1
|
Panagiotou N, McGuinness D, Jaminon AMG, Mees B, Selman C, Schurgers L, Shiels PG. Microvesicle-Mediated Tissue Regeneration Mitigates the Effects of Cellular Ageing. Cells 2023; 12:1707. [PMID: 37443741 PMCID: PMC10340655 DOI: 10.3390/cells12131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| | - Dagmara McGuinness
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
| | - Armand M. G. Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University,
Maastricht, 6229 ER Maastricht, NetherlandsThe Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Centre (MUMC),
Maastricht, The Netherlands;
| | - Colin Selman
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Leon Schurgers
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Paul G. Shiels
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| |
Collapse
|
2
|
Soltani S, Mansouri K, Emami Aleagha MS, Moasefi N, Yavari N, Shakouri SK, Notararigo S, Shojaeian A, Pociot F, Yarani R. Extracellular Vesicle Therapy for Type 1 Diabetes. Front Immunol 2022; 13:865782. [PMID: 35464488 PMCID: PMC9024141 DOI: 10.3389/fimmu.2022.865782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic disorder characterized by immune-mediated destruction of pancreatic insulin-producing β-cells. The primary treatment for T1D is multiple daily insulin injections to control blood sugar levels. Cell-free delivery packets with therapeutic properties, extracellular vesicles (EVs), mainly from stem cells, have recently gained considerable attention for disease treatments. EVs provide a great potential to treat T1D ascribed to their regenerative, anti-inflammatory, and immunomodulatory effects. Here, we summarize the latest EV applications for T1D treatment and highlight opportunities for further investigation.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Moasefi
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Notararigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ;
| |
Collapse
|
3
|
Dou F, Liu Y, Liu L, Wang J, Sun T, Mu F, Guo Q, Guo C, Jia N, Liu W, Ding Y, Wen A. Aloe-Emodin Ameliorates Renal Fibrosis Via Inhibiting PI3K/Akt/mTOR Signaling Pathway In Vivo and In Vitro. Rejuvenation Res 2018; 22:218-229. [PMID: 30215298 DOI: 10.1089/rej.2018.2104] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrosis is the major pathological feature of chronic kidney disease (CKD). Aloe-emodin (AE), one of the main active compounds in Rhubarb, is widely used for renal protection. However, mechanisms implied in the modulation of kidney fibrosis after AE treatment for CKD remain elusive. Here, we explored the protective effects of AE for renal fibrosis and the involved mechanisms in vivo and in vitro. The renal fibrosis mice model was established by unilateral ureteral obstruction (UUO). We found that AE administration significantly ameliorated UUO-induced impairment of kidney, evidenced by improved histopathological abnormalities, body weight, and abnormal renal function in mice model. Immunohistochemical staining showed that TGF-β1 and Fibronectin expressions were significantly decreased in UUO mice compared with sham group. Meanwhile, we found that AE suppressed the activation of the PI3K/Akt/mTOR pathway induced by TGF-β1 in vivo. AE improved cell survival and decreased the level of fibrosis-related proteins under TGF-β1-induced fibrosis in HK-2 cells as well as in vitro. Furthermore, both wortmannin, an inhibitor of PI3K, and short-hairpin RNAs of PI3K knockdown abrogated TGF-β1-induced phosphorylation of Akt and mTOR, and decreased the suppression of fibrosis. These findings indicated that AE alleviated fibrosis by inhibiting PI3K/Akt/mTOR pathway in vivo and in vitro, which may provide a potential therapeutic option for CKD.
