1
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
2
|
Sullivan KG, Levin M. Inverse Drug Screening of Bioelectric Signaling and Neurotransmitter Roles: Illustrated Using a Xenopus Tail Regeneration Assay. Cold Spring Harb Protoc 2018; 2018:pdb.prot099937. [PMID: 29437995 DOI: 10.1101/pdb.prot099937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenopus embryos and larvae are an ideal model system in which to study the interplay between genetics, physiology, and anatomy in the control of structure and function. An important emerging field is the study of bioelectric signaling, the exchange of ion- and neurotransmitter-mediated messages among all types of cells (not just nerve and muscle cells), in the regulation of growth and form during embryogenesis, regeneration, and cancer. To facilitate the mechanistic investigation of bioelectric events in vivo, it is necessary to identify the endogenous signaling machinery involved in any patterning process of interest. This protocol uses the tail regeneration assay in Xenopus to perform an inverse drug screen; tiers of known compounds are used to probe the involvement of increasingly specific classes of bioelectric and neurotransmitter machinery. By using a hierarchical approach, large classes of targets are ruled out in early rounds, focusing attention on progressively narrower sets of proteins. Such a screen avoids many of the limitations of a molecular-genetic targeting approach and provides a rapid and efficient way to focus on specific targets. Usually, <10 experiments are needed to determine whether bioelectrics and/or neurotransmitter signaling are involved in the process of interest. This protocol describes the strategy in the context of a semiquantitative analysis of tail regeneration but can be applied to any assay in Xenopus or other small aquatic model system (e.g., zebrafish). Given the ever-increasing toolkit of chemical genetics, such screens represent a powerful and versatile methodology for probing the physiological circuits underlying pattern regulation.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Biology Department, and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155
| | - Michael Levin
- Biology Department, and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
3
|
Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 2017; 7:19575-88. [PMID: 26988909 PMCID: PMC4991402 DOI: 10.18632/oncotarget.8036] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/11/2016] [Indexed: 01/01/2023] Open
Abstract
It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations.
Collapse
|
4
|
Pezzulo G, Levin M. Top-down models in biology: explanation and control of complex living systems above the molecular level. J R Soc Interface 2017; 13:rsif.2016.0555. [PMID: 27807271 DOI: 10.1098/rsif.2016.0555] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Michael Levin
- Biology Department, Allen Discovery Center at Tufts, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Zahn N, Levin M, Adams DS. The Zahn drawings: new illustrations of Xenopus embryo and tadpole stages for studies of craniofacial development. Development 2017; 144:2708-2713. [PMID: 28765211 PMCID: PMC5560046 DOI: 10.1242/dev.151308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The embryos and tadpoles of the frog Xenopus are increasingly important subjects for studies of the development of the head and face - studies that are providing novel and crucial insight into the causes and prevention of a suite of devastating birth defects, as well as basic evolutionary and developmental biology. However, many studies are conducted on a range of embryonic stages that are not fully represented in the beloved Xenopus resource, Nieuwkoop and Faber's classic Normal Table of Xenopus laevis (Daudin) The lack of standardized images at these stages acts as a barrier to the efficient and accurate representation and communication of experimental methodology and expression data. To fill this gap, we have created 27 new high-quality illustrations. Like their oft-used predecessors from Nieuwkoop and Faber, these drawings can be freely downloaded and used, and will, we hope, serve as an essential resource for this important model system.
