1
|
Tóth O, Rácz GA, Oláh E, Tóth M, Szabó E, Várady G, Vértessy BG, Nagy N. Identification of new reference genes with stable expression patterns for cell cycle experiments in human leukemia cell lines. Sci Rep 2025; 15:1052. [PMID: 39774187 PMCID: PMC11707088 DOI: 10.1038/s41598-024-84802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Cell cycle-dependent gene expression analysis is particularly important as numerous genes show tightly regulated expression patterns at different phases of the cell cycle. For cancer cells, analysis of cell cycle-related events is of paramount significance since tumorigenesis is characteristically coupled to cell cycle perturbations. RT-qPCR is a highly sensitive technique to investigate cell cycle-dependent transcriptional regulation. However, for reliable evaluation of qPCR data reference genes with stable mRNA expression are required. Although several studies investigating cell cycle-dependent gene expression employ frequently used reference genes, the suitability of these reference genes has not been thoroughly investigated so far. Moreover, such potential reference genes for cell cycle analysis have not been described in the literature. Therefore, we aimed to identify reference genes characterized with stable expression throughout the cell cycle in MOLT4 and U937 human leukemia cell lines synchronized with RO-3306 CDK1 inhibitor using RT-qPCR. Here we show that for cell cycle-dependent gene expression analysis the commonly used TBP is suitable, while the recently recognized reference genes SNW1 and CNOT4 are applicable in a cell line-dependent manner. We also suggest that proper selection of reference genes for each experimental condition is crucial for reliable normalization as these aspects can severely compromise conclusions.
Collapse
Affiliation(s)
- Otília Tóth
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Gergely Attila Rácz
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Máté Tóth
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Nikolett Nagy
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
2
|
Guaita-Cespedes M, Grillo-Risco R, Hidalgo MR, Fernández-Veledo S, Burks DJ, de la Iglesia-Vayá M, Galán A, Garcia-Garcia F. Deciphering the sex bias in housekeeping gene expression in adipose tissue: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2023; 14:20. [PMID: 37072826 PMCID: PMC10114345 DOI: 10.1186/s13293-023-00506-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND As the housekeeping genes (HKG) generally involved in maintaining essential cell functions are typically assumed to exhibit constant expression levels across cell types, they are commonly employed as internal controls in gene expression studies. Nevertheless, HKG may vary gene expression profile according to different variables introducing systematic errors into experimental results. Sex bias can indeed affect expression display, however, up to date, sex has not been typically considered as a biological variable. METHODS In this study, we evaluate the expression profiles of six classical housekeeping genes (four metabolic: GAPDH, HPRT, PPIA, and UBC, and two ribosomal: 18S and RPL19) to determine expression stability in adipose tissues (AT) of Homo sapiens and Mus musculus and check sex bias and their overall suitability as internal controls. We also assess the expression stability of all genes included in distinct whole-transcriptome microarrays available from the Gene Expression Omnibus database to identify sex-unbiased housekeeping genes (suHKG) suitable for use as internal controls. We perform a novel computational strategy based on meta-analysis techniques to identify any sexual dimorphisms in mRNA expression stability in AT and to properly validate potential candidates. RESULTS Just above half of the considered studies informed properly about the sex of the human samples, however, not enough female mouse samples were found to be included in this analysis. We found differences in the HKG expression stability in humans between female and male samples, with females presenting greater instability. We propose a suHKG signature including experimentally validated classical HKG like PPIA and RPL19 and novel potential markers for human AT and discarding others like the extensively used 18S gene due to a sex-based variability display in adipose tissue. Orthologs have also been assayed and proposed for mouse WAT suHKG signature. All results generated during this study are readily available by accessing an open web resource ( https://bioinfo.cipf.es/metafun-HKG ) for consultation and reuse in further studies. CONCLUSIONS This sex-based research proves that certain classical housekeeping genes fail to function adequately as controls when analyzing human adipose tissue considering sex as a variable. We confirm RPL19 and PPIA suitability as sex-unbiased human and mouse housekeeping genes derived from sex-specific expression profiles, and propose new ones such as RPS8 and UBB.
