1
|
Staal L, Plösch T, Kunovac Kallak T, Sundström Poromaa I, Wertheim B, Olivier JDA. Sex-Specific Transcriptomic Changes in the Villous Tissue of Placentas of Pregnant Women Using a Selective Serotonin Reuptake Inhibitor. ACS Chem Neurosci 2024; 15:1074-1083. [PMID: 38421943 PMCID: PMC10958514 DOI: 10.1021/acschemneuro.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
About 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood. In this study, we aim to elucidate how disturbances in the maternal serotonergic system affect the villous tissue of the placenta by assessing whole transcriptomes in the placentas of women with healthy pregnancies and women with depression and treated with the SSRI fluoxetine during pregnancy. Twelve placentas of the Biology, Affect, Stress, Imaging and Cognition in Pregnancy and the Puerperium (BASIC) project were selected for RNA sequencing to examine differentially expressed genes: six male infants and six female infants, equally distributed over women treated with SSRI and without SSRI treatment. Our results show that more genes in the placenta of male infants show changed expression associated with fluoxetine treatment than in placentas of female infants, stressing the importance of sex-specific analyses. In addition, we identified genes related to extracellular matrix organization to be significantly enriched in placentas of male infants born to women treated with fluoxetine. It remains to be established whether the differentially expressed genes that we found to be associated with SSRI treatment are the result of the SSRI treatment itself, the underlying depression, or a combination of the two.
Collapse
Affiliation(s)
- Laura Staal
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
- Department
of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Torsten Plösch
- Departments
of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Perinatal
Neurobiology, Department of Human Medicine, School of Medicine and
Health Sciences, Carl von Ossietzky University
Oldenburg, 26129 Oldenburg, Germany
| | | | | | - Bregje Wertheim
- Evolutionary
Genetics, Development & Behaviour, Groningen Institute for Evolutionary
Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jocelien D. A. Olivier
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| |
Collapse
|
2
|
Chen ACH, Lee YL, Ruan H, Huang W, Fong SW, Tian S, Lee KC, Wu GM, Tan Y, Wong TCH, Wu J, Zhang W, Cao D, Chow JFC, Liu P, Yeung WSB. Expanded Potential Stem Cells from Human Embryos Have an Open Chromatin Configuration with Enhanced Trophoblast Differentiation Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204797. [PMID: 36775869 PMCID: PMC10104645 DOI: 10.1002/advs.202204797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Human expanded potential stem cells (hEPSC) have been derived from human embryonic stem cells and induced pluripotent stem cells. Here direct derivation of hEPSC from human pre-implantation embryos is reported. Like the reported hEPSC, the embryo-derived hEPSC (hEPSC-em) exhibit a transcriptome similar to morula, comparable differentiation potency, and high genome editing efficiency. Interestingly, the hEPSC-em show a unique H3 lysine-4 trimethylation (H3K4me3) open chromatin conformation; they possess a higher proportion of H3K4me3 bound broad domain (>5 kb) than the reported hEPSC, naive, and primed embryonic stem cells. The open conformation is associated with enhanced trophoblast differentiation potency with increased trophoblast gene expression upon induction of differentiation and success in derivation of trophoblast stem cells with bona fide characteristics. Hippo signaling is specifically enriched in the H3K4me3 broad domains of the hEPSC-. Knockout of the Hippo signaling gene, YAP1 abolishes the ability of the embryo-derived EPSC to form trophoblast stem cells.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Hanzhang Ruan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Wen Huang
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Siyu Tian
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Genie Minju Wu
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Yongqi Tan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Timothy Chun Hin Wong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Jian Wu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Weiyu Zhang
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
| | - Judy Fung Cheung Chow
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Pengtao Liu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongStem Cell and Regenerative Medicine ConsortiumHong KongHong Kong
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| |
Collapse
|
3
|
Lodefalk M, Chelslín F, Patriksson Karlsson J, Hansson SR. Placental Changes and Neuropsychological Development in Children-A Systematic Review. Cells 2023; 12:cells12030435. [PMID: 36766778 PMCID: PMC9913696 DOI: 10.3390/cells12030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Placental dysfunction may increase the offspring's later-life disease risk. The objective of this systematic review was to describe associations between pathological placental changes and neuropsychological outcomes in children after the neonatal period. The inclusion criteria were human studies; original research; direct placental variables; neuropsychological outcomes; and analysis between their associations. The exclusion criterion was the offspring's age-0-28 days or >19 years. The MEDLINE and EMBASE databases were last searched in May 2022. We utilized the ROBINS-I for the risk of bias assessment and performed a narrative synthesis. In total, 3252 studies were identified, out of which 16 were included (i.e., a total of 15,862 participants). Half of the studies were performed on children with neonatal complications, and 75% of the studies reported an association between a placental change and an outcome; however, following the completion of the funnel plots, a risk of publication bias was indicated. The largest study described a small association between placental size and a risk of psychiatric symptoms in boys only. Inconsistency between the studies limited the evidence in this review. In general, no strong evidence was found for an association between pathological placental changes and childhood neuropsychological outcomes after the neonatal period. However, the association between placental size and mental health in boys indicates a placental sexual dimorphism, thereby suggesting an increased vulnerability for male fetuses.