Collapse
Affiliation(s)
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA.,Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Dany Spencer Adams
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Levin M, Pezzulo G, Finkelstein JM. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annu Rev Biomed Eng 2017; 19:353-387. [PMID: 28633567 PMCID: PMC10478168 DOI: 10.1146/annurev-bioeng-071114-040647] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Tufts University, Medford, Massachusetts 02155-4243;
- Allen Discovery Center, Tufts University, Medford, Massachusetts 02155;
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy;
| | | |
Collapse
|
8
|
Morokuma J, Durant F, Williams KB, Finkelstein JM, Blackiston DJ, Clements T, Reed DW, Roberts M, Jain M, Kimel K, Trauger SA, Wolfe BE, Levin M. Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel. ACTA ACUST UNITED AC 2017; 4:85-102. [PMID: 28616247 PMCID: PMC5469732 DOI: 10.1002/reg2.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Regeneration is regulated not only by chemical signals but also by physical processes, such as bioelectric gradients. How these may change in the absence of the normal gravitational and geomagnetic fields is largely unknown. Planarian flatworms were moved to the International Space Station for 5 weeks, immediately after removing their heads and tails. A control group in spring water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and space‐exposed worms were returned to our laboratory for analysis. One animal out of 15 regenerated into a double‐headed phenotype—normally an extremely rare event. Remarkably, amputating this double‐headed worm again, in plain water, resulted again in the double‐headed phenotype. Moreover, even when tested 20 months after return to Earth, the space‐exposed worms displayed significant quantitative differences in behavior and microbiome composition. These observations may have implications for human and animal space travelers, but could also elucidate how microgravity and hypomagnetic environments could be used to trigger desired morphological, neurological, physiological, and bacteriomic changes for various regenerative and bioengineering applications.
Collapse
Affiliation(s)
- Junji Morokuma
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Katherine B Williams
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Joshua M Finkelstein
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Douglas J Blackiston
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Twyman Clements
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - David W Reed
- NASA Kennedy Space Center Space Station Processing Facility Building M7-0360, Kennedy Space Center FL 32899 USA
| | - Michael Roberts
- Center for the Advancement of Science in Space (CASIS) 6905 N. Wickham Rd., Suite 500 Melbourne FL 32940 USA
| | - Mahendra Jain
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - Kris Kimel
- Exomedicine Institute 200 West Vine St. Lexington KY 40507 USA
| | - Sunia A Trauger
- Harvard University Small Molecule Mass Spectrometry Facility 52 Oxford St. Cambridge MA 02138 USA
| | - Benjamin E Wolfe
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Michael Levin
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| |
Collapse
|
9
|
Paré JF, Martyniuk CJ, Levin M. Bioelectric regulation of innate immune system function in regenerating and intact Xenopus laevis. NPJ Regen Med 2017; 2:15. [PMID: 29302351 PMCID: PMC5677984 DOI: 10.1038/s41536-017-0019-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 04/02/2017] [Indexed: 02/07/2023] Open
Abstract
Two key inputs that regulate regeneration are the function of the immune system, and spatial gradients of transmembrane potential (Vmem). Endogenous bioelectric signaling in somatic tissues during regenerative patterning is beginning to be understood, but its role in the context of immune response has never been investigated. Here, we show that Vmem levels modulate innate immunity activity in Xenopus laevis embryos. We developed an assay in which X. laevis embryos are infected with a uropathogenic microorganism, in the presence or absence of reagents that modify Vmem, prior to the ontogenesis of the adaptive immune system. General depolarization of the organism's Vmem by pharmacological or molecular genetic (ion channel misexpression) methods increased resistance to infection, while hyperpolarization made the embryos more susceptible to death by infection. Hyperpolarized specimens harbored a higher load of infectious microorganisms when compared to controls. We identified two mechanisms by which Vmem mediates immune function: serotonergic signaling involving melanocytes and an increase in the number of primitive myeloid cells. Bioinformatics analysis of genes whose transcription is altered by depolarization revealed a number of immune system targets consistent with mammalian data. Remarkably, amputation of the tail bud potentiates systemic resistance to infection by increasing the number of peripheral myeloid cells, revealing an interplay of regenerative response, innate immunity, and bioelectric regulation. Our study identifies bioelectricity as a new mechanism by which innate immune response can be regulated in the context of infection or regeneration. Vmem modulation using drugs already approved for human use could be exploited to improve resistance to infections in clinical settings.
