows in the case of the shear test: 116.47% in dry samples, 155.38% in samples soaked in artificial saliva, and 46.59% in samples after thermocycles. The increase in tensile resistance was: 198.96% in a dry environment, 88.10% before being soaked in artificial saliva, and 94.04% after thermocycles.
Collapse
Affiliation(s)
- Joanna Taczała-Warga
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Jacek Sawicki
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Michał Krasowski
- University Laboratory of Material Research, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Jerzy Sokołowski
- Department of General Dentistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
10
|
Helal MA, Al-Gazzar AE, Abas M, Akhtar S, Gad MM, Al-Thobity AM. Comparative Effect of Different Surface Treatments on the Shear Bond Strength of Two Types of Artificial Teeth Bonded To Two Types of Denture Base Resins. J Prosthodont 2021; 31:427-433. [PMID: 34480386 DOI: 10.1111/jopr.13425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This in vitro study aims to assess the impact of various surface treatments on the shear bond strength (SBS) of two types of artificial teeth and denture base resins (DBRs). MATERIALS AND METHODS Two types of DBRs (CAD/CAM-milled and heat-polymerized) and two types of denture teeth (acrylic and composite) were investigated. Teeth were cut into slices (5 × 5 × 2 mm) and divided according to surface treatment into four subgroups (n = 10): no treatment (control), air abrasion (Alumina-blasting; AB), bur roughening, and dichloromethane (DCM) subgroups. According to manufacturer recommendations, the treated tooth slices were bonded to the acrylic disk of DBRs. The SBS test was performed using a universal testing machine. ANOVA was used for results analysis followed by Tukey's post hoc tests (α = 0.05). RESULTS DCM and AB increased the SBS of acrylic teeth to heat-polymerized DBR compared with other groups (p < 0.001). All surface treatments showed no significant difference in CAD/CAM DBR with acrylic teeth (p = 0.059; AB, p = 0.319; bur roughening, p = 0.895; DCM), while there was a significant decrease in SBS with composite teeth (p ˂ 0.001). Between teeth, acrylic teeth showed a statistically significant increase in SBS compared to composite teeth (p < 0.001). CONCLUSION AB and DCM application improved the SBS for acrylic teeth with the heat-polymerized DBR when compared with the untreated group, but none of the surface treatment agents showed significant improvement with CAD/CAM DBR. All surface treatment agents reduced the SBS for composite teeth with CAD/CAM DBR while AB only increased the SBS with heat-polymerized DBR.
Collapse
Affiliation(s)
- Mohamed A Helal
- Department of Removable Prosthodontics, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mohamed Abas
- Department of Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed M Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmad M Al-Thobity
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Neshandar Asli H, Rahimabadi S, Babaee Hemmati Y, Falahchai M. Effect of different surface treatments on surface roughness and flexural strength of repaired 3D-printed denture base: An in vitro study. J Prosthet Dent 2021; 126:595.e1-595.e8. [PMID: 34366117 DOI: 10.1016/j.prosdent.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
STATEMENT OF PROBLEM Information regarding three-dimensional-printed (3D-printed) dentures, especially when using the additive manufacturing technique, and the repair strength of this type of denture is sparse. PURPOSE The purpose of this in vitro study was to assess the effect of different surface treatments on the surface roughness and flexural strength of repaired 3D-printed denture base. MATERIAL AND METHODS One hundred and twenty 3D-printed bar-shaped specimens were fabricated from acrylic resin and divided into 6 groups (n=20). The positive control group consisted of intact specimens. The other specimens were sectioned in half with a 1-mm gap. Except for the specimens in the negative control group, the remaining specimens were treated with erbium: yttrium-aluminum-garnet (Er:YAG) laser, airborne-particle abrasion, a combination of laser and airborne-particle abrasion, and bur grinding. All sectioned specimens were repaired by autopolymerizing acrylic resin and thermocycled after measuring their surface roughness with a profilometer. The flexural strength test was performed with a universal testing machine. One specimen of each group was inspected under a scanning electron microscope. The data were analyzed with ANOVA, followed by the Games-Howell post hoc test or the Kruskal-Wallis test followed by the Mann-Whitney test with Bonferroni adjustment. RESULTS The mean flexural strength of the PC group was significantly higher than that of all repaired groups (P<.001). All surface-treated groups showed significantly higher flexural strength (P<.05) and surface roughness (P<.004) than the negative control group. Bur grinding provided significantly higher flexural strength than other surface treatments (P<.001) and higher surface roughness than laser and airborne-particle abrasion plus laser (P<.001). CONCLUSIONS All surface treatments significantly increased the surface roughness and flexural strength, but none of them yielded a strength comparable with that of the intact group. Bur grinding provided the highest flexural strength.
