1
|
Schobel SA, Gann ER, Unselt D, Grey SF, Lisboa FA, Upadhyay MM, Rouse M, Tallowin S, Be NA, Zhang X, Dalgard CL, Wilkerson MD, Hauskrecht M, Badylak SF, Zamora R, Vodovotz Y, Potter BK, Davis TA, Elster EA. The influence of microbial colonization on inflammatory versus pro-healing trajectories in combat extremity wounds. Sci Rep 2024; 14:5006. [PMID: 38438404 PMCID: PMC10912443 DOI: 10.1038/s41598-024-52479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.
Collapse
Affiliation(s)
- Seth A Schobel
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Eric R Gann
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Q2 Solutions, Durham, NC, USA
| | - Scott F Grey
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Meenu M Upadhyay
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Michael Rouse
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Simon Tallowin
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Xijun Zhang
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
| | - Clifton L Dalgard
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Milos Hauskrecht
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
2
|
Kok CR, Mulakken N, Thissen JB, Grey SF, Avila-Herrera A, Upadhyay MM, Lisboa FA, Mabery S, Elster EA, Schobel SA, Be NA. Targeted metagenomic assessment reflects critical colonization in battlefield injuries. Microbiol Spectr 2023; 11:e0252023. [PMID: 37874143 PMCID: PMC10714869 DOI: 10.1128/spectrum.02520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.
Collapse
Affiliation(s)
- Car Reen Kok
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nisha Mulakken
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Scott F. Grey
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Meenu M. Upadhyay
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Felipe A. Lisboa
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Shalini Mabery
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Eric A. Elster
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Seth A. Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nicholas A. Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
3
|
Shiff J, Schwartz K, Hausman B, Seshadri DR, Bogie KM. Development and use of a porcine model with clinically relevant chronic infected wounds. J Tissue Viability 2023; 32:527-535. [PMID: 37716845 PMCID: PMC11419285 DOI: 10.1016/j.jtv.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023]
Abstract
Chronic ischemic wounds affect millions of people causing significant pain and disability. They can be considered to be stalled in the inflammatory stage and cannot heal without additional measures. A valid animal model is necessary to evaluate the efficacy of topical wound healing therapies and wearable technologies. A porcine model, although higher in cost, maintenance, and space requirements, is superior to the commonly used rodent or rabbit model for wound healing. Previous studies have shown that pig wounds have greater similarity to human wounds in responses to a variety of treatments, including wound dressings and antibiotics. The current study created a porcine model of large chronic wounds to assess a wearable electroceutical technology, with monitoring of healing variables and infection. Electroceutical therapy is the only adjunctive treatment recommended for chronic wound therapy. A porcine model of large chronic wounds of clinically realistic size was created and utilized to evaluate a wearable electroceutical biotechnology. Multivariate non-invasive assessment was used to monitor wound progression over multiple timepoints. Outcomes suggest that a wearable electrostimulation bandage, has the potential to offer therapeutic benefit in human wounds. The tested wearable device provides the same proven effectiveness of traditional electroceutical therapy while mitigating commonly cited barriers, including substantial time requirements, and availability and complexity of currently available equipment, preventing its implementation in routine wound care. The model is also appropriate for evaluation of other wearables or topical therapeutics.
Collapse
Affiliation(s)
- Josie Shiff
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Cleveland, OH, USA
| | - Katie Schwartz
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Cleveland, OH, USA
| | - Bryan Hausman
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Cleveland, OH, USA
| | - Dhruv R Seshadri
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Cleveland, OH, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Kath M Bogie
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Cleveland, OH, USA; Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Zamora R, Forsberg JA, Shah AM, Unselt D, Grey S, Lisboa FA, Billiar TR, Schobel SA, Potter BK, Elster EA, Vodovotz Y. Central role for neurally dysregulated IL-17A in dynamic networks of systemic and local inflammation in combat casualties. Sci Rep 2023; 13:6618. [PMID: 37095162 PMCID: PMC10126120 DOI: 10.1038/s41598-023-33623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Ashti M Shah
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Scott Grey
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Metagenomic features of bioburden serve as outcome indicators in combat extremity wounds. Sci Rep 2022; 12:13816. [PMID: 35970993 PMCID: PMC9378645 DOI: 10.1038/s41598-022-16170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.