Collapse
Affiliation(s)
- Maria Guaita-Cespedes
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigaciò Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Deborah Jane Burks
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Neuroendocrinology Laboratory, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Imaging Unit FISABIO-CIPF, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Amparo Galán
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
- Molecular Neuroendocrinology Laboratory, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Francisco Garcia-Garcia
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| |
Collapse
|
3
|
Guan L, Crasta KC, Maier AB. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res Rev 2022; 78:101634. [PMID: 35460888 DOI: 10.1016/j.arr.2022.101634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Cellular senescence has gained increasing interest during recent years, particularly due to causal involvement in the aging process corroborated by multiple experimental findings. Indeed, cellular senescence considered to be one of the hallmarks of aging, is defined as a stable growth arrest predominantly mediated by cell cycle regulators p53, p21 and p16. Senescent cells have frequently been studied in the peripheral blood of humans due to its accessibility. This review summarizes ex vivo studies describing cell cycle regulators as markers of senescence in human peripheral blood cells, along with detection methodologies and associative studies examining demographic and clinical characteristics. The utility of techniques such as the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), microarray, RNA sequencing and nCounter technologies for detection at the transcriptional level, along with Western blotting, enzyme-linked immunosorbent assay and flow cytometry at the translational level, will be brought up at salient points throughout this review. Notably, housekeeping genes or proteins serving as controls such as GAPDH and β-Actin, were found not to be stably expressed in some contexts. As such, optimization and validation of such genes during experimental design were recommended. In addition, the expression of cell cycle regulators was found to vary not only between different types of blood cells such as T cells and B cells but also between stages of cellular differentiation such as naïve T cells and highly differentiated T cells. On the other hand, the associations of the presence of cell cycle regulators with demographics (age, gender, ethnicity, and socioeconomic status), clinical characteristics (body mass index, specific diseases, disease-related parameters) and lifestyle vary in groups of participants. One envisions that increased understanding and insights into the assessment of cell cycle regulators as markers of senescence in human peripheral blood cells will help inform prognostication and clinical intervention in elderly individuals.
Collapse
Affiliation(s)
- Lihuan Guan
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia.
| | - Karen C Crasta
- Healthy Longevity Translational Researc h Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore.
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia; Healthy Longevity Translational Researc h Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
4
|
Badekila AK, Rai P, Kini S. Identification and evaluation of an appropriate housekeeping gene for real time gene profiling of hepatocellular carcinoma cells cultured in three dimensional scaffold. Mol Biol Rep 2022; 49:797-804. [PMID: 34665400 DOI: 10.1007/s11033-021-06830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Assessing an optimal reference gene as an internal control for target gene normalization is important during quantitative real time polymerase chain reaction (RT-qPCR) of three dimensional (3D) cell culture. Especially, gene profiling of cancer cells under a complex 3D microenvironment in a polymer scaffold provides a deeper understanding of tumor functioning in vivo. METHODS AND RESULTS Expression of six housekeeping genes (HKG's): Glyceraldehyde-3-phosphodehydrogenase (GAPDH), β-actin (ACTB), beta-2-microglobulin (B2M), 18S ribosomal RNA (18S rRNA), peptidyl-propyl-isomerase A (PPIA), and ribosomal protein L13 (RPL-13) during two dimensional (2D) culture, and alginate-carboxymethylcellulose scaffold based 3D culture conditioned up to 21 days was analysed for hepatocellular carcinoma (Huh-7) cells. The gene expression studies were performed by determining primer efficiency, melting curve and threshold cycle analysis. Further, RT-qPCR data was validated statistically using geNorm and NormFinder softwares. The study indicated RPL-13, 18S rRNA and B2M to be stable among selected referral HKG candidates. CONCLUSION An exploration of a reliable HKG is necessary for normalization of gene expression in RT-qPCR during varying cell culture conditions.
Collapse
Affiliation(s)
- Anjana Kaveri Badekila
- Nitte (Deemed to be University), Division of Nanobiotechnology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, Karnataka, India
| | - Praveen Rai
- Nitte (Deemed to be University), Division of Nanobiotechnology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, Karnataka, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Division of Nanobiotechnology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, Karnataka, India.
