1
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
2
|
Rossi V, Govoni M, Di Stefano G. Lactate Can Modulate the Antineoplastic Effects of Doxorubicin and Relieve the Drug's Oxidative Damage on Cardiomyocytes. Cancers (Basel) 2023; 15:3728. [PMID: 37509389 PMCID: PMC10378253 DOI: 10.3390/cancers15143728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Doxorubicin (DOXO) is currently administered as the first-choice therapy for a variety of malignancies. Cancer cells exhibit enhanced glycolysis and lactate production. This metabolite affects gene expression and can play a role in chemoresistance. AIM OF THIS STUDY We investigated whether the enhanced lactate levels that characterize neoplastic tissues can modify the response of cancer cells to DOXO. METHODS After exposing cancer cells to increased lactate levels, we examined whether this metabolite could interfere with the principal mechanisms responsible for the DOXO antineoplastic effect. RESULTS Increased lactate levels did not affect DOXO-induced topoisomerase poisoning but offered protection against the oxidative damage caused by the drug. This protection was related to changes in gene expression caused by the combined action of DOXO and lactate. Oxidative damage significantly contributed to the heavy cardiotoxicity following DOXO treatment. In cultured cardiomyocytes, we confirmed that DOXO-induced DNA damage and oxidative stress can be significantly mitigated by exposing the cells to increased lactate levels. CONCLUSIONS In addition to contributing to elucidating the effects of the combined action of DOXO and lactate, our results suggest a possible method to reduce the heavy drug cardiotoxicity, a major side effect leading to therapy discontinuation.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Wang H, Yu X, Xun Z, Wu Y. Aqueous Extract of Andrographis paniculata Ameliorates Cardiotoxicity Induced by Doxorubicin in vivo. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.466.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Gomes-Alves P, Serra M, Brito C, Ricardo CP, Cunha R, Sousa MF, Sanchez B, Bernad A, Carrondo MJT, Rodriguez-Borlado L, Alves PM. In vitro expansion of human cardiac progenitor cells: exploring 'omics tools for characterization of cell-based allogeneic products. Transl Res 2016; 171:96-110.e1-3. [PMID: 26924043 DOI: 10.1016/j.trsl.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
Abstract
Human cardiac stem/progenitor cells (hCPCs) have been shown to be capable to regenerate contractile myocardium. However, because of their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (10(6)-10(9) cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work, we developed and validated a robust, scalable, and good manufacturing practice (GMP)-compatible bioprocess for the expansion of high-quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions' impact on hCPC's quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers, and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared with traditional static monolayers, while retaining cell's phenotype and similar "omics" profiles. These findings demonstrate that this change in the production process does not affect cell's identity and quality, with potential to be translated into a transversal production platform for clinical development of stem-cell therapies.
Collapse
Affiliation(s)
- P Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - C Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - C P Ricardo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - R Cunha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M F Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - B Sanchez
- Coretherapix, Tres Cantos, Madrid, Spain
| | - A Bernad
- Centro Nacional de Biotecnología, Madrid, Spain
| | - M J T Carrondo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| | | | - P M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
| |
Collapse
|
5
|
Zhao C, Li T, Han B, Yue W, Shi L, Wang H, Guo Y, Lu Z. DDAH1 deficiency promotes intracellular oxidative stress and cell apoptosis via a miR-21-dependent pathway in mouse embryonic fibroblasts. Free Radic Biol Med 2016; 92:50-60. [PMID: 26806551 DOI: 10.1016/j.freeradbiomed.2016.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 01/04/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1). Emerging evidence suggests that plasma ADMA accumulation, DDAH1 activity/expression reduction, and microRNA-21 (miR-21) upregulation are linked to disease pathology, but the mechanisms remain largely unknown. In the present study, we assessed the potential role of the ADMA-DDAH1-miR-21 pathway in the regulation of the cellular redox state and apoptosis using wild-type (WT) and DDAH1-knockout (KO) immortalized mouse embryonic fibroblasts (MEFs). DDAH1 deficiency significantly increased ADMA levels, enhanced cellular oxidative stress, and rendered cells more vulnerable to apoptosis induced by tert-butyl hydroperoxide (tBHP) or A23187. However, treatment with exogenous ADMA (1-80μM) for 24h or for a prolonged period (10μM, 10 passages) in WT MEFs had no marked effect on intracellular reactive oxygen species (ROS) and apoptosis sensitivity. Interestingly, miR-21 expression was significantly increased, by 4 fold, in DDAH1(-/-) MEFs, and the induction of miR-21 by DDAH1 deficiency was dependent on oxidative stress and NF-κB activation. Inhibition of DDAH1 activity by PD 404182 also increased miR-21 expression. Furthermore, inhibition of miR-21 with a lentiviral vector in DDAH1(-/-) MEFs significantly upregulated SOD2 expression and the attenuated oxidative stress and apoptosis induced by tBHP or A23187. Taken together, our results suggest that DDAH1 not only acts as an enzyme degrading ADMA but also controls cellular oxidative stress and apoptosis via a miR-21-dependent pathway.
