1
|
Zhang Z, Luo Y, Zhang H, Zeng Z, Zheng W, Zhao Y, Huang Y, Shen L. Exploring the mechanisms of cow placental peptides in delaying liver aging based on mitochondrial energy metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119593. [PMID: 40064320 DOI: 10.1016/j.jep.2025.119593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Placenta is a kind of traditional Chinese medicine, known as "Ziheche". The role of cow placental peptides (CPP) in delaying liver aging has been reported, and in-depth exploration of the specific regulatory mechanisms is of great significance for the recycling and utilization of CPP and the development of natural anti-aging drugs. AIM OF THE STUDY To investigate the protective effects and mechanisms of CPP on liver aging induced by D-galactose (D-gal) in mice from the perspective of mitochondrial energy metabolism. METHODS An aging model was induced in mice using D-gal. The body weight and liver index of mice were measured, followed by staining and electron microscopy to observe liver morphology and aging markers. Reactive oxygen species (ROS) levels and antioxidant-related indicators were assessed, and mitochondrial function was evaluated. Finally, changes and mechanisms in liver transcriptomics and targeted mitochondrial energy metabolomics were analyzed and integrated to elucidate the regulatory pathways through which CPP delays liver aging. RESULTS CPP improved liver structural damage, oxidative stress, and mitochondrial dysfunction induced by D-galactose in aging mice. It increased the final body weight and liver index, alleviated hepatocyte swelling and degeneration, enhanced liver antioxidant capacity, and restored normal mitochondrial morphology and function. The combined analysis of targeted mitochondrial energy metabolomics and liver transcriptomics revealed that CPP directly or indirectly regulated mitochondrial energy metabolism and delayed aging by influencing the cAMP signaling pathway, PI3K-Akt signaling pathway, oxidative phosphorylation, and other pathways, thereby modulating related genes and metabolites.
Collapse
Affiliation(s)
- Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanwen Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Han Z, Rao JS, Ramesh S, Hergesell J, Namsrai BE, Etheridge ML, Finger EB, Bischof JC. Model-Guided Design and Optimization of CPA Perfusion Protocols for Whole Organ Cryopreservation. Ann Biomed Eng 2023; 51:2216-2228. [PMID: 37351756 PMCID: PMC10518287 DOI: 10.1007/s10439-023-03255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Vitrification could enable long-term organ preservation, but only after loading high-concentration, potentially toxic cryoprotective agents (CPAs) by perfusion. In this paper, we combine a two-compartment Krogh cylinder model with a toxicity cost function to theoretically optimize the loading of CPA (VMP) in rat kidneys as a model system. First, based on kidney perfusion experiments, we systematically derived the parameters for a CPA transport loading model, including the following: Vb = 86.0% (ra = 3.86 μm), Lp = 1.5 × 10-14 m3/(N·s), ω = 7.0 × 10-13 mol/(N·s), σ = 0.10. Next, we measured the toxicity cost function model parameters as α = 3.12 and β = 9.39 × 10-6. Combining these models, we developed an improved kidney-loading protocol predicted to achieve vitrification while minimizing toxicity. The optimized protocol resulted in shorter exposure (25 min or 18.5% less) than the gold standard kidney-loading protocol for VMP, which had been developed based on decades of empirical practice. After testing both protocols on rat kidneys, we found comparable physical and biological outcomes. While we did not dramatically reduce toxicity, we did reduce the time. As our approach is now validated, it can be used on other organs lacking defined toxicity data to reduce CPA exposure time and provide a rapid path toward developing CPA perfusion protocols for other organs and CPAs.
