1
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Jedrusik N, Meyen C, Finkenzeller G, Stark GB, Meskath S, Schulz SD, Steinberg T, Eberwein P, Strassburg S, Tomakidi P. Nanofibered Gelatin-Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Adv Healthc Mater 2018. [PMID: 29529354 DOI: 10.1002/adhm.201700895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regarding tissue regeneration, mechanics of biomaterials gains progressive importance. Therefore, this study reports on in situ crosslinked electrospun gelatin nonwoven mats (NWMs) whose distinct modulus of elasticity (ME) promotes epithelial tissue formation in a graded manner. NWMs, comprising fiber diameters in various distributions, yield an ME of about 2.1, 3.2, and 10.9 kPa. A two-step approach of preclinical in vitro validation identifies the elasticity of 3.2 kPa as superior to the other, regarding the histogenetic epithelial outcome. Hence, this 3.2 kPa candidate NWM is colonized with oral mucosal epithelial keratinocytes in the absence or presence of mesenchymal fibroblasts and/or endothelial cells. Evaluation of epithelial histogenesis at days 1 to 10 occurs by colorimetric and fluorescence-based immunohistochemistry (IHCH) of specific biomarkers. These include cytokeratins (CK) 14, CK1, and involucrin that indicate different stages of epithelial differentiation, as well as the basement membrane constituent collagen type IV and Ki-67 as a proliferation marker. Intriguingly, histogenesis and IHCH reveal the best resemblance of the native epithelium by the NWM alone, irrespective of other cell counterparts. These findings prove the gelatin NWM a convenient cell matrix, and evidence that NWM mechanics is important to promote epithelial histogenesis in view of prospective clinical applications.
Collapse
Affiliation(s)
- Nicole Jedrusik
- Division of Oral Biotechnology; Center for Dental Medicine; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Christoph Meyen
- Department of Plastic and Hand Surgery; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - G. Björn Stark
- Department of Plastic and Hand Surgery; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Stephan Meskath
- Department of Orthopedics and Trauma Surgery; Medical Center - University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Simon Daniel Schulz
- Division of Oral Biotechnology; Center for Dental Medicine; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology; Center for Dental Medicine; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Philipp Eberwein
- Eye Center; Medical Center - University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Sandra Strassburg
- Department of Plastic and Hand Surgery; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology; Center for Dental Medicine; Medical Center-; University of Freiburg; Faculty of Medicine; University of Freiburg; 79106 Freiburg Germany
| |
Collapse
|
3
|
Saporito F, Sandri G, Rossi S, Bonferoni MC, Riva F, Malavasi L, Caramella C, Ferrari F. Freeze dried chitosan acetate dressings with glycosaminoglycans and traxenamic acid. Carbohydr Polym 2018; 184:408-417. [DOI: 10.1016/j.carbpol.2017.12.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/17/2017] [Accepted: 12/24/2017] [Indexed: 01/01/2023]
|
4
|
Bonferoni M, Riva F, Invernizzi A, Dellera E, Sandri G, Rossi S, Marrubini G, Bruni G, Vigani B, Caramella C, Ferrari F. Alpha tocopherol loaded chitosan oleate nanoemulsions for wound healing. Evaluation on cell lines and ex vivo human biopsies, and stabilization in spray dried Trojan microparticles. Eur J Pharm Biopharm 2018; 123:31-41. [PMID: 29155053 DOI: 10.1016/j.ejpb.2017.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
5
|
Belair DG, Abbott BD. Engineering epithelial-stromal interactions in vitro for toxicology assessment. Toxicology 2017; 382:93-107. [PMID: 28285100 PMCID: PMC5985517 DOI: 10.1016/j.tox.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.