Collapse
|
6
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Harvey J, Mellody KT, Cullum N, Watson REB, Dumville J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen 2022; 30:317-333. [PMID: 35381119 PMCID: PMC9322564 DOI: 10.1111/wrr.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Understanding why some wounds are hard to heal is important for improving care and developing more effective treatments. The method of sample collection used is an integral step in the research process and thus may affect the results obtained. The primary objective of this study was to summarise and map the methods currently used to sample wound fluid for protein profiling and analysis. Eligible studies were those that used a sampling method to collect wound fluid from any human wound for analysis of proteins. A search for eligible studies was performed using MEDLINE, Embase and CINAHL Plus in May 2020. All references were screened for eligibility by one reviewer, followed by discussion and consensus with a second reviewer. Quantitative data were mapped and visualised using appropriate software and summarised via a narrative summary. After screening, 280 studies were included in this review. The most commonly used group of wound fluid collection methods were vacuum, drainage or use of other external devices, with surgical wounds being the most common sample source. Other frequently used collection methods were extraction from absorbent materials, collection beneath an occlusive dressing and direct collection of wound fluid. This scoping review highlights the variety of methods used for wound fluid collection. Many studies had small sample sizes and short sample collection periods; these weaknesses have hampered the discovery and validation of novel biomarkers. Future research should aim to assess the reproducibility and feasibility of sampling and analytical methods for use in larger longitudinal studies.
Collapse
Affiliation(s)
- Joe Harvey
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Kieran T. Mellody
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
| | - Nicky Cullum
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Division of Nursing, Midwifery & Social WorkSchool of Health Sciences, The University of ManchesterManchesterUK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Manchester Institute for Collaborative Research on AgeingThe University of ManchesterManchesterUK
| | - Jo Dumville
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Division of Nursing, Midwifery & Social WorkSchool of Health Sciences, The University of ManchesterManchesterUK
| |
Collapse
|
8
|
A review of animal models from 2015 to 2020 for preclinical chronic wounds relevant to human health. J Tissue Viability 2021; 30:291-300. [PMID: 34103213 DOI: 10.1016/j.jtv.2021.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Chronic wounds fail to heal in a timely manner and exhibit sustained inflammation with slow tissue repair and remodelling. They decrease mobility and quality of life, and remain a major clinical challenge in the long-term care of many patients, affecting 6.5 million individuals annually in the U.S., decreasing mobility and quality of life. Treatment costs are a major burden on the U.S. healthcare system, totalling between $25 and $100 billion annually. Chronic wound severity depends upon several factors such as comorbidities, severity of tissue damage, infection and presence of necrosis and vary greatly in their healing mechanisms. In vivo animal models are critical for studying healing pathways of chronic wounds and seek to replicate clinical factors for trials of topical, systemic, and device-based therapeutics. This comprehensive review discusses murine, rat, lapine, canine, feline and porcine models of chronic wounds. RECENT ADVANCES Foundational chronic wound models for several species are discussed together with refinements and advances in the time period between 2015 and 2020 which have the potential for broad utility in investigating biological and device-based wound treatment therapies for human health. CRITICAL ISSUES Chronic wounds fail to heal in a timely manner and have differing aetiologies, rendering no single in vivo animal model universally applicable. FUTURE DIRECTIONS Further studies are required to develop clinically relevant chronic wound animal model which reflect the clinical reality of the various influences of age, disease, comorbidities and gender on delayed healing and enhance understanding of the biological processes of human wound healing.
Collapse
|
9
|
Utilizing Precision Medicine to Estimate Timing for Surgical Closure of Traumatic Extremity Wounds. Ann Surg 2019; 270:535-543. [DOI: 10.1097/sla.0000000000003470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Thompson KB, Krispinsky LT, Stark RJ. Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Mil Med Res 2019; 6:11. [PMID: 31014397 PMCID: PMC6480837 DOI: 10.1186/s40779-019-0202-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/07/2019] [Indexed: 12/29/2022] Open
Abstract
With improvements in personnel and vehicular body armor, robust casualty evacuation capabilities, and damage control resuscitation strategies, more combat casualties are surviving to reach higher levels of care throughout the casualty evacuation system. As such, medical centers are becoming more accustomed to managing the deleterious late consequences of combat trauma related to the dysregulation of the immune system. In this review, we aim to highlight these late consequences and identify areas for future research and therapeutic strategies. Trauma leads to the dysregulation of both the innate and adaptive immune responses, which places the injured at risk for several late consequences, including delayed wound healing, late onset sepsis and infection, multi-organ dysfunction syndrome, and acute respiratory distress syndrome, which are significant for their association with the increased morbidity and mortality of wounded personnel. The mechanisms by which these consequences develop are complex but include an imbalance of the immune system leading to robust inflammatory responses, triggered by the presence of damage-associated molecules and other immune-modifying agents following trauma. Treatment strategies to improve outcomes have been difficult to develop as the immunophenotype of injured personnel following trauma is variable, fluid and difficult to determine. As more information regarding the triggers that lead to immune dysfunction following trauma is elucidated, it may be possible to identify the immunophenotype of injured personnel and provide targeted treatments to reduce the late consequences of trauma, which are known to lead to significant morbidity and mortality.