Collapse
Affiliation(s)
- Maria Lodefalk
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- Correspondence:
| | - Felix Chelslín
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Johanna Patriksson Karlsson
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden
- Department of Obstetrics and Gynecology, Skåne University Hospital, 214 28 Malmö, Sweden
| |
Collapse
|
4
|
Monosomy X in isogenic human iPSC-derived trophoblast model impacts expression modules preserved in human placenta. Proc Natl Acad Sci U S A 2022; 119:e2211073119. [PMID: 36161909 DOI: 10.1073/pnas.2211073119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian sex chromosomes encode homologous X/Y gene pairs that were retained on the Y chromosome in males and escape X chromosome inactivation (XCI) in females. Inferred to reflect X/Y pair dosage sensitivity, monosomy X is a leading cause of miscarriage in humans with near full penetrance. This phenotype is shared with many other mammals but not the mouse, which offers sophisticated genetic tools to generate sex chromosomal aneuploidy but also tolerates its developmental impact. To address this critical gap, we generated X-monosomic human induced pluripotent stem cells (hiPSCs) alongside otherwise isogenic euploid controls from male and female mosaic samples. Phased genomic variants in these hiPSC panels enable systematic investigation of X/Y dosage-sensitive features using in vitro models of human development. Here, we demonstrate the utility of these validated hiPSC lines to test how X/Y-linked gene dosage impacts a widely used model for human syncytiotrophoblast development. While these isogenic panels trigger a GATA2/3- and TFAP2A/C-driven trophoblast gene circuit irrespective of karyotype, differential expression implicates monosomy X in altered levels of placental genes and in secretion of placental growth factor (PlGF) and human chorionic gonadotropin (hCG). Remarkably, weighted gene coexpression network modules that significantly reflect these changes are also preserved in first-trimester chorionic villi and term placenta. Our results suggest monosomy X may skew trophoblast cell type composition and function, and that the combined haploinsufficiency of the pseudoautosomal region likely plays a key role in these changes.
Collapse
|
5
|
James JL, Lissaman A, Nursalim YNS, Chamley LW. Modelling human placental villous development: designing cultures that reflect anatomy. Cell Mol Life Sci 2022; 79:384. [PMID: 35753002 PMCID: PMC9234034 DOI: 10.1007/s00018-022-04407-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.
Collapse
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Abbey Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, Mojica-Perez S, Erliandri I, Rocha AMD, Cadigan K, Smith GD, Kalantry S. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun 2022; 13:2516. [PMID: 35523820 PMCID: PMC9076865 DOI: 10.1038/s41467-022-30259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation is a paradigm of epigenetic transcriptional regulation. Female human embryonic stem cells (hESCs) often undergo erosion of X-inactivation upon prolonged culture. Here, we investigate the sources of X-inactivation instability by deriving new primed pluripotent hESC lines. We find that culture media composition dramatically influenced the expression of XIST lncRNA, a key regulator of X-inactivation. hESCs cultured in a defined xenofree medium stably maintained XIST RNA expression and coating, whereas hESCs cultured in the widely used mTeSR1 medium lost XIST RNA expression. We pinpointed lithium chloride in mTeSR1 as a cause of XIST RNA loss. The addition of lithium chloride or inhibitors of GSK-3 proteins that are targeted by lithium to the defined hESC culture medium impeded XIST RNA expression. GSK-3 inhibition in differentiating female mouse embryonic stem cells and epiblast stem cells also resulted in a loss of XIST RNA expression. Together, these data may reconcile observed variations in X-inactivation in hESCs and inform the faithful culture of pluripotent stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura Keller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brandon Lee
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aaron Williams
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra Mojica-Perez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Indri Erliandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine & Cardiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gary D Smith
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Aye IL, Aiken CE, Charnock-Jones DS, Smith GC. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 2022; 226:S928-S944. [PMID: 33189710 DOI: 10.1016/j.ajog.2020.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.