Collapse
Affiliation(s)
- Jean-François Paré
- Biology Department, and Allen Discovery Center at Tufts, Tufts University, Medford, MA USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL USA
| | - Michael Levin
- Biology Department, and Allen Discovery Center at Tufts, Tufts University, Medford, MA USA
| |
Collapse
|
10
|
Durant F, Morokuma J, Fields C, Williams K, Adams DS, Levin M. Long-Term, Stochastic Editing of Regenerative Anatomy via Targeting Endogenous Bioelectric Gradients. Biophys J 2017; 112:2231-2243. [PMID: 28538159 PMCID: PMC5443973 DOI: 10.1016/j.bpj.2017.04.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
We show that regenerating planarians' normal anterior-posterior pattern can be permanently rewritten by a brief perturbation of endogenous bioelectrical networks. Temporary modulation of regenerative bioelectric dynamics in amputated trunk fragments of planaria stochastically results in a constant ratio of regenerates with two heads to regenerates with normal morphology. Remarkably, this is shown to be due not to partial penetrance of treatment, but a profound yet hidden alteration to the animals' patterning circuitry. Subsequent amputations of the morphologically normal regenerates in water result in the same ratio of double-headed to normal morphology, revealing a cryptic phenotype that is not apparent unless the animals are cut. These animals do not differ from wild-type worms in histology, expression of key polarity genes, or neoblast distribution. Instead, the altered regenerative bodyplan is stored in seemingly normal planaria via global patterns of cellular resting potential. This gradient is functionally instructive, and represents a multistable, epigenetic anatomical switch: experimental reversals of bioelectric state reset subsequent regenerative morphology back to wild-type. Hence, bioelectric properties can stably override genome-default target morphology, and provide a tractable control point for investigating cryptic phenotypes and the stochasticity of large-scale epigenetic controls.
Collapse
Affiliation(s)
- Fallon Durant
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Junji Morokuma
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | | | - Katherine Williams
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Dany Spencer Adams
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts.
| |
Collapse
|
11
|
Abstract
The central nervous system (CNS) underlies memory, perception, decision-making, and behavior in numerous organisms. However, neural networks have no monopoly on the signaling functions that implement these remarkable algorithms. It is often forgotten that neurons optimized cellular signaling modes that existed long before the CNS appeared during evolution, and were used by somatic cellular networks to orchestrate physiology, embryonic development, and behavior. Many of the key dynamics that enable information processing can, in fact, be implemented by different biological hardware. This is widely exploited by organisms throughout the tree of life. Here, we review data on memory, learning, and other aspects of cognition in a range of models, including single celled organisms, plants, and tissues in animal bodies. We discuss current knowledge of the molecular mechanisms at work in these systems, and suggest several hypotheses for future investigation. The study of cognitive processes implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has many implications for evolution, cell biology, regenerative medicine, computer science, and synthetic bioengineering.
Collapse
Affiliation(s)
- František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn Bonn, Germany
| | - Michael Levin
- Biology Department, Tufts Center for Regenerative and Developmental Biology, Tufts University Medford, MA, USA
| |
Collapse
|
12
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
13
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
14
|
Telocytes in their context with other intercellular communication agents. Semin Cell Dev Biol 2016; 55:9-13. [PMID: 27013113 DOI: 10.1016/j.semcdb.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
The past decade has borne witness to an explosion in our understanding of the fundamental complexities of intercellular communication. Previously, the field was solely defined by the simple exchange of endocrine, autocrine and epicrine agents. Then it was discovered that cells possess an elaborate system of extracellular vesicles, including exosomes, which carry a vast array of small and large molecules (including many epigenetic agents such as a variety RNAs and DNA), as well as large organelles that modulate almost every aspect of cellular function. In addition, it was thought that electrical communication between cells was limited mainly to neurotransmitters and neuromodulators in the nervous system. Also within the past decade, it was found that - in addition to neurons - most cells (both mammalian and non-mammalian) communicate via elaborate bioelectric systems which modulate many fundamental cellular processes including growth, differentiation, morphogenesis and repair. In the nervous system, volume transmission via the extracellular matrix has been added to the list. Lastly, it was discovered that what had previously been regarded as simple connective cells in most tissues proved to be miniature communication devices now known as telocytes. These unusually long, tenuous and sinuous cells utilize elaborate electrical, chemical and epigenetic mechanisms, including the exchange of exosomes, to integrate many activities within and between nearly all types of cells in tissues and organs. Their interrelationship with neural stem cells and neurogenesis in the context of neurodegenerative disease is just beginning to be explored. This review presents an account of precisely how each of these varied mechanisms are relevant and critical to the understanding of what telocytes are and how they function.