| |
Collapse
|
5
|
Rottensteiner-Brandl U, Bertram U, Lingens LF, Köhn K, Distel L, Fey T, Körner C, Horch RE, Arkudas A. Free Transplantation of a Tissue Engineered Bone Graft into an Irradiated, Critical-Size Femoral Defect in Rats. Cells 2021; 10:cells10092256. [PMID: 34571907 PMCID: PMC8467400 DOI: 10.3390/cells10092256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
Healing of large bone defects remains a challenge in reconstructive surgery, especially with impaired healing potential due to severe trauma, infection or irradiation. In vivo studies are often performed in healthy animals, which might not accurately reflect the situation in clinical cases. In the present study, we successfully combined a critical-sized femoral defect model with an ionizing radiation protocol in rats. To support bone healing, tissue-engineered constructs were transferred into the defect after ectopic preossification and prevascularization. The combination of SiHA, MSCs and BMP-2 resulted in the significant ectopic formation of bone tissue, which can easily be transferred by means of our custom-made titanium chamber. Implanted osteogenic MSCs survived in vivo for a total of 18 weeks. The use of SiHA alone did not lead to bone formation after ectopic implantation. Analysis of gene expression showed early osteoblast differentiation and a hypoxic and inflammatory environment in implanted constructs. Irradiation led to impaired bone healing, decreased vascularization and lower short-term survival of implanted cells. We conclude that our model is highly valuable for the investigation of bone healing and tissue engineering in pre-damaged tissue and that healing of bone defects can be substantially supported by combining SiHA, MSCs and BMP-2.
Collapse
Affiliation(s)
- Ulrike Rottensteiner-Brandl
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (U.R.-B.); (U.B.); (L.F.L.); (K.K.); (R.E.H.)
- Emil-Fischer Zentrum, Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ulf Bertram
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (U.R.-B.); (U.B.); (L.F.L.); (K.K.); (R.E.H.)
- Department of Neurosurgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Lara F. Lingens
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (U.R.-B.); (U.B.); (L.F.L.); (K.K.); (R.E.H.)
- Hand Surgery—Burn Center, Department of Plastic Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Katrin Köhn
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (U.R.-B.); (U.B.); (L.F.L.); (K.K.); (R.E.H.)
| | - Luitpold Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Carolin Körner
- Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (U.R.-B.); (U.B.); (L.F.L.); (K.K.); (R.E.H.)
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (U.R.-B.); (U.B.); (L.F.L.); (K.K.); (R.E.H.)
- Correspondence: ; Tel.: +49-9131-8533277
| |
Collapse
|
6
|
Bertolo A, Guerrero J, Stoyanov J. Autofluorescence-based sorting removes senescent cells from mesenchymal stromal cell cultures. Sci Rep 2020; 10:19084. [PMID: 33154552 PMCID: PMC7645702 DOI: 10.1038/s41598-020-76202-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are used in cell therapy, but results depend on the unknown quality of cell populations. Extended culture time of MSC increases their senescent levels, leading to a critical loss of cell fitness. Here, we tested the suitability of MSC-sorting based on their FACS autofluorescence profile, for a rapid and non-invasive method of senescent cell elimination. Cells were classified in low- (LA) and high- (HA) autofluorescence groups, and results compared to the original MSC population (control). Three days after sorting, cells were screened by replicative senescence markers (cell volume, SA-β-Gal assay and gene/protein expression) and MSC differentiation assays. The transcriptional profiles of sorted MSC were also analyzed by RNA-Seq. Compared to control, LA cells had 10% lower cell volume and autofluorescence, and 50% less SA-β-Gal + cells. Instead, HA cells had 20% higher cell volume and autofluorescence, and 120% more SA-β-Gal + cells. No changes in replicative senescence and differentiation potentials were observed between all groups. However, 68 genes (16 related to senescence) were significantly differentially expressed (DEG) between LA and other groups. Biological network of DEG identified CXCL12 as topological bottleneck. In summary, MSC sorting may have practical clinical implications to enhance the results of MSC-based therapies.