Collapse
Affiliation(s)
- Kelly B Thompson
- Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Nashville, TN, 37232, USA.
| | - Luke T Krispinsky
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Uniformed Services University, Naval Medical Center Portsmouth, Portsmouth, VA, 23708, USA
| | - Ryan J Stark
- Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci 2018; 19:ijms19103217. [PMID: 30340330 PMCID: PMC6214117 DOI: 10.3390/ijms19103217] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a multistep process with four overlapping but distinct stages: hemostasis, inflammation, proliferation, and remodeling. An alteration at any stage may lead to the development of chronic non-healing wounds or excessive scar formation. Impaired wound healing presents a significant health and economic burden to millions of individuals worldwide, with diabetes mellitus and aging being major risk factors. Ongoing understanding of the mechanisms that underly wound healing is required for the development of new and improved therapies that increase repair. Chemokines are key regulators of the wound healing process. They are involved in the promotion and inhibition of angiogenesis and the recruitment of inflammatory cells, which release growth factors and cytokines to facilitate the wound healing process. Preclinical research studies in mice show that the administration of CCL2, CCL21, CXCL12, and a CXCR4 antagonist as well as broad-spectrum inhibition of the CC-chemokine class improve the wound healing process. The focus of this review is to highlight the contributions of chemokines during each stage of wound healing and to discuss the related molecular pathologies in complex and chronic non-healing wounds. We explore the therapeutic potential of targeting chemokines as a novel approach to overcome the debilitating effects of impaired wound healing.
Collapse
Affiliation(s)
- Anisyah Ridiandries
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia.
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Joanne T M Tan
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
12
|
Swanson T, Cooper R, Keast DH. Letters: Response to 'Food for thought: innovation and debate' Journal of Wound Care July 2017; 26: 7. J Wound Care 2017; 26:570-571. [PMID: 28880763 DOI: 10.12968/jowc.2017.26.9.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- T Swanson
- Nurse Practitioner Wound Management, South West Healthcare, Victoria, Australia
| | - R Cooper
- Department of Biomedical Sciences, Cardiff Metropolitan
| | - D H Keast
- Wound Care Research Leader, Parkwood Institute Research, London Canada
| |
Collapse
|
13
|
Lisboa FA, Bradley MJ, Hueman MT, Schobel SA, Gaucher BJ, Styrmisdottir EL, Potter BK, Forsberg JA, Elster EA. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery 2016; 161:1164-1173. [PMID: 27919449 DOI: 10.1016/j.surg.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND After adequate operative debridement and antimicrobial therapies, combat-related extremity wounds that either heal or fail are both associated with a distinct inflammatory response. Short-term use of nonsteroidal anti-inflammatory drugs in postoperative pain management may affect this response and, by consequence, the healing potential of these wounds. We investigated whether patients treated with nonsteroidal anti-inflammatory drugs had a distinct inflammatory response; different rates of critical colonization, defined as >105 colony forming units on quantitative bacteriology; and healing potential. METHODS We retrospectively reviewed the records of 73 patients with combat-related extremity wounds. Patients were separated into 2 groups: those who received nonsteroidal anti-inflammatory drugs during the debridement period (nonsteroidal anti-inflammatory drugs group, N = 17) and those who did not (control group; N = 56). Serum and wound tissue samples collected during each operative debridement were measured for 32 known cytokines and tested for quantitative bacteriology, respectively. We compared cytokine concentrations between groups and then designed a logistic regression model to identify variables associated with successful wound healing, while controlling for known confounders. RESULTS Despite similar demographics and wound characteristics, the nonsteroidal anti-inflammatory drugs group had significant lesser concentrations of inflammatory cytokines, interleukin-2, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1. On multivariate analysis, nonsteroidal anti-inflammatory drug treatment emerged as a predictor of successful wound healing after controlling for known confounders such as wound size, tobacco use, Acute Physiology and Chronic Health Evaluation II score, and critical colonization. CONCLUSION Treatment with nonsteroidal anti-inflammatory drugs for postoperative pain management after major combat-related extremity trauma is associated with lesser concentrations of inflammatory cytokines and may contribute to a more favorable inflammatory response leading to successful wound healing.