Collapse
|
15
|
Lucia U, Ponzetto A, Deisboeck TS. Constructal approach to cell membranes transport: Amending the 'Norton-Simon' hypothesis for cancer treatment. Sci Rep 2016; 6:19451. [PMID: 26822208 PMCID: PMC4731791 DOI: 10.1038/srep19451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/14/2015] [Indexed: 12/27/2022] Open
Abstract
To investigate biosystems, we propose a new thermodynamic concept that analyses ion, mass and energy flows across the cell membrane. This paradigm-shifting approach has a wide applicability to medically relevant topics including advancing cancer treatment. To support this claim, we revisit ‘Norton-Simon’ and evolving it from an already important anti-cancer hypothesis to a thermodynamic theorem in medicine. We confirm that an increase in proliferation and a reduction in apoptosis trigger a maximum of ATP consumption by the tumor cell. Moreover, we find that positive, membrane-crossing ions lead to a decrease in the energy used by the tumor, supporting the notion of their growth inhibitory effect while negative ions apparently increase the cancer’s consumption of energy hence reflecting a growth promoting impact. Our results not only represent a thermodynamic proof of the original Norton-Simon hypothesis but, more concretely, they also advance the clinically intriguing and experimentally testable, diagnostic hypothesis that observing an increase in negative ions inside a cell in vitro, and inside a diseased tissue in vivo, may indicate growth or recurrence of a tumor. We conclude with providing theoretical evidence that applying electromagnetic field therapy early on in the treatment cycle may maximize its anti-cancer efficacy.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonio Ponzetto
- Department of Medical Sciences, University of Torino, Corso A.M. Dogliotti 14, 10126 Torino, Italy
| | - Thomas S Deisboeck
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,ThinkMotu LLC, Wellesley, MA 02481, USA
| |
Collapse
|
16
|
Law R, Levin M. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theor Biol Med Model 2015; 12:22. [PMID: 26472354 PMCID: PMC4608135 DOI: 10.1186/s12976-015-0019-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. Method To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. Results We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Conclusion Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts. Electronic supplementary material The online version of this article (doi:10.1186/s12976-015-0019-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Law
- Department of Neuroscience, Brown University, Box G, Providence, RI, 02912, USA.
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
17
|
Levin M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 2015; 25:3835-50. [PMID: 25425556 PMCID: PMC4244194 DOI: 10.1091/mbc.e13-12-0708] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243
| |
Collapse
|
18
|
Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 2015; 592:2295-305. [PMID: 24882814 DOI: 10.1113/jphysiol.2014.271940] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link between genotype and the functions upon which selection operates. Even cancer and aging can be seen as challenges to the continuous physiological processes that orchestrate individual cell activities toward the anatomical needs of an organism. Thus, the origin and maintenance of complex biological shape is a fundamental question for cell, developmental, and evolutionary biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes whose transcription is regulated by voltage, and transduction machinery that converts changes in bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric signaling is an autonomous layer of control not reducible to a biochemical or genetic account of cell state. The real-time dynamics of bioelectric communication among cells are not fully captured by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific changes in growth and form can be physiological states, while the underlying gene loci are free to diverge. The next steps in this exciting new field include the development of novel conceptual tools for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and of improved biophysical tools for reading and writing electrical state information into somatic tissues. Cracking the bioelectric code will have transformative implications for developmental biology, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
19
|
James R, Nagarale RK, Sachan VK, Badalucco C, Bhattacharya PK, Kumbar SG. Synthesis and characterization of electrically conducting polymers for regenerative engineering applications: sulfonated ionic membranes. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Roshan James
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical; Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Rajaram K. Nagarale
- Department of Chemical Engineering; Indian Institute of Technology Kanpur; UP 208016 India
| | - Vinay K. Sachan