Collapse
Affiliation(s)
- David G Belair
- US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Developmental Toxicology Branch, Research Triangle Park, NC 27711, United States.
| | - Barbara D Abbott
- US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Developmental Toxicology Branch, Research Triangle Park, NC 27711, United States
| |
Collapse
|
6
|
Mori M, Rossi S, Ferrari F, Bonferoni MC, Sandri G, Riva F, Tenci M, Del Fante C, Nicoletti G, Caramella C. Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. II. Loading of the Hemoderivative Platelet Lysate. J Pharm Sci 2016; 105:1188-95. [DOI: 10.1016/j.xphs.2015.11.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023]
|
7
|
Fontana F, Mori M, Riva F, Mäkilä E, Liu D, Salonen J, Nicoletti G, Hirvonen J, Caramella C, Santos HA. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:988-996. [PMID: 26652045 DOI: 10.1021/acsami.5b10950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | | | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | | | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| |
Collapse
|
8
|
Zonari A, Cerqueira MT, Novikoff S, Goes AM, Marques AP, Correlo VM, Reis RL. Poly(hydroxybutyrate-co
-hydroxyvalerate) Bilayer Skin Tissue Engineering Constructs with Improved Epidermal Rearrangement. Macromol Biosci 2014; 14:977-90. [DOI: 10.1002/mabi.201400005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/04/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandra Zonari
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology; Institute of Biological Sciences, Federal University of Minas Gerais; Caixa Postal 486, CEP 31.270-901 Belo Horizonte Minas Gerais Brazil
| | - Mariana T. Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| | - Silviene Novikoff
- Department of Nephrology; Federal University of São Paulo; CEP: 04.023-900 São Paulo- SP Brazil
| | - Alfredo M. Goes
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology; Institute of Biological Sciences, Federal University of Minas Gerais; Caixa Postal 486, CEP 31.270-901 Belo Horizonte Minas Gerais Brazil
| | - Alexandra P. Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| | - Vitor M. Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| |
Collapse
|
9
|
Xia L, Liu Q, Zhang W, Zhou G, Cao Y, Liu W. Enhanced proliferation and functions of in vitro expanded human hair follicle outer root sheath cells by low oxygen tension culture. Tissue Eng Part C Methods 2012; 18:603-13. [PMID: 22380865 DOI: 10.1089/ten.tec.2011.0489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Human hair follicle outer root sheath (hORS) cells are known to contain hair follicle stem cells and play an important role in healing large size wounds, and thus can serve as the cell source for skin engineering. This study investigated the effect of low oxygen tension culture on hORS cell proliferation potential and functional maintenance during in vitro expansion. MATERIALS AND METHODS Spared postsurgery scalp tissues were donated by 15 patients aged 20-45 (13 men and 2 women) and were randomly divided into three groups, and isolated hORS cells were combined into three pooled cell samples. They were cultured either in 4% O(2) or 21% O(2) and were analyzed for cell proliferation, colony forming efficiency (CFE), and their ability in forming engineered skin in vitro. RESULTS The results showed that freshly isolated hORS cells expressed CD200 (22.88±8.76), cytokeratin 15 (CK15) (62.57±4.72), CD29 (22.53±2.49/strong and 29.80±4.09/dim), and CD49f (28.07±15.76/strong and 49.73±5.65/dim). When exposed in 4% O(2), hORS cells proliferated significantly faster than the cells in 21% O(2) for the first three passages (p<0.05), could better maintain cobblestone morphology, respectively, generate 3.63-folds more and 23.26-folds more cell yields after one and three passages. Additionally, enhanced CFE with significantly higher total and holoclone colony numbers were found in the 4% O(2) group than in the 21% O(2) group (p<0.05) for the first three passages along with better maintained CK15 expression. Furthermore, hORS cells expanded in 4% O(2) could form better epidermal structure of in vitro engineered skin comparing to the skin engineered by the control cells. CONCLUSION The low oxygen culture method of hORS cells is simple, low cost, less labor intensive, and less biosafety concern, which may potentially be applied in skin engineering and clinical application.