Collapse
Affiliation(s)
- Felipe A Lisboa
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Matthew J Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Matthew T Hueman
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Beverly J Gaucher
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Edda L Styrmisdottir
- Surgical Critical Care Initiative (SC2i), Bethesda, MD; DecisionQ, Arlington, VA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Eric A Elster
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD.
| |
Collapse
|
14
|
Potential Use of Salivary Markers for Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination. Mediators Inflamm 2016; 2016:6958293. [PMID: 27022211 PMCID: PMC4789015 DOI: 10.1155/2016/6958293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals.
Collapse
|
15
|
Radowsky JS, Brown TS, Lisboa FA, Rodriguez CJ, Forsberg JA, Elster EA. Serum Inflammatory Cytokine Markers of Invasive Fungal Infection in Previously Immunocompetent Battle Casualties. Surg Infect (Larchmt) 2015; 16:526-32. [PMID: 26110227 DOI: 10.1089/sur.2013.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Invasive fungal infection (IFI) is described increasingly in individuals experiencing high-energy military trauma. Hallmarks of successful treatment involve aggressive surgical debridement and early initiation of systemic antimicrobial therapy. Currently, intravenous anti-fungal therapy commences based on appearance of wounds and patient's clinical course. Whereas some clinical protocols exist to predict which critically injured patients should receive anti-fungal therapies, there are no established serum markers associated with IFI. Our hypothesis is that serum inflammatory cytokines exist that can assist in identifying individuals at risk for IFI. METHODS This is a retrospective case control study at a single institution. Nine patients with IFI (Saksenaea vasiformis, Fusarium sp., Graphium sp., Scedosporium sp., Aspergillus sp., Mucor sp., and Alternaria sp.) after battlefield trauma were matched to nine individuals with similar injury patterns whose laboratory results were negative for IFI. The combination of serum inflammatory cytokines from the first and second debridements was examined with multiplex platform proteomic analysis. We defined statistical significance as a two-tailed α<0.05 after adjusting for multiple comparisons using the false discovery rate method. This model was refined further with correlation-based filter selection and the area under the curve of the receiver operating characteristics (AUROC) was tested. RESULTS Both groups had similar Injury Severity Scores (ISS) (mean±standard deviation [SD]) (26.8±15.5 vs. 29.2±16.8, p=0.766). Elevated RANTES (regulated on activation, normal T cell expressed and secreted) alone (10,492.8±4,450.1 vs. 5,333.3±4,162.2, p=0.006) correlated with IFI. Also, the combination of persistent elevations in RANTES, interleukin (IL)-2R, and IL-15 was a robust model for predicting IFI with the AUROC being 0.9. CONCLUSIONS Elevation in serum cytokines, particularly RANTES, correlated with IFI in this small group of patients. This demonstrates the potential of future rapid serum testing for early initiation and guidance of anti-fungal therapies.
Collapse
Affiliation(s)
- Jason S Radowsky
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Trevor S Brown
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Felipe A Lisboa
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Carlos J Rodriguez
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Jonathan A Forsberg
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,3 Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Eric A Elster
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| |
Collapse
|
16
|
Akers KS, Rowan MP, Niece KL, Graybill JC, Mende K, Chung KK, Murray CK. Antifungal wound penetration of amphotericin and voriconazole in combat-related injuries: case report. BMC Infect Dis 2015; 15:184. [PMID: 25886578 PMCID: PMC4403850 DOI: 10.1186/s12879-015-0918-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/31/2015] [Indexed: 12/02/2022] Open
Abstract
Background Survivors of combat trauma can have long and challenging recoveries, which may be complicated by infection. Invasive fungal infections are a rare but serious complication with limited treatment options. Currently, aggressive surgical debridement is the standard of care, with antifungal agents used adjunctively with uncertain efficacy. Anecdotal evidence suggests that antifungal agents may be ineffective in the absence of surgical debridement, and studies have yet to correlate antifungal concentrations in plasma and wounds. Case presentation Here we report the systemic pharmacokinetics and wound effluent antifungal concentrations of five wounds from two male patients, aged 28 and 30 years old who sustained combat-related blast injuries in southern Afghanistan, with proven or possible invasive fungal infection. Our data demonstrate that while voriconazole sufficiently penetrated the wound resulting in detectable effluent levels, free amphotericin B (unbound to plasma) was not present in wound effluent despite sufficient concentrations in circulating plasma. In addition, considerable between-patient and within-patient variability was observed in antifungal pharmacokinetic parameters. Conclusion These data highlight the need for further studies evaluating wound penetration of commonly used antifungals and the role for therapeutic drug monitoring in providing optimal care for critically ill and injured war fighters.