Collapse
Affiliation(s)
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology (TOM), Department for Biomedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | | |
Collapse
|
7
|
Brinkhof B, Zhang B, Cui Z, Ye H, Wang H. ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X 2020; 763S:100031. [PMID: 32550557 PMCID: PMC7285916 DOI: 10.1016/j.gene.2020.100031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Human mesenchymal stromal cells (MSCs) phenotypically share their positive expression of the International Society for Cell and Gene Therapy (ISCT) markers CD73, CD90 and CD105 with fibroblasts. Fibroblasts are often co-isolated as an unwanted by-product from biopsy and they can rapidly overgrow the MSCs in culture. Indeed, many other surface markers have been proposed, though no unique MSC specific marker has been identified yet. Quantitative PCR (qPCR) is a precise, efficient and rapid method for gene expression analysis. To identify a marker suitable for accurate MSC characterisation, qPCR was exploited. Methods and results Two commercially obtained bone marrow (BM) derived MSCs and an hTERT immortalised BM-MSC line (MSC-TERT) have been cultured for different days and at different oxygen levels before RNA extraction. Together with RNA samples previous extracted from umbilical cord derived MSCs and MSC-TERT cells cultured in 2D or 3D, this heterogeneous sample set was quantitatively analysed for the expression levels of 18 candidate MSC marker genes. The expression levels in MSCs were compared with the expression levels in fibroblasts to verify the differentiation capability of these genes between MSCs and fibroblasts. None of the ISCT markers could differentiate between fibroblasts and MSCs. A total of six other genes (ALCAM, CLIC1, EDIL3, EPHA2, NECTIN2, and TMEM47) were identified as possible biomarkers for accurate identification of MSCs. Conclusion Justified by considerations on expression level, reliability and specificity, Activated-Leukocyte Cell Adhesion Molecule (ALCAM) was the best candidate for improving the biomarker set of MSC identification.
Collapse
Key Words
- (q)PCR, (quantitative) polymerase chain reaction
- AD, adipose
- AF, Amniotic Fluid
- ALCAM, Activated-Leukocyte Cell Adhesion Molecule
- Activated-leukocyte cell adhesion molecule
- BM, bone marrow
- BSG, Basigin
- Biomarker
- CD, cluster of differentiation
- CLIC1, chloride intracellular channel 1
- CLIC4, chloride intracellular channel 4
- Cq, Quantification cycle
- DF, Dermal Fibroblasts
- DP, Dental Pulp
- EDIL3, EGF like repeats and discoidin domains 3
- ENG, Endoglin
- EPHA2, EPH receptor A2
- ER, Endoplasmatic Reticulum
- FACS, Fluorescence Assisted Cell Sorting
- FN1, Fibronectin 1
- IGFBP7, insulin like growth factor binding protein 7
- ISCT, International Society for Cell and Gene Therapy
- ITGA1, integrin subunit alpha 1
- LAMP1, lysosomal associated membrane protein 1
- LRRC59, leucine rich repeat containing 59
- MCAM, melanoma cell adhesion molecule
- MM, Multiple Myeloma
- MPC, Mesenchymal Progenitor Cell
- MSC
- MSC, Mesenchymal Stromal Cells
- NECTIN2, nectin cell adhesion molecule 2
- NK, Natural Killer
- NT5E, 5′-nucleotidase ecto
- OS, Osteosarcoma
- PL, Placenta
- PPIA, peptidylprolyl isomerase A
- PUM1, pumilio RNA binding family member 1
- RM, Regenerative Medicine
- RNA
- RNA-seq, RNA sequencing
- RT, Reverse Transcriptase
- Regenerative medicine
- SEM, Standard Error of the Mean
- TBP, TATA-box binding protein
- TCF, Tissue Culture Plate
- TE, Tissue Engineering
- TFRC, transferrin receptor
- THY1, Thy-1 cell surface antigen
- TLN1, Talin 1
- TMEM47, transmembrane protein 47
- UC, umbilical cord
- YWHAZ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
- cDNA, DNA complementary to RNA
- qPCR
Collapse
Affiliation(s)
- Bas Brinkhof
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
8
|
McLoughlin KJ, Pedrini E, MacMahon M, Guduric-Fuchs J, Medina RJ. Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. Front Med (Lausanne) 2019; 6:33. [PMID: 30915334 PMCID: PMC6421261 DOI: 10.3389/fmed.2019.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022] Open
Abstract
Endothelial Colony Forming Cells (ECFCs) represent a subset of endothelial progenitors with well-documented vasoreparative capacity. However, cellular senescence, which occurs due to aging, diabetes, smoking, or tissue inflammation, renders these cells dysfunctional. Therefore, there is growing interest in studying expression of senescence markers in ECFCs. RT-qPCR is the most commonly used technique to quantify gene expression and the proper choice of reference genes used for data normalization is critical for accurate quantification. It has been reported that the expression of commonly used housekeeping genes is often unstable in senescence. To identify the most suitable reference genes for ECFC senescence studies, we analyzed a microarray dataset, which compared the gene expression between proliferating and senescent ECFCs. In addition to replicative senescence, the data included X-ray-induced and Etoposide-induced senescence. We used the geNorm algorithm to identify the most stable genes across all studied conditions. Gene Ontology analysis found that the most stable genes belonged to the KEGG category of Genetic Information Processing. The optimal combination of housekeeping genes for ECFC senescence was found to include four ribosomal protein genes; RPL13, RPL31, RPL37, and RPL30. The RT-qPCR validation confirmed that normalization with our novel panel was more sensitive in identifying senescence markers compared to commonly used genes such as ACTB, UBC, and GAPDH.
