1
|
Ledford BT, Chen M, Van Dyke M, Barron C, Zhang X, Cartaya A, Zheng Y, Ceylan A, Goldstein A, He JQ. Keratose Hydrogel Drives Differentiation of Cardiac Vascular Smooth Muscle Progenitor Cells: Implications in Ischemic Treatment. Stem Cell Rev Rep 2023; 19:2341-2360. [PMID: 37392292 DOI: 10.1007/s12015-023-10574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Peripheral artery disease (PAD) is a common vascular disorder in the extremity of limbs with limited clinical treatments. Stem cells hold great promise for the treatment of PAD, but their therapeutic efficiency is limited due to multiple factors, such as poor engraftment and non-optimal selection of cell type. To date, stem cells from a variety of tissue sources have been tested, but little information is available regarding vascular smooth muscle cells (VSMCs) for PAD therapy. The present study examines the effects of keratose (KOS) hydrogels on c-kit+/CD31- cardiac vascular smooth muscle progenitor cell (cVSMPC) differentiation and the therapeutic potential of the resultant VSMCs in a mouse hindlimb ischemic model of PAD. The results demonstrated that KOS but not collagen hydrogel was able to drive the majority of cVSMPCs into functional VSMCs in a defined Knockout serum replacement (SR) medium in the absence of differentiation inducers. This effect could be inhibited by TGF-β1 antagonists. Further, KOS hydrogel increased expression of TGF-β1-associated proteins and modulated the level of free TGF-β1 during differentiation. Finally, transplantation of KOS-driven VSMCs significantly increased blood flow and vascular densities of ischemic hindlimbs. These findings indicate that TGF-β1 signaling is involved in KOS hydrogel-preferred VSMC differentiation and that enhanced blood flow are likely resulted from angiogenesis and/or arteriogenesis induced by transplanted VSMCs.
Collapse
Affiliation(s)
- Benjamin T Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Miao Chen
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaonan Zhang
- Beijing Yulong Shengshi Biotechnology, Haidian District, Beijing, 100085, China
| | - Aurora Cartaya
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youjing Zheng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ahmet Ceylan
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aaron Goldstein
- Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Pedram P, Mazio C, Imparato G, Netti PA, Salerno A. Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward In Vitro Tissue Building. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9589-9603. [PMID: 33595284 DOI: 10.1021/acsami.0c20687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous microscaffolds (μ-scaffs) play a crucial role in modular tissue engineering as they control cell functions and guide hierarchical tissue formation toward building new functional tissue analogues. In the present study, we developed a new route to prepare porous polycaprolactone (PCL) μ-scaffs with a bioinspired trabecular structure that supported in vitro adhesion, growth, and biosynthesis of human dermal fibroblasts (HDFs). The method involved the use of poly(ethylene oxide) (PEO) as a biocompatible porogen and a fluidic emulsion/porogen leaching/particle coagulation process to obtain spherical μ-scaffs with controllable diameter and full pore interconnectivity. To achieve this objective, we investigated the effect of PEO concentration and the temperature of the coagulation bath on the μ-scaff architecture, while we modulated the μ-scaff diameter distribution by varying the PCL-PEO amount in the starting solution and changing the flow rate of the continuous phase (QCP). μ-Scaff morphology, pore architecture, and diameter distribution were assessed using scanning electron microscopy (SEM) analysis, microcomputed tomography (microCT), and Image analysis. We reported that the selection of 60 wt % PEO concentration, together with a 4 °C coagulation bath temperature and ultrasound postprocessing, allowed for the design and fabrication of μ-scaff with porosity up to 80% and fully interconnected pores on both the μ-scaff surface and the core. Furthermore, μ-scaff diameter distributions were finely tuned in the 100-600 μm range with the coefficient of variation lower than 5% by selecting the PCL-PEO concentration in the 1-10% w/v range and QCP of either 8 or 18 mL/min. Finally, we investigated the capability of the HDF-seeded PCL μ-scaff to form hybrid (biological/synthetic) tissue in vitro. Cell culture tests demonstrated that PCL μ-scaff enabled HDF adhesion, proliferation, colonization, and collagen biosynthesis within inter- and intraparticle spaces and guided the formation of a large (centimeter-sized) viable tissue construct.