Collapse
Affiliation(s)
- Hamid Neshandar Asli
- Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Samiye Rahimabadi
- General Practitioner, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasamin Babaee Hemmati
- Assistant Professor, Department of Orthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Falahchai
- Assistant Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Numerical Analysis of the Bond Strength between Two Methacrylic Polymers by Surface Modification. MATERIALS 2021; 14:ma14143927. [PMID: 34300844 PMCID: PMC8304817 DOI: 10.3390/ma14143927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
The creation of acrylic dentures involves many stages. One of them is to prepare the surfaces of artificial teeth for connection with the denture plates. The teeth could be rubbed with a chemical reagent, the surface could be developed, or retention hooks could be created. Preparation of the surface is used to improve the bond between the teeth and the plate. Choosing the right combination affects the length of denture use. This work focuses on a numerical analysis of grooving. The purpose of this article is to select the shape and size of the grooves that would most affect the quality of the bond strength. Two types of grooves in different dimensional configurations were analyzed. The variables were groove depth and width, and the distance between the grooves. Finally, 24 configurations were obtained. Models were analyzed in terms of their angular position to the loading force. Finite element method (FEM) analysis was performed on the 3D geometry created, which consisted of two polymer bodies under the shear process. The smallest values of the stresses and strains were characterized by a sample with parallel grooves with the grooving dimensions width 0.20 mm, thickness 0.10 mm, and distance between the grooves 5.00 mm, placed at an angle of 90°. The best dimensions from the parallel (III) and cross (#) grooves were compared experimentally. Specimens with grooving III were not damaged in the shear test. The research shows that the shape of the groove affects the distribution of stresses and strains. Combining the selected method with an adequately selected chemical reagent can significantly increase the strength of the connection.
Collapse
|
13
|
Kuscu E, Klink A, Spintzyk S, Kraemer Fernandez P, Huettig F. Bonding Interface and Repairability of 3D-Printed Intraoral Splints: Shear Bond Strength to Current Polymers, with and without Ageing. MATERIALS 2021; 14:ma14143935. [PMID: 34300854 PMCID: PMC8307865 DOI: 10.3390/ma14143935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
This in-vitro study investigates the bonding interfaces reached by the conditioning of a splint material additively manufactured by digital light processing (AM base) as well as the shear bond strength (SBS) of resins bonded to these surfaces (repair material). Therefore, the AM base was either stored in dry for 12 h or wet environment for 14 days to simulate ageing by intraoral wear. The dry and wet group was bonded after physical and/or chemical conditioning to cylinders made from polymethylmethacrylate or four novel polymers allowing splint modifications. Blasted and methylmethacrylate (MMA)-conditioned Polymethylmethacrylate (PMMA) bonded to PMMA acted as the gold standard. The surface profiles revealed highest differences of Ra towards the gold standard in AM base conditioned with other than MMA after sandblasting. The adhesively bonded repair materials of the wet AM base were further aged in wet environment for 14 days. The SBS of the gold standard (25.2 MPa and 25.6 MPa) was only reached by PMMA bonded to blasted and MMA-conditioned AM base after dry (22.7 MPa) and non-conditioned after wet storage (23 MPa). Four repair materials failed to reach the threshold of 5 MPa after dry storage and three after wet storage, respectively. Non-conditioned AM base revealed the highest risk for adhesive fractures when using other resins than PMMA.
