1
|
Pan X, Pu W, Liu Y, Xiao Y, Pu J, Shi Y, Wu H, Wang H. Self-Perceptional Soft Robotics by a Dielectric Elastomer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26797-26807. [PMID: 38722638 DOI: 10.1021/acsami.4c04700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Soft robotics has been a rapidly growing field in recent decades due to its advantages of softness, deformability, and adaptability to various environments. However, the separation of perception and actuation in soft robot research hinders its progress toward compactness and flexibility. To address this limitation, we propose the use of a dielectric elastomer actuator (DEA), which exhibits both an actuation capability and perception stability. Specifically, we developed a DEA array to localize the 3D spatial position of objects. Subsequently, we integrate the actuation and sensing properties of DEA into soft robots to achieve self-perception. We have developed a system that integrates actuation and sensing and have proposed two modes to achieve this integration. Furthermore, we demonstrated the feasibility of this system for soft robots. When the robots detect an obstacle or an approaching object, they can swiftly respond by avoiding or escaping the obstacle. By eliminating the need for separate perception and motion considerations, self-perceptional soft robots can achieve an enhanced response performance and enable applications in a more compact and flexible field.
Collapse
Affiliation(s)
- Xinghai Pan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yanling Liu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yuhang Xiao
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Junhong Pu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ye Shi
- ZJU-UIUC Institute, Zhejiang University, Zhejiang 314400, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haolun Wang
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
3
|
Fabricating a PDMS Optical Lens with the Interaction of a Negatively-Charged Air-Resin Interface and an Electric Field. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Pu J, Meng Y, Xie Z, Peng Z, Wu J, Shi Y, Plamthottam R, Yang W, Pei Q. A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation. SCIENCE ADVANCES 2022; 8:eabm6200. [PMID: 35245109 PMCID: PMC8896788 DOI: 10.1126/sciadv.abm6200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Dielectric elastomer actuators (DEAs) feature large, reversible in-plane deformation, and stacked DEA layers are used to produce large strokes in the thickness dimension. We introduce an electrophoretic process to concentrate boron nitride nanosheet dispersion in a dielectric elastomer precursor solution onto a designated electrode surface. The resulting unimorph nanocomposite dielectric elastomer (UNDE) has a seamless bilayer structure with 13 times of modulus difference. The UNDE can be actuated to large bending curvatures, with enhanced breakdown field strength and durability as compared to conventional nanocomposite dielectric elastomer. Multiple UNDE units can be formed in a simple electrophoretic concentration process using patterned electrode areas. A disc-shaped actuator comprising six UNDE units outputs large bidirectional stroke up to 10 Hz. This actuator is used to demonstrate a high-speed lens motor capable of varying the focal length of a two-lens system by 40 times.
Collapse
Affiliation(s)
- Junhong Pu
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuan Meng
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhixin Xie
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zihang Peng
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jianghan Wu
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ye Shi
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roshan Plamthottam
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qibing Pei
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|