Collapse
Affiliation(s)
- Lingling Xia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, P R China
| | | | | | | | | | | |
Collapse
|
10
|
Zhao Z, Zhang C, Fu X, Yang R, Peng C, Gu T, Sui Z, Wang C, Liu C. Differentiated Epidermal Cells Regain the Ability to Regenerate a Skin Equivalent by Increasing the Level of �-Catenin in the Cells. Cells Tissues Organs 2012; 196:353-61. [DOI: 10.1159/000335474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 01/21/2023] Open
|
11
|
Zhang C, Fu X, Chen P, Bao X, Li F, Sun X, Lei Y, Cai S, Sun T, Sheng Z. Dedifferentiation derived cells exhibit phenotypic and functional characteristics of epidermal stem cells. J Cell Mol Med 2010; 14:1135-45. [PMID: 19426155 PMCID: PMC3822750 DOI: 10.1111/j.1582-4934.2009.00765.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Differentiated epidermal cells can dedifferentiate into stem cells or stem cell-like cells in vivo. In this study, we report the isolation and characterization of dedifferentiation-derived cells. Epidermal sheets eliminated of basal stem cells were transplanted onto the skin wounds in 47 nude athymic (BALB/c-nu/nu) mice. After 5 days, cells negative for CK10 but positive for CK19 and β1-integrin emerged at the wound-neighbouring side of the epidermal sheets. Furthermore, the percentages of CK19 and β1-integrin+ cells detected by flow cytometric analysis were increased after grafting (P < 0.01) and CK10+ cells in grafted sheets decreased (P < 0.01). Then we isolated these cells on the basis of rapid adhesion to type IV collagen and found that there were 4.56% adhering cells (dedifferentiation-derived cells) in the grafting group within 10 min. The in vitro phenotypic assays showed that the expressions of CK19, β1-integrin, Oct4 and Nanog in dedifferentiation-derived cells were remarkably higher than those in the control group (differentiated epidermal cells) (P < 0.01). In addition, the results of the functional investigation of dedifferentiation-derived cells demonstrated: (1) the numbers of colonies consisting of 5–10 cells and greater than 10 cells were increased 5.9-fold and 6.7-fold, respectively, as compared with that in the control (P < 0.01); (2) more cells were in S phase and G2/M phase of the cell cycle (proliferation index values were 21.02% in control group, 45.08% in group of dedifferentiation); (3) the total days of culture (28 days versus 130 days), the passage number of cells (3 passages versus 20 passages) and assumptive total cell output (1 × 105 cells versus 1 × 1012 cells) were all significantly increased and (4) dedifferentiation-derived cells, as well as epidermal stem cells, were capable of regenerating a skin equivalent, but differentiated epidermal cells could not. These results suggested that the characteristics of dedifferentiation-derived cells cultured in vitro were similar to epidermal stem cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.
Collapse
Affiliation(s)
- Cuiping Zhang
- Wound Healing and Cell Biology Laboratory, Burns Institute, The First Affiliated Hospital, General Hospital of PLA, Trauma Center of Postgraduate Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thakoersing VS, Ponec M, Bouwstra JA. Generation of human skin equivalents under submerged conditions-mimicking the in utero environment. Tissue Eng Part A 2010; 16:1433-41. [PMID: 19929321 DOI: 10.1089/ten.tea.2009.0358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study we generated human skin equivalents (HSEs) under submerged conditions mimicking the aqueous in utero environment and investigated the morphology and differentiation process of the formed epidermis. Further, the skin barrier, which resides in the stratum corneum (SC), was characterized by its lipid content, hydration level, and natural moisturizing factor level. The submerged HSEs showed comparable tissue morphology and similar expression of several differentiation markers and SC lipid composition compared with HSEs grown at the air-liquid interface and native human skin. The SC of the submerged HSEs, however, contained more free water and less natural moisturizing factors compared with the air-exposed counterparts. These results show that the presented cell culture method can be utilized to generate HSEs under submerged conditions to study epidermal formation under aqueous conditions.
Collapse
Affiliation(s)
- Varsha S Thakoersing
- Department of Drug Delivery Technology, Leiden University , Leiden, The Netherlands
| | | | | |
Collapse
|
13
|
Growth and stratification of epithelial cells in minimal culture conditions. Methods Mol Biol 2009. [PMID: 19907994 DOI: 10.1007/978-1-60761-380-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biological risk management is required in modern tissue engineering. Particular attention should be paid to the culture medium and the scaffold used. In this perspective, it is important to define minimal culture conditions which allow proper growth and differentiation of epithelial cells in vitro. We propose a simple experimental system which permits the generation of three-dimensional epidermal constructs using a collagen layer as a scaffold mimicking the entire dermal tissue and without the need of any feeder layer. Although showing significant differences compared to natural epidermis, these epidermal constructs appear useful to study keratinocyte differentiation and epidermis histogenesis.
Collapse
|
14
|
El Ghalbzouri A, Commandeur S, Rietveld MH, Mulder AA, Willemze R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. Biomaterials 2009; 30:71-8. [DOI: 10.1016/j.biomaterials.2008.09.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|