1
|
Nelson JL, Lambert NC. The when, what, and where of naturally-acquired microchimerism. Semin Immunopathol 2025; 47:20. [PMID: 40067465 DOI: 10.1007/s00281-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Naturally acquired microchimerism (Mc) is increasingly recognized as an aspect of normal biology. Maternal-fetal bi-directional exchange during pregnancy creates a Mc legacy for the long-term in both individuals. Maternal Mc in her offspring and Mc of fetal origin in women with previous births are best studied. Other sources include from a known or vanished twin, miscarriage or pregnancy termination, older sibling, or previous maternal pregnancy loss. Mc is pleotropic and protean, present in diverse forms, and changing over time as other aspects of biology. Mc acquired from multiple sources, at different lifespan times, and taking on an array of diverse forms, creates a "forward, reverse, and horizontal inheritance" Mc landscape. Mc is found in adaptive and innate immune cells, as resident tissue-specific cells in a wide variety of human tissues, and among other forms as extracellular vesicles. HLA molecules function in a myriad of ways as key determinants for health and are of central importance in interactions between genetically disparate individuals. Studies of autoimmune disease have firmly established a primary role of HLA molecules. Studies of iatrogenic chimerism have established benefit of donor-recipient HLA-disparity against recurrent malignancy after transplantation. HLA molecules and HLA-relationships of families are therefore of particular interest in seeking to understand the role(s) of Mc at the interface of auto-immunity and healthy allo-immunity. This review will begin by providing perspective on Mc in biology followed by a primary focus on persistent Mc according to the human lifespan, in healthy individuals and with illustrative examples of autoimmune diseases.
Collapse
Affiliation(s)
- J Lee Nelson
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Translational Science and Therapeutics Fred Hutchinson Cancer Center, Seattle, USA.
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites, Microchimérisme et Inflammations (ARTHEMIS), Aix Marseille Université, Marseille, France.
| |
Collapse
|
3
|
Shi C, Pan L, Hu Z. Experimental and clinical progress of in utero hematopoietic cell transplantation therapy for congenital disorders. Front Pharmacol 2022; 13:851375. [PMID: 36120324 PMCID: PMC9478511 DOI: 10.3389/fphar.2022.851375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In utero hematopoietic cell transplantation (IUHCT) is considered a potentially efficient therapeutic approach with relatively few side effects, compared to adult hematopoietic cell transplantation, for various hematological genetic disorders. The principle of IUHCT has been extensively studied in rodent models and in some large animals with close evolutionary similarities to human beings. However, IUHCT has only been used to rebuild human T cell immunity in certain patients with inherent immunodeficiencies. This review will first summarize the animal models utilized for IUHCT investigations and describe the associated outcomes. Recent advances and potential barriers for successful IUHCT are discussed, followed by possible strategies to overcome these barriers experimentally. Lastly, we will outline the progress made towards utilizing IUHCT to treat inherent disorders for patients, list out associated limitations and propose feasible means to promote the efficacy of IUHCT clinically.
Collapse
Affiliation(s)
- Chunyu Shi
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lu Pan
- Department of Pediatric Immunology, Allergy and Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zheng Hu,
| |
Collapse
|
4
|
Ihara N, Akihiro U, Onami N, Tsumura H, Inoue E, Hayashi S, Sago H, Mizutani S. Partial rescue of mucopolysaccharidosis type VII mice with a lifelong engraftment of allogeneic stem cells in utero. Congenit Anom (Kyoto) 2015; 55:55-64. [PMID: 25421592 PMCID: PMC4654854 DOI: 10.1111/cga.12099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022]
Abstract
In utero hematopoietic cell transplantation (IUHCT) has been performed in Mucopolysaccharidosis Type VII (MPSVII) mice, but a lifelong engraftment of allogeneic donor cells has not been achieved. In this study, we sought to confirm a lifelong engraftment of allogeneic donor cells immunologically matched to the mother and to achieve partial rescue of phenotypes in the original MPSVII strain through IUHCT by intravenous injection. We performed in vitro fertilization in a MPSVII murine model and transferred affected embryos to ICR/B6-GFP surrogate mothers in cases where fetuses receiving IUHCT were all homozygous. Lineage-depleted cells from ICR/B6-GFP mice were injected intravenously at E14.5. Chimerism was confirmed by flow cytometry at 4 weeks after birth, and β-glucuronidase activity in serum and several phenotypes were assessed at 8 weeks of age or later. Donor cells in chimeric mice from ICR/B6-GFP mothers were detected at death, and were confirmed in several tissues including the brains of sacrificed chimeric mice. Although the serum enzyme activity of chimeric mice was extremely low, the engraftment rate of donor cells correlated with enzyme activity. Furthermore, improvement of bone structure and rescue of reproductive ability were confirmed in our limited preclinical study. We confirmed the lifelong engraftment of donor cells in an original immunocompetent MPSVII murine model using intravenous IUHCT with cells immunologically matched to the mother without myeloablation, and the improvement of several phenotypes.
