1
|
Li N, Zhan F, Guo M, Yuan X, Chen X, Li Y, Zhang G, Wang L, Liu J. Fingertip-Inspired Spatially Anisotropic Inductive Liquid Metal Sensors with Ultra-Wide Range, High Linearity and Exceptional Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419524. [PMID: 40135258 DOI: 10.1002/adma.202419524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Indexed: 03/27/2025]
Abstract
The advancement of robotic behavior and intelligence has led to an urgent demand for improving their sensitivity and interactive capabilities, which presents challenges in achieving multidimensional, wide-ranging, and reliable tactile sensing. Here an anisotropic inductive liquid metal sensor (AI-LMS) is introduced inspired by the human fingertip, which inherently possesses the capability to detect spatially multi-axis pressure with a wide sensing range, exceptional linearity, and signal stability. Additionally, it can detect very small pressures and responds swiftly to prescribed forces. Compared to resistive signals, inductive signals offer significant advantages. Further, integrated with a deep neural network model, the AI-LMS can decouple multi-axis pressures acting simultaneously upon it. Notably, the sensing range of Ecoflex and PDMS-based AI-LMS can be expanded by a factor of 4 and 9.5, respectively. For practical illustrations, a high-precision surface scanning reconstruction system is developed capable of capturing intricate details of 3D surface profiles. The utilization of biomimetic AI-LMS as robotic fingertips enables real-time discrimination of diverse delicate grasping behaviors across different fingers. The innovations and unique features in sensing mechanisms and structural design are expected to bring transformative changes and find extensive applications in the field of soft robotics.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Xueqing Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Li P, Feng Y, Ding C, Zhong R, Yan W, Song J, Hong Z, Hu B, Tan J, Sun J, Song X. Magnetointeractive Cr 2Te 3-Coated Liquid Metal Droplets for Flexible Memory Arrays and Wearable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414519. [PMID: 39713936 DOI: 10.1002/adma.202414519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Magnetic liquid metal droplets, featured by unique fluidity, metallic conductivity, and magnetic reactivity, are of growing significance for next-generation flexible electronics. Conventional fabrication routes, which typically incorporate magnetic nanoparticles into liquid metals, otherwise encounter the pitfall pertaining to surface adhesivity and corrosivity over device modules. Here, an innovative approach of synergizing liquid metals with 2D magnetic materials is presented, accordingly creating chromium(III)-telluride-coated liquid metal (CT-LM) droplets via a simple self-assembly process. The CT-LM droplets exhibit controllable deformation and locomotion under magnetic fields, demonstrate nonadherence to various surfaces, and enable cost-effective recycling of components. The functionality of CT-LM droplets is validated through their use in magnetointeractive memory devices to enable sensing/storing 64 magnetic paths and in wearable sensors as the flexible vibrator for dynamic gesture recognition with machine learning assistance. This work opens new avenues for the functional droplet design and broadens the horizons of flexible electronics.
Collapse
Affiliation(s)
- Puyan Li
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yixiong Feng
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang, 100733, China
| | - Chenchen Ding
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Ruirui Zhong
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weiyu Yan
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Song
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoxi Hong
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Bingtao Hu
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianrong Tan
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Xiuju Song
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Feng C, Zhiqiang X, Kewen C, Xiaodong W, Shengqiang J. 3D Printed Magnetic Bionic Robot Inspired by Octopus for Drug Transportation. Soft Robot 2024; 11:1068-1077. [PMID: 39666699 DOI: 10.1089/soro.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The octopus has attracted widespread attention owing to its unique underwater movement and its ability to escape with inkjets, which also promoted the development of underwater bionic robots. This study introduces a magnetic octopus robot (MOR) 3D printed with PA6/NdFeB composite material, which has good magnetic responsiveness and rigidity to cope with complex environments. The MOR can roll and rotate through complex terrain and passages because of its eight-claw structure. It also has amphibious locomotion and can pass through narrow gaps of 37.5% of its height by deformation. In addition, the MOR can not only clamp, transport, and release solids but also liquids by adding silicone hollow spheres, which indicates the potential of the MOR to be used in medical applications for transporting solid or liquid drugs. This research will help broaden the application prospects of magnetron robots in the field of medical drug transportation.