Collapse
Affiliation(s)
- Kiran J McLoughlin
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Edoardo Pedrini
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Meabh MacMahon
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J. Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal Cells. Sci Rep 2019; 9:2074. [PMID: 30765770 PMCID: PMC6376004 DOI: 10.1038/s41598-019-38546-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are used in cell therapies, however cellular senescence increases heterogeneity of cell populations and leads to uncertainty in therapies’ outcomes. The determination of cellular senescence is time consuming and logistically intensive. Here, we propose the use of endogenous autofluorescence as real-time quantification of cellular senescence in human MSC, based on label-free flow cytometry analysis. We correlated cell autofluorescence to senescence using senescence-associated beta-galactosidase assay (SA-β-Gal) with chromogenic (X-GAL) and fluorescent (C12FDG) substrates, gene expression of senescence markers (such as p16INK4A, p18INK4C, CCND2 and CDCA7) and telomere length. Autofluorescence was further correlated to MSC differentiation assays (adipogenesis, chondrogenesis and osteogenesis), MSC stemness markers (CD90/CD106) and cytokine secretion (IL-6 and MCP-1). Increased cell autofluorescence significantly correlated with increased SA-β-Gal signal (both X-GAL and C12FDG substrates), cell volume and cell granularity, IL-6/MCP-1 secretion and with increased p16INK4A and CCND2 gene expression. Increased cell autofluorescence was negatively associated with the expression of the CD90/CD106 markers, osteogenic and chondrogenic differentiation potentials and p18INK4C and CDCA7 gene expression. Cell autofluorescence correlated neither with telomere length nor with adipogenic differentiation potential. We conclude that autofluorescence can be used as fast and non-invasive senescence assay for comparing MSC populations under controlled culture conditions.
Collapse
Affiliation(s)
| | - Martin Baur
- Cantonal Hospital of Lucerne, Lucerne, 6000, Switzerland.,Swiss Paraplegic Centre, Nottwil, 6207, Switzerland
| | - Julien Guerrero
- Department of Biomedicine and Tissue Engineering, University of Basel Hospital, Basel, 4031, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, 6207, Switzerland. .,Institute for Surgical Technology and Biomechanics, University of Bern, Bern, 3014, Switzerland.
| |
Collapse
|
10
|
Improving characterisation of human Multipotent Stromal Cells cultured in 2D and 3D: Design and evaluation of primer sets for accurate gene expression normalisation. PLoS One 2018; 13:e0209772. [PMID: 30596738 PMCID: PMC6312307 DOI: 10.1371/journal.pone.0209772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Human Multipotent Stromal Cells (MSCs) are a valuable resource for regenerative medicine and are widely studied. They can be isolated from a variety of tissues and differentiate into multiple cell types (multi-potent). Many reports have been published using human MSCs and to be able to compare outcome, or be able to identify differences between MSCs, several cell surface markers have been proposed. Nevertheless, still many differences remain. Gene expression is known to be different between cell stage and origin. Furthermore, cells cultured on a culture dish (2D) show different gene expression profiles as compared to cells grown on scaffolds (3D). Even the RNA extraction method and the selection of genes used for normalisation have a role in gene expression profiling. To be able to compare gene expression data from samples cultured in different dimensions and RNA extracted using a variety of protocols we set out to define a set of reference genes suitable to normalise qPCR data from a very heterogeneous sample set. Hereto, Trizol was used to extract RNA from human MSCs cultured in 3D and 2D to validate newly designed and previously published primer sets. Subsequently, RNA from fresh human MSC samples and samples stored in RLT-buffer, Trizol or RNAlater was extracted using RNeasy and Trizol methods. All samples have been used to rank the candidate reference genes according to their stability after qPCR enabling identification of the most suitable reference gene(s) for normalisation of a heterogeneous sample set. The most stably expressed reference genes indicated superior normalisation of MSC marker gene expression over the least stable reference genes.