Collapse
Affiliation(s)
- Norimasa Ihara
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan; Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development Hospital, Tokyo, Japan; Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Heazlewood CF, Sherrell H, Ryan J, Atkinson K, Wells CA, Fisk NM. High incidence of contaminating maternal cell overgrowth in human placental mesenchymal stem/stromal cell cultures: a systematic review. Stem Cells Transl Med 2014; 3:1305-11. [PMID: 25154781 DOI: 10.5966/sctm.2014-0051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Placenta is a readily accessible translationally advantageous source of mesenchymal stem/stromal cells (MSCs) currently used in cryobanking and clinical trials. MSCs cultured from human chorion have been widely assumed to be fetal in origin, despite evidence that placental MSCs may be contaminated with maternal cells, resulting in entirely maternally derived MSC cultures. To document the frequency and determinants of maternal cell contamination in chorionic MSCs, we undertook a PRISMA-compliant systematic review of publications in the PubMed, Medline, and Embase databases (January 2000 to July 2013) on placental and/or chorionic MSCs from uncomplicated pregnancies. Of 147 studies, only 26 (18%) investigated fetal and/or maternal cell origin. After excluding studies that did not satisfy minimal MSC criteria, 7 of 15 informative studies documented MSC cultures as entirely fetal, a further 7 studies reported cultured human chorionic MSC populations to be either maternal (n=6) or mixed (n=1), whereas 1 study separately cultured pure fetal and pure maternal MSC from the same placenta. Maternal cell contamination was associated with term and chorionic membrane samples and greater passage number but was still present in 30% of studies of chorionic villous MSCs. Although most studies assume fetal origin for MSCs sourced from chorion, this systematic review documents a high incidence of maternal-origin MSC populations in placental MSC cultures. Given that fetal MSCs have more primitive properties than adult MSCs, our findings have implications for clinical trials in which knowledge of donor and tissue source is pivotal. We recommend sensitive methods to quantitate the source and purity of placental MSCs.
Collapse
Affiliation(s)
- Celena F Heazlewood
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute, and Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Helen Sherrell
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute, and Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ryan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute, and Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kerry Atkinson
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute, and Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christine A Wells
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute, and Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas M Fisk
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute, and Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Stem cells and neuroprotection: understanding the players. Int J Mol Sci 2010; 11:3288-97. [PMID: 20957094 PMCID: PMC2956095 DOI: 10.3390/ijms11093288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/12/2010] [Accepted: 09/01/2010] [Indexed: 11/17/2022] Open
Abstract
The use of neuroprotective therapies begs the question of how such therapies could affect preexisting stem cell populations within the host, as well as those introduced through cell-replacement therapy. Multiple mechanisms may mediate stem cell responses to neuroprotectants such as host/donor age and gender, cellular lineage/differentiation status, and mitochondrial dynamics. Current therapeutic sources for stem cells are embryonic, somatic, or induced pluripotent, with very little known about the effects of gender, age, cell type, and mitochondrial dynamics. With the advent of therapies to stimulate and recruit endogenous stem cells or transplant donor cells into damage areas in the hopes of recuperative regeneration of lost neurons, it is important to discuss mechanisms that dictate the winning players in the neuroprotection game. This review will focus on our current understanding of the characteristics of renewing stem cells that may affect neuroprotection.
Collapse
|