1
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Huseynov AN, Malanchuk VA, Myroshnychenko MS, Kapustnyk NV, Sukharieva LP, Selivanova LI. Special at-rich sequence-binding protein 2 and its role in healing of the experimental mandible bone tissue defect filling with a synthetic bone graft material and electrical stimulation impact. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:385-391. [PMID: 39360717 DOI: 10.36740/merkur202404101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Aim: The purpose of the study was to identify the role of SATB2 in healing of the experimental mandible bone tissue defect filling with a synthetic bone graft material and electrical stimulation impact. PATIENTS AND METHODS Materials and Methods: An experiment was carried out on 48 mature male rats of the WAG population, which were divided into 4 groups. Each group included 12 experimental animals. Group 1 included rats that were modeled with a perforated defect of the lower jaw body. Group 2 included animals that were modeled with a perforated defect similar to group 1. In animals, a microdevice for electrical action was implanted subcutaneously in the neck area on the side of the simulated bone defect. The negative electrode connected to the negative pole of the battery was in contact with the bone defect. The battery and electrode were insulated with plastic heat shrink material. Group 3 included rats that were modeled with a perforated defect similar to previous groups, the cavity of which was filled with synthetic bone graft "Biomin GT" (RAPID, Ukraine). Group 4 included animals that were modeled with a perforated defect similar to groups 1-3, the cavity of which was filled with synthetic bone graft "Biomin GT" (RAPID, Ukraine). The simulation of electrical stimulation was the same as in group 2. The material for the morphological study was a fragment of the body of the lower jaw from the zone of the perforated defect. Immunohistochemical study was performed using rabbit anti-human SATB2 monoclonal antibody. RESULTS Results: In the regenerate filling the defect in the bone tissue of the lower jaw of rats, there was an increase in SATB2 expression under conditions of electrical stimulation; filling the defect with a synthetic bone graft material; simultaneous filling the defect with a synthetic bone graft material and electrical stimulation. The most pronounced expression of SATB2 was observed under conditions of simultaneous filling the defect with a synthetic bone graft material and electrical stimulation; minimally expressed - in conditions of filling the defect with a synthetic bone graft material; moderately expressed - under conditions of electrical stimulation. In the regenerate, in cases of all treatment methods, SATB2 was expressed by immune cells, fibroblastic differon cells, osteoblasts, and in case of electrical stimulation, also by adipocytes, vascular pericytes and endothelial cells, epidermis. CONCLUSION Conclusions: The activation of SATB2 expression identified by the authors is one of the mechanisms for stimulating reparative osteogenesis under the conditions of electrical stimulation; filling the defect with a synthetic bone graft material; simultaneous filling the defect with a synthetic bone graft material and electrical stimulation.
Collapse
Affiliation(s)
| | | | | | - Nataliia V Kapustnyk
- Public Nonprofit Organization of the Kharkiv District Council «Regional Clinical Perinatal Centre», Kharkiv, Ukraine
| | | | | |
Collapse
|
3
|
Zhang Y, Luo W, Zheng L, Hu J, Nie L, Zeng H, Tan X, Jiang Y, Li Y, Zhao T, Yang Z, He TC, Zhang H. Efficient bone regeneration of BMP9-stimulated human periodontal ligament stem cells (hPDLSCs) in decellularized bone matrix (DBM) constructs to model maxillofacial intrabony defect repair. Stem Cell Res Ther 2022; 13:535. [PMID: 36575551 PMCID: PMC9795631 DOI: 10.1186/s13287-022-03221-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND BMP9-stimulated DPSCs, SCAPs and PDLSCs are effective candidates for repairing maxillofacial bone defects in tissue engineering, while the most suitable seed cell source among these three hDMSCs and the optimal combination of most suitable type of hDMSCs and BMP9 have rarely been explored. Moreover, the orthotopic maxillofacial bone defect model should be valuable but laborious and time-consuming to evaluate various candidates for bone regeneration. Thus, inspired from the maxillofacial bone defects and the traditional in vivo ectopic systems, we developed an intrabony defect repair model to recapitulate the healing events of orthotopic maxillofacial bone defect repair and further explore the optimized combinations of most suitable hDMSCs and BMP9 for bone defect repair based on this modified ectopic system. METHODS Intrabony defect repair model was developed by using decellularized bone matrix (DBM) constructs prepared from the cancellous part of porcine lumbar vertebral body. We implanted DBM constructs subcutaneously on the flank of