Collapse
Affiliation(s)
- Chen Feng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Xu Zhiqiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Chen Kewen
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Wang Xiaodong
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Jiang Shengqiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
4
|
Handschuh-Wang S, Wang T, Gancarz T, Liu X, Wang B, He B, Dickey MD, Wimmer GW, Stadler FJ. The Liquid Metal Age: A Transition From Hg to Ga. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408466. [PMID: 39295483 DOI: 10.1002/adma.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine. Each section examines the intricacies of liquid metal integration, elucidating their contributions to technological advancements and societal progress. Moreover, the review critically appraises the challenges and prospects inherent in liquid metal applications, addressing issues of recycling, corrosion management, device stability, economic feasibility, translational hurdles, and market dynamics. By delving into these complexities, the paper advances scholarly understanding and offers actionable insights for researchers, engineers, and policymakers. It aims to catalyze innovation, foster interdisciplinary collaboration, and promote liquid metal-enabled solutions for societal needs. Through its comprehensive analysis and forward-looking perspective, this review serves as a guide for navigating the landscape of liquid metal applications, bridging historical legacies with contemporary challenges, and highlighting the transformative potential of liquid metals in shaping future technologies.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tao Wang
- Advanced Materials Group Co., LTD, Fusionopolis Link #06-07, Nexus One-North, Singapore, 138543, Singapore
| | - Tomasz Gancarz
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, Krakow, 30-059, Poland
| | - Xiaorui Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Georg W Wimmer
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Florian J Stadler
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Li N, Zhou Y, Li Y, Li C, Xiang W, Chen X, Zhang P, Zhang Q, Su J, Jin B, Song H, Cheng C, Guo M, Wang L, Liu J. Transformable 3D curved high-density liquid metal coils - an integrated unit for general soft actuation, sensing and communication. Nat Commun 2024; 15:7679. [PMID: 39237505 PMCID: PMC11377734 DOI: 10.1038/s41467-024-51648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Rigid solenoid coils have long been indispensable in modern intelligent devices. However, their sparse structure and challenging preparation of flexible coils for soft robots impose limitations. Here, a transformable 3D curved high-density liquid metal coil (HD-LMC) is introduced that surpasses the structural density level of enameled wire. The fabrication technique employed for high-density channels in elastomers is universally applicable. Such HD-LMCs demonstrated excellent performance in pressure, temperature, non-contact distance sensors, and near-field communication. Soft electromagnetic actuators thus achieved significantly improved the electromagnetic force and power density. Moreover, precise control of swinging tail motion enables a bionic pufferfish to swim. Finally, HD-LMC is further utilized to successfully implement a soft rotary robot with integrated sensing and actuation capabilities. This groundbreaking research provides a theoretical and experimental basis for expanding the applications of liquid metal-based multi-dimensional complex flexible electronics and is expected to be widely used in liquid metal-integrated robotic systems.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chunwei Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Xiang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueqing Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Su
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bohao Jin
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Huize Song
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cai Cheng
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China.
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Wu D, Wu S, Narongdej P, Duan S, Chen C, Yan Y, Liu Z, Hong W, Frenkel I, He X. Fast and Facile Liquid Metal Printing via Projection Lithography for Highly Stretchable Electronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307632. [PMID: 38126914 DOI: 10.1002/adma.202307632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.
Collapse
Affiliation(s)
- Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Poom Narongdej
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Chi Chen
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Zixiao Liu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Wen Hong
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Imri Frenkel
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Wang Y, Xuan H, Zhang L, Huang H, Neisiany RE, Zhang H, Gu S, Guan Q, You Z. 4D Printed Non-Euclidean-Plate Jellyfish Inspired Soft Robot in Diverse Organic Solvents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313761. [PMID: 38211632 DOI: 10.1002/adma.202313761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Soft robots have the potential to assist and complement human exploration of extreme and harsh environments (i.e., organic solvents). However, soft robots with stable performance in diverse organic solvents are not developed yet. In the current research, a non-Euclidean-plate under-liquid soft robot inspired by jellyfish based on phototropic liquid crystal elastomers is fabricated via a 4D-programmable strategy. Specifically, the robot employs a 3D-printed non-Euclidean-plate, designed with Archimedean orientation, which undergoes autonomous deformation to release internal stress when immersed in organic solvents. With the assistance of near-infrared light illumination, the organic solvent inside the robot vaporizes and generates propulsion in the form of bubble streams. The developed NEP-Jelly-inspired soft robot can swim with a high degree of freedom in various organic solvents, for example, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dichloromethane, and trichloromethane, which is not reported before. Besides bionic jellyfish, various aquatic invertebrate-inspired soft robots can potentially be prepared via a similar 4D-programmable strategy.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Haiyang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