Collapse
Affiliation(s)
- Ebru Kuscu
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
- Correspondence:
| | - Andrea Klink
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
| | - Sebastian Spintzyk
- Section Medical Materials Science and Technology, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany;
| | - Pablo Kraemer Fernandez
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
| | - Fabian Huettig
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
| |
Collapse
|
14
|
Bonding Behavior of Conventional PMMA towards Industrial CAD/CAM PMMA and Artificial Resin Teeth for Complete Denture Manufacturing in a Digital Workflow. MATERIALS 2021; 14:ma14143822. [PMID: 34300747 PMCID: PMC8303782 DOI: 10.3390/ma14143822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022]
Abstract
When applying a digital workflow, custom artificial resin teeth have to be integrated into a milled complete denture base, using polymethylmethacrylate (PMMA) applied with a powder–liquid technique. Debonding of denture teeth from dentures is reported to be a frequent complication. No evidence is provided as to which method of surface treatment may enhance the bonding strength. The bonding strength between artificial teeth and PMMA (Group A, n = 60), as well as between the PMMA and industrial PMMA (Group B, n = 60), was investigated following no treatment, monomer application, sandblasting, oxygen plasma, and nitrogen plasma treatment. Surface-roughness values and SEM images were obtained for each group. Shear bond strength (SBS) and fracture mode were analyzed after thermocycling. Within Group A, statistically significant higher SBS was found for all surface treatments, except for nitrogen plasma. In Group B, only nitrogen plasma showed a statistically lower SBS compared to the reference group which was equivalent to all surface treatments. Conclusions: Within the limitations of the present study, the monomer application can be proposed as the most effective surface-treatment method to bond custom artificial teeth into a milled PMMA denture base, whereas nitrogen plasma impairs the bonding strength.
Collapse
|
15
|
Prpić V, Schauperl Z, Glavina D, Ćatić A, Čimić S. Comparison of shear bond strengths of different types of denture teeth to different denture base resins. J Adv Prosthodont 2021; 12:376-382. [PMID: 33489022 PMCID: PMC7790604 DOI: 10.4047/jap.2020.12.6.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.
Collapse
Affiliation(s)
- Vladimir Prpić
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Zdravko Schauperl
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Domagoj Glavina
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Amir Ćatić
- Department of Prosthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Samir Čimić
- Department of Prosthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Zidan S, Silikas N, Haider J, Alhotan A, Jahantigh J, Yates J. Assessing Tensile Bond Strength Between Denture Teeth and Nano-Zirconia Impregnated PMMA Denture Base. Int J Nanomedicine 2020; 15:9611-9625. [PMID: 33293810 PMCID: PMC7718964 DOI: 10.2147/ijn.s273541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose This study evaluated tensile bond strength (TBS) between anterior acrylic teeth and denture bases made of high-impact heat-cured acrylic resin (HI PMMA) impregnated with zirconia nanoparticles. Materials and Methods A total of 30 specimens (each specimen containing a set of six upper anterior teeth) were fabricated from HI PMMA denture base acrylic resin reinforced with different weight concentrations of zirconia nanoparticles: 0% (control), 1.5%, 3%, 5%, 7% and 10%. TBS was tested according to a British standard (BS EN ISO 22112: 2017). A one-way analysis of variance (ANOVA) was employed with a Tukey post-hoc test. Results TBS values between the anterior teeth (central and lateral incisors and canine) and HI-PMMA denture base groups containing 7 wt.% (261.5 ± 66.0 N, 172.5 ± 57.4 N and 271.9 ± 86.3 N) and 10 wt.% (332.1 ± 122.9 N, 165.4 ± 48.7 N and 301.6 ± 73.2 N) zirconia were significantly lower compared to the control group (645.4 ± 84.8 N, 306.1 ± 81.6 N and 496.7 ± 179.1 N) and the other nanocomposite groups. However, TBS values for HI PMMA with 1.5 wt.% (534.4 ± 115.3 N, 304.7 ± 86.4 N, 514.0 ± 143.2 N), 3 wt.% (685.7 ± 159.6 N, 281.1 ± 78.3 N, 462.6 ± 122.1 N) and 5 wt.% (514.5 ± 134.3 N, 229.8 ± 67.3 N, 387.2 ± 99.4 N) zirconia showed slightly lower values than that of the control group but these were not significant. Failure modes between the teeth and denture base nanocomposites were predominantly cohesive fractures, which were clinically acceptable according to the Standard. Conclusion The addition of zirconia nanoparticles to HI PMMA denture base at high concentration (7 wt.% and 10 wt. %) significantly (p<0.05) reduced the bonding strength for all types of anterior teeth compared to the control group.