Collapse
Affiliation(s)
- Kevin S Akers
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Matthew P Rowan
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Krista L Niece
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - John C Graybill
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Katrin Mende
- Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Kevin K Chung
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Clinton K Murray
- Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
17
|
Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res 2014; 472:2845-54. [PMID: 24879568 PMCID: PMC4117913 DOI: 10.1007/s11999-014-3694-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/09/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND After a decade of war in Iraq and Afghanistan, we have observed an increase in combat-related injury survival and a paradoxical increase in injury severity, mainly because of the effects of blasts. These severe injuries have a devastating effect on each patient's immune system resulting in massive upregulation of the systemic inflammatory response. By examining inflammatory mediators, preliminary data suggest that it may be possible to correlate complications such as wound failure and heterotopic ossification (HO) with distinct systemic and local inflammatory profiles, but this is a relatively new topic. QUESTIONS/PURPOSES We asked whether systemic or local markers of inflammation could be used as an objective means, independent of demographic and subjective factors, to estimate the likelihood of (1) HO and/or (2) wound failure (defined as wounds requiring surgical débridement after definitive closure, or wounds that were not closed or covered within 21 days of injury) in patients sustaining combat wounds. METHODS Two hundred combat wounded active-duty service members who sustained high-energy extremity injuries were prospectively enrolled between 2008 and 2012. Of these 200 patients, 189 had adequate followups to determine the presence or absence of HO, and 191 had adequate followups to determine the presence or absence of wound failure. In addition to injury-specific and demographic data, we quantified 24 cytokines and chemokines during each débridement. Patients were followed clinically for 6 weeks, and radiographs were obtained 3 months after definitive wound closure. Associations were investigated between these markers and wound failure or HO, while controlling for known confounders. RESULTS The presence of an amputation (p < 0.001; odds ratio [OR], 6.1; 95% CI. 1.63-27.2), Injury Severity Score (p = 0.002; OR, 33.2; 95% CI, 4.2-413), wound surface area (p = 0.001; OR, 1.01; 95% CI, 1.002-1.009), serum interleukin (IL)-3 (p = 0.002; OR, 2.41; 95% CI, 1.5-4.5), serum IL-12p70 (p = 0.01; OR, 0.49; 95% CI, 0.27-0.81), effluent IL-3 (p = 0.02; OR, 1.75; 95% CI, 1.2-2.9), and effluent IL-13 (p = 0.006; OR, 0.67; 95% CI, 0.50-0.87) were independently associated with HO formation. Injury Severity Score (p = 0.05; OR, 18; 95% CI, 5.1-87), wound surface area (p = 0.05; OR, 28.7; 95% CI, 1.5-1250), serum procalcitonin ([ProCT] (p = 0.03; OR, 1596; 95% CI, 5.1-1,758,613) and effluent IL-6 (p = 0.02; OR, 83; 95% CI, 2.5-5820) were independently associated with wound failure. CONCLUSIONS We identified associations between patients' systemic and local inflammatory responses and wound-specific complications such as HO and wound failure. However, future efforts to model these data must account for their complex, time dependent, and nonlinear nature. LEVEL OF EVIDENCE Level II, prognostic study. See the Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Jonathan A. Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Section of Orthopaedics and Sports Medicine, Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| | - Benjamin K. Potter
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| | - Elizabeth M. Polfer
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA
| | - Shawn D. Safford
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Eric A. Elster
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD USA ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| |
Collapse
|
18
|
D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:4353-61. [PMID: 24841260 DOI: 10.1128/aac.02468-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Within wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluated in vitro the dispersive activity of D-amino acids (D-AAs) on biofilms from clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa; moreover, we determined whether combinations of D-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin for S. aureus and amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime for P. aeruginosa) enhance activity against biofilms. D-Met, D-Phe, and D-Trp at concentrations of ≥ 5 mM effectively dispersed preformed biofilms of S. aureus and P. aeruginosa clinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (D-Met/D-Phe/D-Trp). When combined with D-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates of S. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition of D-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms of P. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity of D-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity.