9
|
Zhang X, Liu J, Deng Z. Bismuth-based liquid metals: advances, applications, and prospects. MATERIALS HORIZONS 2024; 11:1369-1394. [PMID: 38224183 DOI: 10.1039/d3mh01722b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bismuth-based liquid metals (LMs) are a large group of alloys with melting points slightly above room temperature. They are associated with fewer encapsulation constraints than room temperature LMs such as mercury, sodium-potassium alloys, and gallium-based alloys and are more likely to remain stable in the natural environment. In addition, their low melting point properties enable them to soften and melt via easy control. Bismuth-based alloys can also be modified with metal-based, carbon-based, and ceramic-based micro/nano particles as well as polymeric materials to create a series of novel composites owing to their outstanding functions. Based on these considerations, this review provides a comprehensive overview of bismuth-based LMs. The categories of bismuth and bismuth-based LMs are first briefly introduced to better systematize the physical and chemical properties of bismuth-based LMs. Based on these properties, bismuth-based LMs have been prepared using various methods, and this review briefly categorizes these preparation methods based on their finished forms (lumps, powders, and films). In addition, this review details the research progress of bismuth-based LMs in the fields of printed electronics, 3D printing, thermal management, biomedicine, chemical engineering, and deformable robotics. Finally, the challenges and future opportunities of bismuth-based LMs in the development process are discussed and visualized from different perspectives.
Collapse
Affiliation(s)
- Xilong Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongshan Deng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Ye J, Xiang W, Cheng C, Bao W, Zhang Q. Principles and methods of liquid metal actuators. SOFT MATTER 2024; 20:2196-2211. [PMID: 38372963 DOI: 10.1039/d3sm01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As a promising material, liquid metals (LMs) have gained considerable interest in the field of soft robotics due to their ability to move as designed routines or change their shape dramatically under external stimuli. Inspired by the science fiction film Terminator, tremendous efforts have been devoted to liquid robots with high compliance and intelligence. How to manipulate LM droplets is crucial to achieving this goal. Accordingly, this review is dedicated to presenting the principles driving LMs and summarizing the potential methods to develop LM actuators of high maneuverability. Moreover, the recent progress of LM robots based on these methods is overviewed. The challenges and prospects of implementing autonomous robots have been proposed.
Collapse
Affiliation(s)
- Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Wentao Xiang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Bao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang D, Ye J, Bai Y, Yang F, Zhang J, Rao W, Liu J. Liquid Metal Combinatorics toward Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303533. [PMID: 37417920 DOI: 10.1002/adma.202303533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Liquid metals and their derivatives provide several opportunities for fundamental and practical exploration worldwide. However, the increasing number of studies and shortage of desirable materials to fulfill different needs also pose serious challenges. Herein, to address this issue, a generalized theoretical frame that is termed as "Liquid Metal Combinatorics" (LMC) is systematically presented, and summarizes promising candidate technical routes toward new generation material discovery. The major categories of LMC are defined, and eight representative methods for manufacturing advanced materials are outlined. It is illustrated that abundant targeted materials can be efficiently designed and fabricated via LMC through deep physical combinations, chemical reactions, or both among the main bodies of liquid metals, surface chemicals, precipitated ions, and other materials. This represents a large class of powerful, reliable, and modular methods for innovating general materials. The achieved combinatorial materials not only maintained the typical characteristics of liquid metals but also displayed distinct tenability. Furthermore, the fabrication strategies, wide extensibility, and pivotal applications of LMC are classified. Finally, by interpreting the developmental trends in the area, a perspective on the LMC is provided, which warrants its promising future for society.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiao Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Bai
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Li G, Wong TW, Shih B, Guo C, Wang L, Liu J, Wang T, Liu X, Yan J, Wu B, Yu F, Chen Y, Liang Y, Xue Y, Wang C, He S, Wen L, Tolley MT, Zhang AM, Laschi C, Li T. Bioinspired soft robots for deep-sea exploration. Nat Commun 2023; 14:7097. [PMID: 37925504 PMCID: PMC10625581 DOI: 10.1038/s41467-023-42882-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.
Collapse
Affiliation(s)
- Guorui Li
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China.
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China.