Collapse
Affiliation(s)
- Saleh Zidan
- Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK.,Department of Dental Materials, Faculty of Dentistry, Sebha University, Sebha, Libya
| | - Nikolaos Silikas
- Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Abdulaziz Alhotan
- Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Javad Jahantigh
- Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Julian Yates
- Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
17
|
Sari F, Ustun O, Kirmali O. Efficacy of Various Pretreatments on the Bond Strength of Denture Teeth to Denture Base Resins. Photomed Laser Surg 2018; 36:214-220. [DOI: 10.1089/pho.2017.4408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Fatih Sari
- Department of Prosthodontics, Faculty of Dentistry, Gaziantep University, Gaziantep, Turkey
| | - Ozlem Ustun
- Department of Prosthodontics, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Omer Kirmali
- Department of Prosthodontics, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
18
|
Modeling Chronic Dacryocystitis in Rabbits by Nasolacrimal Duct Obstruction with Self-Curing Resin. J Ophthalmol 2017; 2017:3438041. [PMID: 28717520 PMCID: PMC5498895 DOI: 10.1155/2017/3438041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/28/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022] Open
Abstract
We established a chronic dacryocystitis model by injecting of 0.05, 0.1, and 0.15 ml self-curing resin via the lacrimal punctum in rabbits. Animals were randomized into four groups (n = 11 animals/group). The control group received 0.15 ml normal saline. Within three months postinjection, epiphora and eye discharge were observed. At the 90th day postlacrimal passage irrigation, CT dacryocystography was performed to find changes in the lacrimal image, and hematoxylin and eosin staining was made to identify pathological changes of the lacrimal sac. Three months postinjection, the rabbits in control group and those who received 0.05 and 0.1 ml self-curing resin failed to develop chronic dacryocystitis. However, 8/11 (72.7%) rabbits those received 0.15 ml self-curing resin were symptomatic and showed complete reflux in lacrimal passage irrigation, indicating the obstruction of the nasolacrimal duct. CT dacryocystography showed that the obstruction was present only in the animals with chronic dacryocystitis. Pathological examinations of chronic dacryocystitis also revealed significantly inflammatory changes, such as mucus epithelium thickening, irregular papillary proliferation, and submucosal fibrous deposition. Local injection of 0.15 ml self-curing resin can induce permanent obstruction of the nasolacrimal duct in rabbits and establish a model of chronic dacryocystitis.
Collapse
|
19
|
Phukela SS, Dua A, Dua M, Sehgal V, Setya G, Dhall RS. Comparative failure load values of acrylic resin denture teeth bonded to three different heat cure denture base resins: An in vitro study. J Int Soc Prev Community Dent 2016; 6:S12-6. [PMID: 27195221 PMCID: PMC4863477 DOI: 10.4103/2231-0762.181161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim and Objectives: Acrylic teeth are used for fabrication of dentures. Debonding of tooth – denture base bond is routine problem in dental practice. The aim of this study was to comparatively evaluate failure load of acrylic resin denture teeth bonded to three different heat resin. Materials and Methods: Four groups were created out of test samples central incisors (11). Group I: Control, whereas Group II, Group III and Group IV were experimental groups modified with diatoric hole, cingulum ledge lock and Teeth modified with both diatoric hole and cingulum ledge lock, respectively. These test specimens with 3 teeth (2 central [11, 21] and 1, lateral [12] incisors) positioned imitating arrangement of teeth in the conventional denture, prepared by three different heat cure materials (DPI, Trevalon, Acralyn-H). A shear load was applied at cingulum of central incisor (11) at 130° to its long axis using universal tester at a cross head speed of 5 mm/min until failure occurred. Failure load test was conducted and statistical analysis was performed using SPSS 16 software package (IBM Company, New York, U.S). Results: Highest failure load was seen in Group IV specimens, prepared by Trevalon but did not significantly differ from that of DPI. Conclusion: The failure load of bonding denture teeth to three different heat cure materials was notably affected by modifications of ridge lap before processing. The specimens with a combination of diatoric hole and cingulum ledge lock, prepared by Trevalon showed highest failure load but did not significantly vary from that of DPI. The control group prepared by Acralyn-H showed lowest failure load but did not significantly differ from that of DPI.