Collapse
|
19
|
Microbial profiling of combat wound infection through detection microarray and next-generation sequencing. J Clin Microbiol 2014; 52:2583-94. [PMID: 24829242 DOI: 10.1128/jcm.00556-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden.
Collapse
|
20
|
Chromy BA, Eldridge A, Forsberg JA, Brown TS, Kirkup BC, Elster E, Luciw P. Proteomic sample preparation for blast wound characterization. Proteome Sci 2014; 12:10. [PMID: 24529238 PMCID: PMC3943455 DOI: 10.1186/1477-5956-12-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 01/04/2023] Open
Abstract
Background Blast wounds often involve diverse tissue types and require substantial time and treatment for appropriate healing. Some of these subsequent wounds become colonized with bacteria requiring a better understanding of how the host responds to these bacteria and what proteomic factors contribute wound healing outcome. In addition, using reliable and effective proteomic sample preparation procedures can lead to novel biomarkers for improved diagnosis and therapy. Results To address this need, suitable sample preparation for 2-D DIGE proteomic characterization of wound effluent and serum samples from combat-wounded patients was investigated. Initial evaluation of crude effluent and serum proved the necessity of high abundant protein depletion. Subsequently, both samples were successfully depleted using Agilent Multiple Affinity Removal system and showed greatly improved 2-D spot maps, comprising 1,800 and 1,200 protein spots, respectively. Conclusion High abundant protein removal was necessary for both wound effluent and serum. This is the first study to show a successful method for high abundant protein depletion from wound effluent which is compatible with downstream 2-D DIGE analysis. This development allows for improved biomarker discovery in wound effluent and serum samples.
Collapse
Affiliation(s)
- Brett A Chromy
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Davis, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Immunoinflammatory response in critically ill patients: severe sepsis and/or trauma. Mediators Inflamm 2013; 2013:362793. [PMID: 24371374 PMCID: PMC3859159 DOI: 10.1155/2013/362793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022] Open
Abstract
Immunoinflammatory response in critically ill patients is very complex. This review explores some of the new elements of immunoinflammatory response in severe sepsis, tumor necrosis factor-alpha in severe acute pancreatitis as a clinical example of immune response in sepsis, immune response in severe trauma with or without secondary sepsis, and genetic aspects of host immuno-inflammatory response to various insults in critically ill patients.
Collapse
|
22
|
Chromy BA, Eldridge A, Forsberg JA, Brown TS, Kirkup BC, Jaing C, Be NA, Elster E, Luciw PA. Wound outcome in combat injuries is associated with a unique set of protein biomarkers. J Transl Med 2013; 11:281. [PMID: 24192341 PMCID: PMC3827499 DOI: 10.1186/1479-5876-11-281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022] Open
Abstract
Background The ability to forecast whether a wound will heal after closure without further debridement(s), would provide substantial benefits to patients with severe extremity trauma. Methods Wound effluent is a readily available material which can be collected without disturbing healthy tissue. For analysis of potential host response biomarkers, forty four serial combat wound effluent samples from 19 patients with either healing or failing traumatic- and other combat-related wounds were examined by 2-D DIGE. Spot map patterns were correlated to eventual wound outcome (healed or wound failure) and analyzed using DeCyder 7.0 and differential proteins identified via LC-MS/MS. Results This approach identified 52 protein spots that were differentially expressed and thus represent candidate biomarkers for this clinical application. Many of these proteins are intimately involved in inflammatory and immune responses. Furthermore, discriminate analysis further refined the 52 differential protein spots to a smaller subset of which successfully differentiate between wounds that will heal and those that will fail and require further surgical intervention with greater than 83% accuracy. Conclusion These results suggest candidates for a panel of protein biomarkers that may aid traumatic wound care prognosis and treatment. We recommend that this strategy be refined, and then externally validated, in future studies of traumatic wounds.