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China.
| | - Tuck-Whye Wong
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Benjamin Shih
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Chunyu Guo
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Luwen Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Jiaqi Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Tao Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Xiaobo Liu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Jiayao Yan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fajun Yu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
| | - Yunsai Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | | | - Yaoting Xue
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Chengjun Wang
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - A-Man Zhang
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Cecilia Laschi
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tiefeng Li
- Center for X-Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Matharu PS, Gong P, Guntaka KPR, Almubarak Y, Jin Y, Tadesse YT. Jelly-Z: swimming performance and analysis of twisted and coiled polymer (TCP) actuated jellyfish soft robot. Sci Rep 2023; 13:11086. [PMID: 37422482 PMCID: PMC10329702 DOI: 10.1038/s41598-023-37611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/24/2023] [Indexed: 07/10/2023] Open
Abstract
Monitoring, sensing, and exploration of over 70% of the Earth's surface that is covered with water is permitted through the deployment of underwater bioinspired robots without affecting the natural habitat. To create a soft robot actuated with soft polymeric actuators, this paper describes the development of a lightweight jellyfish-inspired swimming robot, which achieves a maximum vertical swimming speed of 7.3 mm/s (0.05 body length/s) and is characterized by a simple design. The robot, named Jelly-Z, utilizes a contraction-expansion mechanism for swimming similar to the motion of a Moon jellyfish. The objective of this paper is to understand the behavior of soft silicone structure actuated by novel self-coiled polymer muscles in an underwater environment by varying stimuli and investigate the associated vortex for swimming like a jellyfish. To better understand the characteristics of this motion, simplified Fluid-structure simulation, and particle image velocimetry (PIV) tests were conducted to study the wake structure from the robot's bell margin. The thrust generated by the robot was also characterized with a force sensor to ascertain the force and cost of transport (COT) at different input currents. Jelly-Z is the first robot that utilized twisted and coiled polymer fishing line (TCPFL) actuators for articulation of the bell and showed successful swimming operations. Here, a thorough investigation on swimming characteristics in an underwater setting is presented theoretically and experimentally. We found swimming metrics of the robot are comparable with other jellyfish-inspired robots that have utilized different actuation mechanisms, but the actuators used here are scalable and can be made in-house relatively easily, hence paving way for further advancements into the use of these actuators.
Collapse
Affiliation(s)
- Pawandeep Singh Matharu
- Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Pengyao Gong
- Fluids, Turbulence Control and Renewable Energy Laboratory, Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Koti Pramod Reddy Guntaka
- SoRobotics Laboratory, Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Yara Almubarak
- SoRobotics Laboratory, Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Yaqing Jin
- Fluids, Turbulence Control and Renewable Energy Laboratory, Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yonas T Tadesse
- Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
14
|
Wang S, Sun Z, Duan S, Zhao Y, Sha X, Yu S, Zuo L. A Hydrogel-Based Self-Sensing Underwater Actuator. MICROMACHINES 2022; 13:1779. [PMID: 36296132 PMCID: PMC9611511 DOI: 10.3390/mi13101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Soft robots made of hydrogels are suited for underwater exploration due to their biocompatibility and compliancy. Yet, reaching high dexterity and actuation force for hydrogel-based actuators is challenging. Meanwhile, real-time proprioception is critical for feedback control. Moreover, sensor integration to mimic living organisms remains problematic. To address these challenges, we introduce a hydrogel actuator driven by hydraulic force with a fast response (time constant 0.83 s). The highly stretchable and conductive hydrogel (1400% strain) is molded into the PneuNet shape, and two of them are further assembled symmetrically to actuate bi-directionally. Then, we demonstrate its bionic application for underwater swimming, showing 2 cm/s (0.19 BL/s) speed. Inspired by biological neuromuscular systems' sensory motion, which unifies the sensing and actuation in a single unit, we explore the hydrogel actuator's self-sensing capacity utilizing strain-induced resistance change. The results show that the soft actuator's proprioception can monitor the undulation in real-time with a sensitivity of 0.2%/degree. Furthermore, we take a finite-element method and first-order differential equations to model the actuator's bending in response to pressure. We show that such a model can precisely predict the robot's bending response over a range of pressures. With the self-sensing actuator and the proposed model, we expect the new approach can lead to future soft robots for underwater exploration with feedback control, and the underlying mechanism of the undulation control might offer significant insights for biomimetic research.
Collapse
Affiliation(s)
- Shuyu Wang
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Zhaojia Sun
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
| | - Shuaiyang Duan
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
| | - Yuliang Zhao
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Xiaopeng Sha
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Shifeng Yu
- Department of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Zuo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|