- Department of Chemical Engineering; Indian Institute of Technology Kanpur; UP 208016 India
| | - Christopher Badalucco
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical; Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | | | - Sangamesh G. Kumbar
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical; Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Departments of Materials and Biomedical Engineering; University of Connecticut; CT 06269 USA
| |
Collapse
|
20
|
Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol 2013; 4:185. [PMID: 23882223 PMCID: PMC3713347 DOI: 10.3389/fphys.2013.00185] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/28/2013] [Indexed: 12/27/2022] Open
Abstract
Membrane potential (Vm), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm. It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Biology, University of York York, UK
| | | |
Collapse
|
21
|
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013; 352:95-122. [PMID: 22350846 PMCID: PMC3869965 DOI: 10.1007/s00441-012-1329-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
22
|
Chernet BT, Levin M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech 2013; 6:595-607. [PMID: 23471912 PMCID: PMC3634644 DOI: 10.1242/dmm.010835] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding mechanisms that orchestrate cell behavior into appropriately patterned tissues and organs within the organism is an essential element of preventing, detecting and treating cancer. Bioelectric signals (resting transmembrane voltage potential gradients in all cells) underlie an important and broadly conserved set of control mechanisms that regulate pattern formation. We tested the role of transmembrane potential in tumorigenesis mediated by canonical oncogenes in Xenopus laevis. Depolarized membrane potential (Vmem) was a characteristic of induced tumor-like structures (ITLSs) generated by overexpression of Gli1, KrasG12D, Xrel3 or p53Trp248. This bioelectric signature was also present in precursor ITLS sites. Vmem is a bioelectric marker that reveals ITLSs before they become histologically and morphologically apparent. Moreover, voltage was functionally important: overexpression of hyperpolarizing ion transporters caused a return to normal Vmem and significantly reduced ITLS formation in vivo. To characterize the molecular mechanism by which Vmem change regulates ITLS phenotypes, we performed a suppression screen. Vmem hyperpolarization was transduced into downstream events via Vmem-regulated activity of SLC5A8, a sodium-butyrate exchanger previously implicated in human cancer. These data indicate that butyrate, a histone deacetylase (HDAC) inhibitor, might be responsible for transcriptional events that mediate suppression of ITLSs by hyperpolarization. Vmem is a convenient cellular parameter by which tumors induced by human oncogenes can be detected in vivo and represents a new diagnostic modality. Moreover, control of resting membrane potential is functionally involved in the process by which oncogene-bearing cells depart from normal morphogenesis programs to form tumors. Modulation of Vmem levels is a novel and promising strategy for tumor normalization.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | | |
Collapse
|
23
|
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry. Stem Cells Int 2012; 2012:353491. [PMID: 23346115 PMCID: PMC3544345 DOI: 10.1155/2012/353491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (Vmem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by Vmem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.
Collapse
|
24
|
van Vliet P, Goumans MJ, Doevendans PA, Sluijter JPG. Human cardiomyocyte progenitor cells: a short history of nearly everything. J Cell Mol Med 2012; 16:1669-73. [PMID: 22260290 PMCID: PMC3822680 DOI: 10.1111/j.1582-4934.2012.01535.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The high occurrence of cardiac disease in the Western world has driven clinicians and cardiovascular biologists to look for alternative strategies to treat patients. A challenging approach is the use of stem cells to repair the heart, in itself an inspiring thought. In the past 10 years, stem cells from different sources have been under intense investigation and, as a result, a multitude of studies have been published on the identification, isolation, and characterization, of cardiovascular progenitor cells and repair in different animal models. However, relatively few cardiovascular progenitor populations have been identified in human hearts, including, but not limited to, cardiosphere-derived cells, cKit+ human cardiac stem cells , Isl1+ cardiovascular progenitors, and, in our lab, cardiomyocyte progenitor cells (CMPCs). Here, we aim to provide a comprehensive summary of the past findings and present challenges for future therapeutic potential of CMPCs.
Collapse
Affiliation(s)
- Patrick van Vliet
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
25
|
Abstract
A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences.