Collapse
Affiliation(s)
- Sumit Singh Phukela
- Department of Prosthodontics, Faculty of Dental Science, SGT University, Gurgaon, Haryana, India
| | - Amit Dua
- Private Practitioner, Zonal Dental Clinic, Clove Dental, New Delhi, India
| | - Mahima Dua
- Department of Oral Pathology, Indraprastha Dental College and Hospital, Ghaziabad, Uttar Pradesh, India
| | - Varun Sehgal
- Private Practitioner, Zonal Dental Clinic, Clove Dental, New Delhi, India
| | - Gaurav Setya
- Department of Conservative, Faculty of Dental Science, SGT University, Gurgaon, Haryana, India
| | - Rupinder Singh Dhall
- Department of Prosthodontics, Himachal Institute of Dental Science, Himachal Pradesh, India
| |
Collapse
|
20
|
Phukela SS, Chintalapudi SK, Sachdeva H, Dhall RS, Sharma N, Prabhu A. Comparative evaluation of different mechanical modifications of denture teeth on bond strength between high-impact acrylic resin and denture teeth: An in vitro study. J Int Soc Prev Community Dent 2016; 6:161-6. [PMID: 27114957 PMCID: PMC4820577 DOI: 10.4103/2231-0762.178740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Aim and Objective: Acrylic teeth separates from the denture base and remains a major worry in day-to-day routine dental procedure. The present study was conducted to comparatively evaluate different mechanical modifications of acrylic teeth on bond strength between Lucitone 199 heat cure resin and cross-linked teeth. Materials and Methods: The test specimens, central incisors (21) were demarcated into four groups. Group 1 was the control group, whereas Group 2, Group 3, and Group 4 were experimental groups modified with round groove, vertical groove, and T-shaped groove, respectively. The preparation of masterpiece was done by aligning the long axis of the central incisor teeth at 45° to the base of a wax block (8 mm × 10 mm × 30 mm), with ridge lap surface contacting the base. These test specimen (21) was prepared by Lucitone 199 heat cure resin. Evaluation of bond strength of all the specimens was done using universal tester (materials testing machine). Shapiro–Wilk Test, one-way analysis of variance (ANOVA), and Bonferroni test were done to do statistical investigation. Results: Group 1 specimens prepared by Lucitone 199 heat cure resin showed the lowest bond strength and Group 4 specimens prepared with T-shaped groove packed with Lucitone 199 exhibited the highest bond strength. Conclusion: The bond strength between Lucitone 199 heat cure resin and cross-linked teeth was increased when mechanical modifications was done on denture teeth. The specimens prepared with T-shaped groove packed with Lucitone 199 heat cure resin showed the highest bond strength followed by Group 3, Group 2, and lastly Group 1 prepared by Lucitone 199 heat cure resin.
Collapse
Affiliation(s)
- Sumit Singh Phukela
- Department of Prosthodontics, Shree Guru Gobind Singh Tricentenary (SGT) Unversity, Gurgaon, Haryana, India
| | - Siddesh Kumar Chintalapudi
- Department of Prosthodontics, Shree Sai Dental College and Research Institute, Srikakulam, Andhra Pradesh, India
| | - Harleen Sachdeva
- Department of Prosthodontics, RKDF Dental College and Research Centre, Bhopal, India
| | - Rupinder Singh Dhall
- Department of Prosthodontics, Himachal Institute of Dental Sciences, Paonta Sahib, Himachal Pradesh, India
| | - Neeraj Sharma
- Department of Prosthodontics, Modern Dental College and Research Centre, Indore, Madhya Pradesh, India
| | - Allama Prabhu
- Department of Public Health Dentistry, College of Dental Sciences, Davangere, Karnataka, India
| |
Collapse
|