Collapse
Affiliation(s)
- Fang Dou
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - YueTong Liu
- 2 Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Limin Liu
- 3 Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Jingwen Wang
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Ting Sun
- 4 Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Fei Mu
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Qiyan Guo
- 5 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xian, China
| | - Chao Guo
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Na Jia
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Wenxin Liu
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Yi Ding
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Aidong Wen
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| |
Collapse
|
4
|
Panagiotou N, Neytchev O, Selman C, Shiels PG. Extracellular Vesicles, Ageing, and Therapeutic Interventions. Cells 2018; 7:cells7080110. [PMID: 30126173 PMCID: PMC6115766 DOI: 10.3390/cells7080110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
A more comprehensive understanding of the human ageing process is required to help mitigate the increasing burden of age-related morbidities in a rapidly growing global demographic of elderly individuals. One exciting novel strategy that has emerged to intervene involves the use of extracellular vesicles to engender tissue regeneration. Specifically, this employs their molecular payloads to confer changes in the epigenetic landscape of ageing cells and ameliorate the loss of functional capacity. Understanding the biology of extracellular vesicles and the specific roles they play during normative ageing will allow for the development of novel cell-free therapeutic interventions. Hence, the purpose of this review is to summarise the current understanding of the mechanisms that drive ageing, critically explore how extracellular vesicles affect ageing processes and discuss their therapeutic potential to mitigate the effects of age-associated morbidities and improve the human health span.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Ognian Neytchev
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Colin Selman
- College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr, Glasgow G12 8QQ, UK.
| | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
5
|
Panagiotou N, Wayne Davies R, Selman C, Shiels PG. Microvesicles as Vehicles for Tissue Regeneration: Changing of the Guards. CURRENT PATHOBIOLOGY REPORTS 2016; 4:181-187. [PMID: 27882267 PMCID: PMC5101251 DOI: 10.1007/s40139-016-0115-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Microvesicles (MVs) have been recognised as mediators of stem cell function, enabling and guiding their regenerative effects. RECENT FINDINGS MVs constitute one unique size class of extracellular vesicles (EVs) directly shed from the cell plasma membrane. They facilitate cell-to-cell communication via intercellular transfer of proteins, mRNA and microRNA (miRNA). MVs derived from stem cells, or stem cell regulatory cell types, have proven roles in tissue regeneration and repair processes. Their role in the maintenance of healthy tissue function throughout the life course and thus in age related health span remains to be elucidated. SUMMARY Understanding the biogenesis and mechanisms of action of MVs may enable the development of cell-free therapeutics capable of assisting in tissue maintenance and repair for a variety of age-related degenerative diseases. This review critically evaluates recent work published in this area and highlights important new findings demonstrating the use of MVs in tissue regeneration.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| | - R. Wayne Davies
- School of Informatics, Institute of Neural and Adaptive Computation, Informatics Forum, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB UK
| | - Colin Selman
- Graham Kerr, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
| | - Paul G. Shiels
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| |
Collapse
|
6
|
McGuinness D, Anthony DF, Moulisova V, MacDonald AI, MacIntyre A, Thomson J, Nag A, Davies RW, Shiels PG. Microvesicles but Not Exosomes from Pathfinder Cells Stimulate Functional Recovery of the Pancreas in a Mouse Streptozotocin-Induced Diabetes Model. Rejuvenation Res 2016; 19:223-32. [DOI: 10.1089/rej.2015.1723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dagmara McGuinness
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Diana F. Anthony
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Vladimira Moulisova
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Alasdair I. MacDonald
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Alan MacIntyre
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Jacqueline Thomson
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | | | - R. Wayne Davies
- University of Edinburgh, School of Informatics, Edinburgh, United Kingdom
| | - Paul G. Shiels
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| |
Collapse
|
7
|
Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplant Res 2013; 2:10. [PMID: 23786652 PMCID: PMC3718694 DOI: 10.1186/2047-1440-2-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 01/09/2023] Open
Abstract
Stem cells have been studied for many years for their potential to repair damaged organs in the human body. Although many different mechanisms have been suggested as to how stem cells may initiate and facilitate repair processes, much remains unknown. Recently, there has been considerable interest in the idea that stem cells may exert their effects in vivo via paracrine actions. This could involve the release of cytokines, growth factors or secreted extracellular vesicles. This article reviews the role that paracrine actions may play in tissue regeneration. In particular, it considers how microvesicles, as a mediator or modulator of paracrine action, can be exploited as a tool for non-cell-based therapies in regenerative medicine.
Collapse
|