Collapse
Affiliation(s)
| | | | - Michael Levin
- Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
26
|
Levin M. The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 2012; 6:667-73. [PMID: 22050517 DOI: 10.2217/rme.11.69] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Adams DS, Levin M. General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harb Protoc 2012; 2012:385-97. [PMID: 22474653 DOI: 10.1101/pdb.top067710] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This overview provides the basic information needed to understand, choose, and use fluorescent bioelectricity reporters (FBRs), where bioelectricity is defined as cell processes that involve ions or ion flux. While traditional methods of measuring these characteristics are still valid and necessary, the utility of FBRs has facilitated measurement of these properties under circumstances that are not possible with microelectrodes. Specifically, these dyes can be used to achieve subcellular resolution, to measure many cells simultaneously in vivo, and to track bioelectric gradients over long time periods despite cell movements and divisions. This article covers the basic principles underlying the interpretation of the dye signals, describes essential steps for troubleshooting, optimizing data collection, analysis, and presentation, and provides compilations of information that are useful for choosing FBRs for particular projects.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
28
|
Levin M, Stevenson CG. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng 2012; 14:295-323. [PMID: 22809139 PMCID: PMC10472538 DOI: 10.1146/annurev-bioeng-071811-150114] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
29
|
Vandenberg LN, Morrie RD, Adams DS. V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 2011; 240:1889-904. [PMID: 21761475 DOI: 10.1002/dvdy.22685] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using voltage and pH reporter dyes, we have discovered a never-before-seen regionalization of the Xenopus ectoderm, with cell subpopulations delimited by different membrane voltage and pH. We distinguished three courses of bioelectrical activity. Course I is a wave of hyperpolarization that travels across the gastrula. Course II comprises the appearance of patterns that match shape changes and gene expression domains of the developing face; hyperpolarization marks folding epithelium and both hyperpolarized and depolarized regions overlap domains of head patterning genes. In Course III, localized regions of hyperpolarization form at various positions, expand, and disappear. Inhibiting H(+) -transport by the H(+) -V-ATPase causes abnormalities in: (1) the morphology of craniofacial structures; (2) Course II voltage patterns; and (3) patterns of sox9, pax8, slug, mitf, xfz3, otx2, and pax6. We conclude that this bioelectric signal has a role in development of the face. Thus, it exemplifies an important, under-studied mechanism of developmental regulation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- The Tufts Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, Massachusetts, USA
| | | | | |
Collapse
|
30
|
Mondia JP, Adams DS, Orendorff RD, Levin M, Omenetto FG. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes. BIOMEDICAL OPTICS EXPRESS 2011; 2:2383-2391. [PMID: 21833375 PMCID: PMC3149536 DOI: 10.1364/boe.2.002383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/24/2011] [Accepted: 07/24/2011] [Indexed: 05/31/2023]
Abstract
Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.
Collapse
Affiliation(s)
- Jessica P. Mondia
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Department of Physics, Tufts University, 4 Colby Street, Medford MA 02155, USA
- These authors contributed equally
| | - Dany S. Adams
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA
- These authors contributed equally
| | - Ryan D. Orendorff
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Department of Physics, Tufts University, 4 Colby Street, Medford MA 02155, USA
| |
Collapse
|
31
|
A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. ACTA ACUST UNITED AC 2011; 18:77-89. [PMID: 21276941 DOI: 10.1016/j.chembiol.2010.11.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/22/2010] [Accepted: 11/09/2010] [Indexed: 12/12/2022]
Abstract
Biophysical signaling is required for both embryonic polarity and regenerative outgrowth. Exploiting endogenous ion transport for regenerative therapies will require direct regulation of membrane voltage. Here, we develop a pharmacological method to target ion transporters, uncovering a role for membrane voltage as a key regulator of anterior polarity in regenerating planaria. Utilizing the highly specific inhibitor, SCH-28080, our data reveal that H(+),K(+)-ATPase-mediated membrane depolarization is essential for anterior gene expression and brain induction. H(+),K(+)-ATPase-independent manipulation of membrane potential with ivermectin confirms that depolarization drives head formation, even at posterior-facing wounds. Using this chemical genetics approach, we demonstrate that membrane voltage controls head-versus-tail identity during planarian regeneration. Our data suggest well-characterized drugs (already approved for human use) might be exploited to control adult stem cell-driven pattern formation during the regeneration of complex structures.
Collapse
|
32
|
Tandon N, Marsano A, Maidhof R, Wan L, Park H, Vunjak-Novakovic G. Optimization of electrical stimulation parameters for cardiac tissue engineering. J Tissue Eng Regen Med 2011; 5:e115-25. [PMID: 21604379 DOI: 10.1002/term.377] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/02/2010] [Indexed: 02/01/2023]
Abstract
In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nina Tandon
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
33
|
Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 2011; 4:67-85. [PMID: 20959630 PMCID: PMC3008964 DOI: 10.1242/dmm.005561] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/23/2010] [Indexed: 12/14/2022] Open
Abstract
Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest's environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior.