Collapse
|
11
|
Fan J, An X, Yang Y, Xu H, Fan L, Deng L, Li T, Weng X, Zhang J, Chunhua Zhao R. MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. Aging Dis 2018; 9:1103-1121. [PMID: 30574422 PMCID: PMC6284756 DOI: 10.14336/ad.2018.1110] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
With the expansion of the elderly population, age-related osteoporosis and the resulting bone loss have become a significant health and socioeconomic issue. In Triple Energizer (TE)/San Jiao (SJ)/mesenchymal tissue system, mesenchymal stem cell (MSC) senescence, and impaired osteogenesis are thought to contribute to age-related diseases such as osteoporosis. Therefore, comprehending the molecular mechanisms underlying MSC senescence and osteogenesis is essential to improve the treatment of bone metabolic diseases. With the increasing role of miRNAs in MSC aging and osteogenic differentiation, we need to understand further how miRNAs participate in relevant mechanisms. In this study, we observed that the expression of miR-1292 was augmented during cellular senescence and lessened with osteogenesis in human adipose-derived mesenchymal stem cells (hADSCs). miR-1292 expression was positively correlated with senescence markers and negatively associated with bone formation markers in clinical bone samples. Overexpression of miR-1292 notably accelerated hADSC senescence and restrained osteogenesis, whereas its knockdown decreased senescence and enhanced osteogenic differentiation. Furthermore, miR-1292 upregulation inhibited ectopic bone formation in vivo. Mechanistically, FZD4 was identified as a potential target of miR-1292. Downregulation of FZD4 phenocopied the effect of miR-1292 overexpression on hADSC senescence and osteogenic differentiation. Moreover, the impact of miR-1292 suppression on senescence and osteogenesis were reversed by the FZD4 knockdown. Pathway analysis revealed that miR-1292 regulates hADSC senescence and osteogenesis through the Wnt/β-catenin signaling pathway. Thus, TE/SJ/mesenchymal tissue system is the largest organ composed of various functional cells derived from mesoderm, responsible for maintaining homeostasis and regulating cell senescence. miR-1292 might serve as a novel therapeutic target for the prevention and treatment of osteoporosis or other diseases related to bone metabolism and aging.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Xingyan An
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Tao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and School of Basic Medicine Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| |
Collapse
|
12
|
Fiorillo C, D'Apice MR, Trucco F, Murdocca M, Spitalieri P, Assereto S, Baratto S, Morcaldi G, Minetti C, Sangiuolo F, Novelli G. Characterization of MDPL Fibroblasts Carrying the Recurrent p.Ser605del Mutation in POLD1 Gene. DNA Cell Biol 2018; 37:1061-1067. [PMID: 30388038 DOI: 10.1089/dna.2018.4335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mandibular hypoplasia, deafness, and progeroid features, with concomitant lipodystrophy, define a multisystem disorder named MDPL syndrome. MDPL has been associated with heterozygous mutations in POLD1 gene resulting in loss of DNA polymerase δ activity. In this study, we report clinical, genetic, and cellular studies of a 13-year-old Pakistani girl, presenting growth retardation, sensorineural deafness, altered distribution of subcutaneous adipose tissue, and insulin resistance. We performed Sanger sequencing of POLD1 gene in the proband and the healthy parents. Fibroblasts obtained from dermal biopsy were evaluated for the specific hallmarks of cellular senescence and for their response to the DNA-induced damage. Patient carried the recurrent heterozygous de novo in frame deletion (c.1812_1814delCTC, p.Ser605del ) within POLD1 gene, previously detected in 16 MDPL patients. In patient's fibroblasts we observed severe nuclear envelope anomalies, presence of micronuclei, accumulation of prelamin A, altered cell growth, and cellular senescence. In addition, we observed a persistence of DNA damage after cisplatin exposure, compared to control cells. In conclusion, the MDPL nuclear and cellular findings resemble features observed in other progeroid syndromes and familial lipodystrophies. Although further investigations will be necessary, these information could be used to establish targeted therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Fiorillo
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | | | - Federica Trucco
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Michela Murdocca
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| | - Paola Spitalieri
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| | - Stefania Assereto
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Serena Baratto
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Guido Morcaldi
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Carlo Minetti
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Federica Sangiuolo
- 2 Laboratory of Medical Genetics, Tor Vergata Hospital , Rome, Italy
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| | - Giuseppe Novelli
- 2 Laboratory of Medical Genetics, Tor Vergata Hospital , Rome, Italy
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| |
Collapse
|
13
|
