1
|
Karic V, Penny C. Photobiomodulation therapy as an additional method for the treatment of temporomandibular disorder patients- a narrative review. Lasers Med Sci 2025; 40:56. [PMID: 39885096 PMCID: PMC11782291 DOI: 10.1007/s10103-025-04324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The photobiomodulation therapy (PBMT) is promising additional therapy in the treatment of temporomandibular disorder (TMD). In this regard, the purpose of this narrative review is to give a wide-ranging, objective, and judicious view of the current knowledge on PBMT as an additional TMD treatment modality, with summarised updated information. Although the results of most research studies report improvement of pain in TMD patients, some state that sustainability of absence of pain after PBMT of TMD is of concern. There has been a recent surge in research around the application of lasers for the management of TMD. Nonetheless, the scarcity of scientific clinical studies with structured laser parameters makes it difficult to draw a more concrete conclusion whether lasers in the treatment of TMD are more effective than traditional TMD treatments. In conclusion, since PBMT is becoming an additional treatment of choice for the management of TMD there is a need for more research especially involving clinical studies with better structured laser parameters.
Collapse
Affiliation(s)
- Vesna Karic
- Department of Prosthodontic, Laser Therapy in Dentistry Clinic, School of Oral Sciences, Faculty of Health Sciences, WITS University, South Africa.
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, WITS University, South Africa
| |
Collapse
|
2
|
Min Z, Li Y, Xiong Y, Wang H, Jiang N. Specific tissue engineering for temporomandibular joint disc perforation. Cytotherapy 2024; 26:231-241. [PMID: 38099894 DOI: 10.1016/j.jcyt.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/28/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND The temporomandibular joint (TMJ) disc is a critical fibrocartilaginous structure with limited regenerative capacity in the oral system. Perforation of the TMJ disc can lead to osteoarthritis and ankylosis of the TMJ because of the lack of disc protection. Clinical treatments for TMJ disc perforation, such as discectomy, hyaluronic acid injection, endoscopic surgery and high position arthroplasty of TMJ, are questionable with regard to long-term outcomes, and only three fourths of TMJ disc perforations are repairable by surgery, even in the short-term. Tissue engineering offers the potential for cure of repairable TMJ disc perforations and regeneration of unrepairable ones. OBJECTIVES This review discusses the classification of TMJ disc perforation and defines typical TMJ disc perforation. Advancements in the engineering-based repair of TMJ disc perforation by stem cell therapy, construction of a disc-like scaffold and functionalization by offering bioactive stimuli are also summarized in the review, and the barriers developing engineering technologies need to overcome to be popularized are discussed.
Collapse
Affiliation(s)
- Ziyang Min
- West China School/Hospital of Stomatology, Chengdu, China
| | - Yibo Li
- West China School/Hospital of Stomatology, Chengdu, China
| | - Yichen Xiong
- West China School/Hospital of Stomatology, Chengdu, China
| | - Huayu Wang
- West China School/Hospital of Stomatology, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and West China Hospital of Stomatology, Chengdu, China.
| |
Collapse
|
3
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
4
|
da Silva ZA, Melo WWP, Ferreira HHN, Lima RR, Souza-Rodrigues RD. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. J Funct Biomater 2023; 14:103. [PMID: 36826902 PMCID: PMC9965396 DOI: 10.3390/jfb14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Temporomandibular disorder (TMD) is an umbrella term used to describe various conditions that affect temporomandibular joints, masticatory muscles, and associated structures. Although the most conservative and least invasive treatment is preferable, more invasive therapies should be employed to refractory patients. Tissue engineering has been presented as a promising therapy. Our study aimed to investigate trends and point out future research directions on TMD and stem cells. A comprehensive search was carried out in the Web of Science Core Collection (WoS-CC) in October 2022. The bibliometric parameters were analyzed through descriptive statistics and graphical mapping. Thus, 125 papers, published between 1992 and 2022 in 65 journals, were selected. The period with the highest number of publications and citations was between 2012 and 2022. China has produced the most publications on the subject. The most frequently used keywords were "cartilage", "temporomandibular joint", "mesenchymal stem cells", and "osteoarthritis". Moreover, the primary type of study was in vivo. It was noticed that using stem cells to improve temporomandibular joint repair and regeneration is a significant subject of investigation. Nonetheless, a greater understanding of the biological interaction and the benefits of using these cells in patients with TMD is required.