each male NU/NU athymic nude mouse, followed by directly injecting the cell suspension of different combinations of hDMSCs and BMP9 into the central hollow area of the constructs 7 days later. Then, the quality of the bony mass, including bone volume fraction (BV/TV), radiographic density (in Hounsfield units (HU)) and the height of newly formed bone, was measured by micro-CT. Furthermore, the H&E staining and immunohistochemical staining were performed to exam new bone and new blood vessel formation in DBM constructs. RESULTS BMP9-stimulated periodontal ligament stem cells (PDLSCs) exhibited the most effective bone regeneration among the three types of hDMSCs in DBM constructs. Furthermore, an optimal dose of PDLSCs with a specific extent of BMP9 stimulation was confirmed for efficacious new bone and new blood vessel formation in DBM constructs. CONCLUSIONS The reported intrabony defect repair model can be used to identify optimized combinations of suitable seed cells and biological factors for bone defect repair and subsequent development of efficacious bone tissue engineering therapies.
Collapse
Affiliation(s)
- Yuxin Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen Zheng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Hu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Nie
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huan Zeng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xi Tan
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yucan Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yeming Li
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhuohui Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- grid.412578.d0000 0000 8736 9513Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Hongmei Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang J, Zhao C, Sheng R, Lin K, Wang X, Zhang S. Construction of a Hierarchical Micro-/Submicro-/Nanostructured 3D-Printed Ti6Al4V Surface Feature to Promote Osteogenesis: Involvement of Sema7A through the ITGB1/FAK/ERK Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30571-30581. [PMID: 35776897 DOI: 10.1021/acsami.2c06454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing hierarchical hybrid structures is considered a facile method to improve the osseointegration of implants. Herein, a hierarchical micro-/submicro-/nanostructured surface feature of Ti6Al4V implants (3DAT group) was successfully constructed by combining the inherently formed three-dimensional (3D)-printed microscale topography, acid-etched sub-micropits, and anodized nanotubes. Compared with the classical SLA surface, the microscale topography and sub-micropits increased the three-dimensional space for the cell growth and mechanical stability of implants, while the modification of nanotubes dramatically improved the surface hydrophilicity, protein adsorption, and biomineralization. Most importantly, the 3DAT surface feature possessed excellent osteogenic performance in vitro and in vivo, with the involvement of semaphorin 7A (Sema7A) as revealed by RNA-seq through the ITGB1/FAK/ERK signaling pathway. The present study suggested that the hierarchically structured surface design strategy could accelerate the osseointegration rate of 3D-printed Ti6Al4V implants, promising personalized reconstruction of bone defects.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
- Department of Orthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9000-390, Madeira, Portugal
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Shilei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| |
Collapse
|
5
|
Xin T, Li Q, Bai R, Zhang T, Zhou Y, Zhang Y, Han B, Yang R. A novel mutation of SATB2 inhibits odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2021; 12:595. [PMID: 34863303 PMCID: PMC8642962 DOI: 10.1186/s13287-021-02660-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. METHODS We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. RESULTS As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/β-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active β-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/β-catenin signaling pathway. CONCLUSION We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.
Collapse
Affiliation(s)
- Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034 People’s Republic of China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| |
Collapse
|
6
|
Chen Q, Zheng L, Zhang Y, Huang X, Wang F, Li S, Yang Z, Liang F, Hu J, Jiang Y, Li Y, Zhou P, Luo W, Zhang H. Special AT-rich sequence-binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell Prolif 2021; 54:e13016. [PMID: 33660290 PMCID: PMC8016638 DOI: 10.1111/cpr.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.
Collapse
Affiliation(s)
- Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Fang Liang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yucan Jiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yeming Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|