Collapse
Affiliation(s)
- Brett A Chromy
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Davis, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lisboa FA, Forsberg JA, Brown TS, Gage FA, Potter BK, Elster EA. Bilateral lower-extremity amputation wounds are associated with distinct local and systemic cytokine response. Surgery 2013; 154:282-90. [PMID: 23889954 DOI: 10.1016/j.surg.2013.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Approximately 25% of U.S. military members sustaining extremity amputations in recent military conflicts have bilateral lower-extremity amputations (BLA). We investigated among combat-related extremity wounds whether BLA exhibit different bacterial burden, inflammatory response, and local complications. METHODS A total of 75 patients with combat-related extremity wounds (19 BLA) were evaluated for age, tobacco use, body mass index, Injury Severity Score, Acute Physiology and Chronic Health Evaluation II, and delayed primary closure time. Blood, wound exudates, and muscle biopsies were obtained and analyzed for cytokine and quantitative bacteriology, excluding patients using nonsteroidal anti-inflammatory medications and corticosteroids, due to potential effects on their inflammatory profile. RESULTS BLA was not associated with differences in age, tobacco use, body mass index, and delayed primary closure time, but these patients had increased Injury Severity Score, Acute Physiology and Chronic Health Evaluation II, and rates of critical colonization. Proinflammatory cytokines including tumor necrosis factor-α (exudate), interleukin (IL)-1 (exudate) and IL-6 (serum) were increased in BLA patients. They also had serum and exudate increased IL-8 and decreased IL-13 and granulocyte-macrophage colony-stimulating factor. Both wound dehiscence (WD) and heterotopic ossification (HO) were more common in BLA patients. CONCLUSION BLA patients were more likely to exhibit critical bacterial colonization, a distinct inflammatory response, and develop WD and HO. Modulating this response represents an attractive target in an effort to prevent complications such as WD and HO.
Collapse
Affiliation(s)
- Felipe A Lisboa
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|
24
|
Gottrup F, Apelqvist J, Bjarnsholt T, Cooper R, Moore Z, Peters E, Probst S. EWMA Document: Antimicrobials and Non-healing Wounds: Evidence, controversies and suggestions. J Wound Care 2013; 22:S1-89. [DOI: 10.12968/jowc.2013.22.sup5.s1] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- F Gottrup
- Professor of Surgery, Bispebjerg University Hospital, Copenhagen, Denmark
| | - J Apelqvist
- Senior Consultant, Associate Professor, Skåne University Hospital, Malmö, Sweden
| | - T Bjarnsholt
- Associate Professor, University of Copenhagen and Copenhagen University Hospital, Copenhagen, Denmark
| | - R Cooper
- Professor of Microbiology, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
| | - Z Moore
- Lecturer in Wound Healing & Tissue Repair, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - E.J.G. Peters
- Internist- Infectious Diseases Specialist, VU University Medical Center, Amsterdam, the Netherlands
| | - S Probst
- Lecturer, Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
25
|
Antibacterial activities of iron chelators against common nosocomial pathogens. Antimicrob Agents Chemother 2012; 56:5419-21. [PMID: 22850524 DOI: 10.1128/aac.01197-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activities of iron chelators (deferoxamine, deferiprone, Apo6619, and VK28) were evaluated against type strains of Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Deferiprone, Apo6619, and VK28 each inhibited growth in standard and RPMI tissue culture medium, while deferoxamine had no effect. Additionally, time-kill assays revealed that VK28 had a bacteriostatic effect against S. aureus. Therefore, these newly developed iron chelators might provide a nontraditional approach for treatment of bacterial infections.
Collapse
|
26
|
Agoston DV, Elsayed M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder. Front Neurol 2012; 3:107. [PMID: 22783223 PMCID: PMC3390892 DOI: 10.3389/fneur.2012.00107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/12/2012] [Indexed: 11/16/2022] Open
Abstract
The biological consequences of exposure to explosive blast are extremely complex. Serum protein biomarkers in blast-induced traumatic brain injury (bTBI) can aid in determining injury severity, monitoring progress, and predicting outcome. Exposure to blast results in varying degrees of physical injury. Explosive blast can also induce psychological stress that can contribute to or amplify the extent of physical damage. Given the complexity, scale of injury, and variety of symptoms, bTBI may be best described as a spectrum disorder. In this focused review, we summarize the status of serum protein biomarkers in bTBI in the context of the classification and pathological changes of other forms of TBI. Finally, we recommend specific and easily implementable measures to accelerate serum protein biomarker discovery and validation in bTBI.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Bethesda, MD, USA
| | | |
Collapse
|