Collapse
Affiliation(s)
| | | | | | | | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
5
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
6
|
Autologous Stem Cells Transplants in the Treatment of Temporomandibular Joints Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Cells 2022; 11:cells11172709. [PMID: 36078117 PMCID: PMC9454527 DOI: 10.3390/cells11172709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review aims to analyze the outcomes of the treatment of temporomandibular joint (TMJ) articular pain (AP) and restricted maximum mouth opening (MMO) with intra-articular administration of mesenchymal stem cells (MSCs). The inclusion criteria allowed primary studies involving AP and/or MMO pre-treatment and post-intervention values. Medical databases that were covered by ACM Digital, BASE, EBSCOhost, Google Scholar, PubMed, Scopus, and Web of Science engines were searched. The risk of bias was assessed with RoB 2 and ROBINS-I tools. The results were tabulated, plotted, and analyzed for regression. A total of 5 studies involving 51 patients/69 TMJs were identified, and 4 studies on 50 patients/67 TMJs were synthesized. Interventions were each time effective in decreasing AP and increasing MMO in a 6-month follow-up period by an average of about 85% and over 40%, respectively. Regression analysis showed a good fit of the logarithmic model for AP relief (5.8 − 0.8 ln x; R2 = 0.90) and MMO increase (33.5 + 2.4 ln x; R2 = 0.89). The results for AP and MMO were based on 3 studies in 39 patients and 4 studies in 50 patients, respectively, all at high risk of bias. The intra-articular administration of MSCs to TMJs, based on weak evidence, may be highly effective in reducing AP and improving MMO. This study received no funding.
Collapse
|
7
|
Advances in Tissue Engineering of the Temporomandibular Joint Disc: An Overview of Current Status and Future Directions. Int J Dent 2022; 2022:9696378. [PMID: 35910087 PMCID: PMC9337926 DOI: 10.1155/2022/9696378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/08/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Advances in tissue engineering have progressed to potentially offer a solution to temporomandibular joint disc (TMJ) disorders not amenable to conservative therapies. Conclusive treatment options for patients with end-stage disc disorders requires discectomy and reconstruction of the articular disc with various materials. Tissue engineering TMJ disc is a promising alternative to the limited and sometimes inadequate clinical options in the management of such disorders. However, tissue engineering is far from completion for the TMJ disc regeneration. This review briefly discusses the properties of native disc, the mechanism by which TMJ disorders manifest, and how a tissue engineered disc could assuage the problems inherent in the management of such disorders. Furthermore, the review addresses and provides updates to relevant themes of tissue engineering in regards to the TMJ disc, namely, the scaffolds, cells and biomarkers, hurdles in tissue engineering of the disc, and its application in translation to the clinical practice and future directions.
Collapse
|
8
|
NEGUCIOIU M, KUI A, MITARIU M, MANZIUC M, CONDOR D, MITARIU L, BUDURU S. The outcomes of ultrasonic and laser therapy in case of temporomandibular disorders – an evidence based update. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Temporomandibular disorders (TMDs) are considered multifactorial conditions, thereby with different therapy options, from occlusal equilibration, splint therapy, pharmacotherapy or physical therapy. Among the physical therapies, over the last years, laser therapy and ultrasound therapy have gained attention, as different experimental or clinical studies suggest their efficacy in case of TMDs. The aim of our literature review is to evaluate the available evidence on the effectiveness of laser and ultrasound therapy in the treatment of temporomandibular disorders. Material and method. A research of literature has been performed - articles published over the last 5 years (January 2016 until June 2021) were searched by introducing a combination of different terms, using the Pubmed, Scopus and Google Scholar databases. Results and discussions. A total number of 332 articles was found. For multiple publications regarding the same group of patients, the most recent studies were included. Initial analysis of titles and abstracts eliminated 232 articles, leaving 35 articles whose full text was examined. 20 articles met the inclusion criteria Conclusions. According to the findings of this literature update we can conclude that low level laser therapy, ultrasound therapy, and photobiomodulation may effectively reduce pain for patients suffering of muscular and joint TMDs. However, their effects appear to be only shortly maintained, and only for less complex cases. In addition, it was difficult to compare the studies included, as they do not offer an optimal usage (program, duration of sessions, or number of sessions) of each technique. In this context, we consider that further randomized clinical studies are necessarily to compare each physical technique as well as their synergic effect on the symptoms in case of temporomandibular disorders.
Keywords: temporomandibular disorders, low level laser therapy, ultrasound therapy, photobiomodulation, TMD, LLLT
Collapse
Affiliation(s)
- Marius NEGUCIOIU
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Prosthodontics, Cluj Napoca, Romania
| | - Andreea KUI
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Prosthodontics, Cluj Napoca, Romania 2.“Lucian Balga” University, Department of Dental Medicine, Sibiu, Romania
| | - Mihai MITARIU
- “Lucian Balga” University, Department of Dental Medicine, Sibiu, Romania
| | - Manuela MANZIUC
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Prosthodontics, Cluj Napoca, Romania
| | - Daniela CONDOR
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Periodontics, Cluj Napoca, Romania
| | - Loredana MITARIU
- “Lucian Balga” University, Department of Dental Medicine, Sibiu, Romania
| | - Smaranda BUDURU
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Prosthodontics, Cluj Napoca, Romania
| |
Collapse
|