Collapse
|
8
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
9
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
11
|
Stein MM, Conery M, Magnaye KM, Clay SM, Billstrand C, Nicolae R, Naughton K, Ober C, Thompson EE. Sex-specific differences in peripheral blood leukocyte transcriptional response to LPS are enriched for HLA region and X chromosome genes. Sci Rep 2021; 11:1107. [PMID: 33441806 PMCID: PMC7806814 DOI: 10.1038/s41598-020-80145-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Sex-specific differences in prevalence are well documented for many common, complex diseases, especially for immune-mediated diseases, yet the precise mechanisms through which factors associated with biological sex exert their effects throughout life are not well understood. We interrogated sex-specific transcriptional responses of peripheral blood leukocytes (PBLs) to innate immune stimulation by lipopolysaccharide (LPS) in 46 male and 66 female members of the Hutterite community, who practice a communal lifestyle. We identified 1217 autosomal and 54 X-linked genes with sex-specific responses to LPS, as well as 71 autosomal and one X-linked sex-specific expression quantitative trait loci (eQTLs). Despite a similar proportion of the 15 HLA genes responding to LPS compared to all expressed autosomal genes, there was a significant over-representation of genes with sex by treatment interactions among HLA genes. We also observed an enrichment of sex-specific differentially expressed genes in response to LPS for X-linked genes compared to autosomal genes, suggesting that HLA and X-linked genes may disproportionately contribute to sex disparities in risk for immune-mediated diseases.
Collapse
Affiliation(s)
- Michelle M Stein
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Mitch Conery
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Kevin M Magnaye
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Selene M Clay
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Raluca Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Naughton
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
13
|
Widen EM, Nichols AR, Kahn LG, Factor-Litvak P, Insel BJ, Hoepner L, Dube SM, Rauh V, Perera F, Rundle A. Prepregnancy obesity is associated with cognitive outcomes in boys in a low-income, multiethnic birth cohort. BMC Pediatr 2019; 19:507. [PMID: 31862007 PMCID: PMC6924019 DOI: 10.1186/s12887-019-1853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Maternal obesity and high gestational weight gain (GWG) disproportionally affect low-income populations and may be associated with child neurodevelopment in a sex-specific manner. We examined sex-specific associations between prepregnancy BMI, GWG, and child neurodevelopment at age 7. Methods Data are from a prospective low-income cohort of African American and Dominican women (n = 368; 44.8% male offspring) enrolled during the second half of pregnancy from 1998 to 2006. Neurodevelopment was measured using the Wechsler Intelligence Scale for Children (WISC-IV) at approximately child age 7. Linear regression estimated associations between prepregnancy BMI, GWG, and child outcomes, adjusting for race/ethnicity, marital status, gestational age at delivery, maternal education, maternal IQ and child age. Results Overweight affected 23.9% of mothers and obesity affected 22.6%. At age 7, full-scale IQ was higher among girls (99.7 ± 11.6) compared to boys (96.9 ± 13.3). Among boys, but not girls, prepregnancy overweight and obesity were associated with lower full-scale IQ scores [overweight β: − 7.1, 95% CI: (− 12.1, − 2.0); obesity β: − 5.7, 95% CI: (− 10.7, − 0.7)]. GWG was not associated with full-scale IQ in either sex. Conclusions Prepregnancy overweight and obesity were associated with lower IQ among boys, but not girls, at 7 years. These findings are important considering overweight and obesity prevalence and the long-term implications of early cognitive development.
Collapse
Affiliation(s)
- Elizabeth M Widen
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA. .,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.
| | - Amy R Nichols
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, 403 East 34th St, New York, NY, 10016, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, School of Public Health, 450 Clarkson Avenue, MSC 43, Brooklyn, NY, 11203, USA
| | - Sara M Dube
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Department of Nutritional Sciences, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, 60 Haven Avenue, B-2, Room 213, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Andrew Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| |
Collapse
|
14
|
San Roman AK, Page DC. A strategic research alliance: Turner syndrome and sex differences. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:59-67. [PMID: 30790449 DOI: 10.1002/ajmg.c.31677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Sex chromosome constitution varies in the human population, both between the sexes (46,XX females and 46,XY males), and within the sexes (e.g., 45,X and 46,XX females, and 47,XXY and 46,XY males). Coincident with this genetic variation are numerous phenotypic differences between males and females, and individuals with sex chromosome aneuploidy. However, the molecular mechanisms by which sex chromosome constitution impacts phenotypes at the cellular, tissue, and organismal levels remain largely unexplored. Thus, emerges a fundamental question connecting the study of sex differences and sex chromosome aneuploidy syndromes: How does sex chromosome constitution influence phenotype? Here, we focus on Turner syndrome (TS), associated with the 45,X karyotype, and its synergies with the study of sex differences. We review findings from evolutionary studies of the sex chromosomes, which identified genes that are most likely to contribute to phenotypes as a result of variation in sex chromosome constitution. We then explore strategies for investigating the direct effects of the sex chromosomes, and the evidence for specific sex chromosome genes impacting phenotypes. In sum, we argue that integrating the study of TS with sex differences offers a mutually beneficial alliance to identify contributions of the sex chromosomes to human development, health, and disease.
Collapse
Affiliation(s)
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|