He T, Huang Y, Chak JC, Klar RM. Recommendations for improving accuracy of gene expression data in bone and cartilage tissue engineering. Sci Rep 2018; 8:14874. [PMID: 30291289 PMCID: PMC6173755 DOI: 10.1038/s41598-018-33242-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Autogenous tissue grafting remains the gold standard in the treatment of critical sized bone and certain cartilage defects, while the translation of tissue engineered osteogenesis or chondrogenesis from the lab bench into clinical practice, utilizing natural or synthetic biomimetic devices, remains challenging. One of the crucial underestimated reasons for non-translatability could be the imprecision and inconsistency of generated gene expression profiles, utilizing improperly optimized and standardized quantitative gene assays. Utilizing GeNorm for downstream qRT-PCR applications, the stability of reference genes in relation to optimal cDNA amounts was assessed on human bone marrow-derived mesenchymal and adipose-derived stem cells neat and made to differentiate into chondrocytes including normal human derived chondrocytes and muscle tissue from rats. Results showed that reference genes can vary substantially across separately and/or combined cell lines and/or tissue types including treatment parameters. The recommendations to all bone and cartilage tissue engineers utilizing qRT-PCR is not to assume that reference gene stability and quantity remain conserved across cell lines or tissue types but to always determine, for each new experiment, the stability and normalization quantity of reference genes anew.
Collapse
Affiliation(s)
- Tao He
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany.,Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yijiang Huang
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| | - Juy Chi Chak
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| | - Roland Manfred Klar
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany.
| |
Collapse
|
14
|
Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Human Stem Cell Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:151-168. [PMID: 30267307 DOI: 10.1007/5584_2018_277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely utilized method for evaluating the gene expressions in stem cell research. This method enables researchers to obtain fast and precise results, but the accuracy of the data depends on certain factors, such as those associated with biological sample preparation and PCR efficiency. In order to achieve accurate and reliable results, it is of utmost importance to designate the reference genes, the expressions of which are suitable to all kinds of experimental conditions. Hence it is vital to normalize the qRT-PCR data by using the reference genes. In recent years, it has been found that the expression levels of reference genes widely used in stem cell research present a substantial amount of variation and are not necessarily suitable for normalization. This chapter at hand stresses the significance of selecting suitable reference genes from the point view of human stem cell research.
Collapse
|
15
|
Khanna P, Johnson KL, Maron JL. Optimal reference genes for RT-qPCR normalization in the newborn. Biotech Histochem 2017; 92:459-466. [PMID: 28910197 DOI: 10.1080/10520295.2017.1362474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It is difficult to identify reliable reference genes for transcriptomic analyses in biofluids such as saliva. This situation is particularly relevant for the newborn population, where rapid development is associated with dynamic changes in gene expression. Real-time gene expression monitoring holds great promise for elucidating disrupted pathways that result in morbidities unique to this population, such as retinopathy of prematurity, but its impact depends on identifying stable and consistently expressed genes across a wide range of gestational ages. We extracted total RNA from 400 neonatal saliva samples (postconceptional ages: 32 5/7 to 48 2/7 weeks), converted it to cDNA, and pre-amplified and analyzed it by qPCR for three commonly used reference genes, ACTB, GAPDH, and YWHAZ. Relative quantification was determined using the Δ Ct method. Data were analyzed as a whole and also stratified by age and sex. Descriptive statistics and homogeneity of variance were performed to identify optimal reference genes. Data analyzed from all ages and both sexes showed significant expression variation for ACTB, while GAPDH and YWHAZ showed greater stability. Male infants exhibited increased expression variation compared to females for ACTB, but neither GAPDH nor YWHAZ showed significant variance for either sex. We suggest that ACTB is an unreliable reference gene for the newborn population. Males showed significantly more variation in ACTB expression compared to females, which suggests a sex-specific developmental role for this biomarker. By contrast, GAPDH and YWHAZ were less variable and therefore preferable for use in neonates. Our findings may improve the use of reference genes for the RT-qPCR platform in the newborn over a wide range of gestational ages, thereby minimizing the likelihood of erroneous interpretation of gene expression during rapid growth, development, and differentiation.
Collapse
Affiliation(s)
- P Khanna
- a Sackler School of Graduate Biomedical Sciences
| | | | - J L Maron
- c Mother Infant Research Institute, Floating Hospital for Children, Tufts Medical Center , Boston , Massachusetts
| |
Collapse
|