Collapse
Affiliation(s)
- Douglas Blackiston
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
- Department of Regenerative and Developmental Biology, Forsyth Institute, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Maria Lobikin
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
34
|
van Vliet P, de Boer TP, van der Heyden MAG, El Tamer MK, Sluijter JPG, Doevendans PA, Goumans MJ. Hyperpolarization Induces Differentiation in Human Cardiomyocyte Progenitor Cells. Stem Cell Rev Rep 2010; 6:178-85. [DOI: 10.1007/s12015-010-9142-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Zhang Y, Levin M. Particle tracking model of electrophoretic morphogen movement reveals stochastic dynamics of embryonic gradient. Dev Dyn 2009; 238:1923-35. [PMID: 19618466 DOI: 10.1002/dvdy.22016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Some developmental events rely on an electrophoretic force to produce morphogenetic gradients. To quantitatively explore the dynamics of this process, we constructed a stochastic model of an early phase of left-right patterning: serotonin movement through the gap junction-coupled blastomeres of the Xenopus embryo. Particle-tracking simulations showed that a left-right gradient is formed rapidly, quickly reaching a final stable level. The voltage difference was critical for producing a morphogen gradient of the right steepness; gap junctional connectivity and morphogen mass determined the timing of the gradient. Endogenous electrophoresis drives approximately 50% of the particles across more than one cell width, and approximately 20% can travel across half the embryo. The stochastic behavior of the resulting gradients exhibited unexpected complexity among blastomeres' morphogen content, and showed how spatiotemporal variability within individual cells resulted in robust and consistent gradients across the embryonic left-right axis. Analysis of the distribution profile of gradient gain values made quantitative predictions about the conditions that result in the observed background level of laterality defects in unperturbed frog embryos. This work provides a general model that can be used to quantitatively analyze the unexpectedly complex dynamics of morphogens in a wide variety of systems.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Regenerative and Developmental Biology, The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
36
|
Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 2009; 5:231-46. [PMID: 19562527 PMCID: PMC10467564 DOI: 10.1007/s12015-009-9080-2] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/07/2009] [Indexed: 12/11/2022]
Abstract
Biophysical signaling, an integral regulator of long-term cell behavior in both excitable and non-excitable cell types, offers enormous potential for modulation of important cell functions. Of particular interest to current regenerative medicine efforts, we review several examples that support the functional role of transmembrane potential (V(mem)) in the regulation of proliferation and differentiation. Interestingly, distinct V(mem) controls are found in many cancer cell and precursor cell systems, which are known for their proliferative and differentiation capacities, respectively. Collectively, the data demonstrate that bioelectric properties can serve as markers for cell characterization and can control cell mitotic activity, cell cycle progression, and differentiation. The ability to control cell functions by modulating bioelectric properties such as V(mem) would be an invaluable tool for directing stem cell behavior toward therapeutic goals. Biophysical properties of stem cells have only recently begun to be studied and are thus in need of further characterization. Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential of biophysical signaling for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | | | | |
Collapse
|
37
|
Levin M. Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin Cell Dev Biol 2009; 20:543-56. [PMID: 19406249 DOI: 10.1016/j.semcdb.2009.04.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/22/2009] [Indexed: 01/14/2023]
Abstract
Regenerative biology has focused largely on chemical factors and transcriptional networks. However, endogenous ion flows serve as key epigenetic regulators of cell behavior. Bioelectric signaling involves feedback loops, long-range communication, polarity, and information transfer over multiple size scales. Understanding the roles of endogenous voltage gradients, ion flows, and electric fields will contribute to the basic understanding of numerous morphogenetic processes and the means by which they can robustly restore pattern after perturbation. By learning to modulate the bioelectrical signals that control cell proliferation, migration, and differentiation, we gain a powerful set of new techniques with which to manipulate growth and patterning in biomedical contexts. This chapter reviews the unique properties of bioelectric signaling, surveys molecular strategies and reagents for its investigation, and discusses the opportunities made available for regenerative medicine.
Collapse
Affiliation(s)
- Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Biology Department, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|