Collapse
Affiliation(s)
- Chenyang Zhao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhe Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxing Han
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Wenhui Yue
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Shi
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyun Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Guo
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Abstract
This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Collapse
Affiliation(s)
- Annarosa Leri
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Marcello Rota
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francesco S Pasqualini
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Polina Goichberg
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Piero Anversa
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Kimura W, Muralidhar S, Canseco DC, Puente B, Zhang CC, Xiao F, Abderrahman YH, Sadek HA. Redox signaling in cardiac renewal. Antioxid Redox Signal 2014; 21:1660-73. [PMID: 25000143 PMCID: PMC4175032 DOI: 10.1089/ars.2014.6029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Utilizing oxygen (O2) through mitochondrial oxidative phosphorylation enables organisms to generate adenosine triphosphate (ATP) with a higher efficiency than glycolysis, but it results in increased reactive oxygen species production from mitochondria, which can result in stem cell dysfunction and senescence. RECENT ADVANCES In the postnatal organism, the hematopoietic system represents a classic example of the role of stem cells in cellular turnover and regeneration. However, in other organs such as the heart, both the degree and source of cellular turnover have been heavily contested. CRITICAL ISSUES Although recent evidence suggests that the major source of the limited cardiomyocyte turnover in the adult heart is cardiomyocyte proliferation, the identity and potential role of undifferentiated cardiac progenitor cells remain controversial. Several types of cardiac progenitor cells have been identified, and several studies have identified an important role of redox and metabolic regulation in survival and differentiation of cardiac progenitor cells. Perhaps a simple way to approach these controversies is to focus on the multipotentiality characteristics of a certain progenitor population, and not necessarily its ability to give rise to all cell types within the heart. In addition, it is important to note that cycling cells in the heart may express markers of differentiation or may be truly undifferentiated, and for the purpose of this review, we will refer to these cycling cells as progenitors. FUTURE DIRECTIONS We propose that hypoxia, redox signaling, and metabolic phenotypes are major regulators of cardiac renewal, and may prove to be important therapeutic targets for heart regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- 1 Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center , Dallas, Texas
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zamperone A, Pietronave S, Colangelo D, Antonini S, Locatelli M, Travaglia F, Coïsson JD, Arlorio M, Prat M. Protective effects of clovamide against H2O2-induced stress in rat cardiomyoblasts H9c2 cell line. Food Funct 2014; 5:2542-51. [PMID: 25133994 DOI: 10.1039/c4fo00195h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cocoa contains phenolic compounds with known antioxidant and antiradical properties beneficial in different pathologies, including cardiovascular diseases. Herein, we have evaluated the protective effects of clovamide, a minor cocoa component, against oxidative stress induced in the rat cardiomyoblast cell line, also comparing it to its bio-isosteric form, rosmarinic acid, and to the main monomeric flavan-3-ol from low-molecular-weight polyphenol in cocoa, i.e. epicatechin. At nano-micro-molar concentrations, the three compounds inhibited the production of reactive oxygen species and apoptosis, evaluated under different aspects, namely, annexin V positivity, DNA fragmentation, caspase release and activation. These molecules can, thus, be considered for their bioactive beneficial activity in the context of cardiovascular pathologies and, particularly, in the protection towards oxidative stress that follows ischemic injury. Clovamide may, thus, be the primary compound for the development of innovative nutraceutical strategies towards cardiovascular diseases.
Collapse
Affiliation(s)
- Andrea Zamperone
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pendergrass KD, Boopathy AV, Seshadri G, Maiellaro-Rafferty K, Che PL, Brown ME, Davis ME. Acute preconditioning of cardiac progenitor cells with hydrogen peroxide enhances angiogenic pathways following ischemia-reperfusion injury. Stem Cells Dev 2013; 22:2414-24. [PMID: 23544670 DOI: 10.1089/scd.2012.0673] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There are a limited number of therapies available to prevent heart failure following myocardial infarction. One novel therapy that is currently being pursued is the implantation of cardiac progenitor cells (CPCs); however, their responses to oxidative stress during differentiation have yet to be elucidated. The objective of this study was to determine the effect of hydrogen peroxide (H2O2) treatment on CPC differentiation in vitro, as well as the effect of H2O2 preconditioning before implantation following ischemia-reperfusion (I/R) injury. CPCs were isolated and cloned from adult rat hearts, and then cultured in the absence or presence of H2O2 for 2 or 5 days. CPC survival was assessed with Annexin V, and cellular differentiation was evaluated through mRNA expression for cardiogenic genes. We found that 100 μM H2O2 decreased serum withdrawal-induced apoptosis by at least 45% following both 2 and 5 days of treatment. Moreover, 100 μM H2O2 treatment for 2 days significantly increased endothelial and smooth muscle markers compared to time-matched untreated CPCs. However, continued H2O2 treatment significantly decreased these markers. Left ventricular cardiac function was assessed 28 days after I/R and I/R with the implantation of Luciferase/GFP(+) CPCs, which were preconditioned with 100 μM H2O2 for 2 days. Hearts implanted with Luciferase/GFP(+) CPCs had significant improvement in both positive and negative dP/dT over I/R. Furthermore, cardiac fibrosis was significantly decreased in the preconditioned cells versus both I/R alone and I/R with control cells. We also observed a significant increase in endothelial cell density in the preconditioned CPC hearts compared to untreated CPC hearts, which also coincided with a higher density of Luciferase(+) vessels. These findings suggest that preconditioning of CPCs with H2O2 for 2 days stimulates neoangiogenesis in the peri-infarct area following I/R injury and could be a viable therapeutic option to prevent heart failure.
Collapse
Affiliation(s)
- Karl D Pendergrass
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Cloning, Expression, and Characterization of Iron Superoxide Dismutase in Sonneratia alba, a Highly Salt Tolerant Mangrove Tree. Protein J 2013; 32:259-65. [DOI: 10.1007/s10930-013-9482-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|