Collapse
Affiliation(s)
- Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Sushil Rao
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - Srivasupradha Ramesh
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Hergesell
- Institute for Multiphase Processes (IMP), Leibniz University, Hannover, Germany
| | | | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
4
|
Scheckhuber CQ. Studying the mechanisms and targets of glycation and advanced glycation end-products in simple eukaryotic model systems. Int J Biol Macromol 2019; 127:85-94. [DOI: 10.1016/j.ijbiomac.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
|
5
|
Hahn J, Laouar L, Elliott JAW, Korbutt GS, Jomha NM. The effect of additive compounds on glycerol-induced damage to human chondrocytes. Cryobiology 2017; 75:68-74. [PMID: 28192075 DOI: 10.1016/j.cryobiol.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022]
Abstract
High concentrations of cryoprotective agents are required for cryopreservation techniques such as vitrification. Glycerol is a common cryoprotective agent used in cryopreservation protocols but this agent is toxic at high concentrations. This work is an attempt to mitigate the toxic effects of high concentrations of glycerol on intact chondrocytes in human knee articular cartilage from total knee arthroplasty patients by simultaneous exposure to glycerol and a variety of additive compounds. The resulting cell viability in the cartilage samples as measured by membrane integrity staining showed that, in at least one concentration or in combination, all of the tested additive compounds (tetramethylpyrazine, ascorbic acid, chondroitin sulphate, glucosamine sulphate) were able to reduce the deleterious effects of glycerol exposure when examination of membrane integrity took place on a delayed time frame. The use of additive compounds to reduce cryoprotectant toxicity in articular cartilage may help improve cell recovery after cryopreservation.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Surgery, University of Alberta Hospital, 2D2.28 WMC, 8440-112St, Edmonton, Alberta T6G 2B7, Canada.
| | - Leila Laouar
- Department of Surgery, University of Alberta Hospital, 2D2.28 WMC, 8440-112St, Edmonton, Alberta T6G 2B7, Canada.
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7, Canada.
| | - Gregory S Korbutt
- Department of Surgery, University of Alberta Hospital, 2D2.28 WMC, 8440-112St, Edmonton, Alberta T6G 2B7, Canada.
| | - Nadr M Jomha
- Department of Surgery, University of Alberta Hospital, 2D2.28 WMC, 8440-112St, Edmonton, Alberta T6G 2B7, Canada.
| |
Collapse
|
6
|
Fahmy M, Almansoori K, Laouar L, Prasad V, McGann L, Elliott J, Jomha N. Dose–injury relationships for cryoprotective agent injury to human chondrocytes. Cryobiology 2014; 68:50-6. [DOI: 10.1016/j.cryobiol.2013.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/16/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
|
7
|
Yu H, Al-Abbasi KK, Elliott JA, McGann LE, Jomha NM. Clinical efflux of cryoprotective agents from vitrified human articular cartilage. Cryobiology 2013; 66:121-5. [DOI: 10.1016/j.cryobiol.2012.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/11/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
8
|
Almansoori K, Prasad V, Forbes J, Law G, McGann L, Elliott J, Jomha N. Cryoprotective agent toxicity interactions in human articular chondrocytes. Cryobiology 2012; 64:185-91. [DOI: 10.1016/j.cryobiol.2012.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/29/2022]
|
9
|
Hipkiss AR. Energy metabolism and ageing regulation: metabolically driven deamidation of triosephosphate isomerase may contribute to proteostatic dysfunction. Ageing Res Rev 2011; 10:498-502. [PMID: 21651995 DOI: 10.1016/j.arr.2011.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 01/21/2023]
Abstract
Research carried out up to 3 decades ago by Gracy and co-workers revealed that the activity of the glycolytic enzyme triosephosphate isomerase (TPI), which converts dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), gradually declines whilst carrying out its catalytic function, primarily due to deamidation of certain asparagine residues. It is suggested here that excessive or continuous glycolysis increases TPI deamidation and thereby lowers TPI activity and causes accumulation of its substrate, DHAP, which in turn decomposes into methylglyoxal (MG), a well-recognised reactive bicarbonyl whose actions in cells and tissues, as well as at the whole organism level, mimic much age-relate dysfunction. The proposal helps to explain why suppression of glycolysis by caloric restriction, fasting and increased aerobic activity also suppresses generation of altered proteins which characterise the aged phenotype. It is proposed that these effects on TPI activity, though seemingly neglected in biogerontological contexts, reveal a mechanistic link between energy metabolism and age-related proteostatic dysfunction.
Collapse
|