Collapse
Affiliation(s)
- Parisa Pedram
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Claudia Mazio
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II, Naples 80125, Italy
| | - Aurelio Salerno
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
| |
Collapse
|
3
|
Vardar E, Vythilingam G, Pinnagoda K, Engelhardt EM, Zambelli PY, Hubbell JA, Lutolf MP, Frey P, Larsson HM. A bioactive injectable bulking material; a potential therapeutic approach for stress urinary incontinence. Biomaterials 2019; 206:41-48. [PMID: 30925287 DOI: 10.1016/j.biomaterials.2019.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Stress urinary incontinence (SUI) is a life changing condition, affecting 20 million women worldwide. In this study, we developed a bioactive, injectable bulking agent that consists of Permacol™ (Medtronic, Switzerland) and recombinant insulin like growth factor-1 conjugated fibrin micro-beads (fib_rIGF-1) for its bulk stability and capacity to induce muscle regeneration. Therefore, Permacol™ formulations were injected in the submucosal space of rabbit bladders. The ability of a bulking material to form a stable and muscle-inducing bulk represents for us a promising therapeutic approach to achieve a long-lasting treatment for SUI. The fib_rIGF-1 showed no adverse effect on human smooth muscle cell metabolic activity and viability in vitro based on AlamarBlue assays and Live/Dead staining. Three months after injection of fib_rIGF-1 together with Permacol™ into the rabbit bladder wall, we observed a smooth muscle tissue like formation within the injected materials. Positive staining for alpha smooth muscle actin, calponin, and caldesmon demonstrated a contractile phenotype of the newly formed smooth muscle tissue. Moreover, the fib_rIGF-1 treated group also improved the neovascularization at the injection site, confirmed by CD31 positive staining compared to bulks made of PermacolTM only. The results of this study encourage us to further develop this injectable, bioactive bulking material towards a future therapeutic approach for a minimal invasive and long-lasting treatment of SUI.
Collapse
Affiliation(s)
- E Vardar
- Experimental Pediatric Urology, Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland; Department of Pediatrics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - G Vythilingam
- Experimental Pediatric Urology, Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland; Department of Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - K Pinnagoda
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - E M Engelhardt
- Experimental Pediatric Urology, Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - P Y Zambelli
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - J A Hubbell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - P Frey
- Experimental Pediatric Urology, Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - H M Larsson
- Experimental Pediatric Urology, Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland; Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| |
Collapse
|
4
|
Vardar E, Larsson H, Allazetta S, Engelhardt E, Pinnagoda K, Vythilingam G, Hubbell J, Lutolf M, Frey P. Microfluidic production of bioactive fibrin micro-beads embedded in crosslinked collagen used as an injectable bulking agent for urinary incontinence treatment. Acta Biomater 2018; 67:156-166. [PMID: 29197579 DOI: 10.1016/j.actbio.2017.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α2PI1-8-MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. STATEMENT OF SIGNIFICANCE Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1). These bioactive fibrin micro-beads induced human smooth muscle cell migration in vitro. Thus, this injectable bulking agent is apt to be a good candidate for regeneration of urethral sphincter muscle, ensuring a long-lasting treatment for urinary incontinence.
Collapse
|
5
|
Oh SH, Kang JG, Kim TH, Namgung U, Song KS, Jeon BH, Lee JH. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. J Biomed Mater Res A 2017; 106:52-64. [DOI: 10.1002/jbm.a.36216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Se Heang Oh
- Department of Nanobiomedical Science; Dankook University; Cheonan 31116 Republic of Korea
- Department of Pharmaceutical Engineering; Dankook University; Cheonan 31116 Republic of Korea
| | - Jun Goo Kang
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| | - Tae Ho Kim
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| | - Uk Namgung
- Department of Oriental Medicine; Daejeon University; Daejeon 34520 Republic of Korea
| | - Kyu Sang Song
- Department of Pathology, School of Medicine; Chungnam National University; Daejeon 35015 Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine; Chungnam National University; Daejeon 35015 Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| |
Collapse
|
6
|
In vitroand long-term (2-year follow-up)in vivoosteogenic activities of human periosteum-derived osteoblasts seeded into growth factor-releasing polycaprolactone/pluronic F127 beads scaffolds. J Biomed Mater Res A 2016; 105:363-376. [DOI: 10.1002/jbm.a.35907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/24/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
|
7
|
Kim TH, Oh SH, An DB, Lee JH. Dual growth factor-immobilized microspheres for tissue reinnervation. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. POLYM REV 2015. [DOI: 10.1080/15583724.2014.983244] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Gao M, Zeng C, Zhu A, Tao H, Yang L, Quan D. Improved poly(d,l-lactide-co-1,3-trimethylene carbonate)6 copolymer microparticle vehicles for sustained and controlled delivery of bioactive basic fibroblast growth factor. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515578869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel, biocompatible and biodegradable six-arm branched copolymer poly(d,l-lactide)-co-(1,3-trimethylene carbonate)6 has been synthesized and fabricated as a porous microparticle with an oil-in-water single emulsion method. Poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles were further conjugated with heparin by 1-ethyl-3-3-dimethylamino-propylcarbodiimide/ N-hydroxysuccinimide chemistry and characterized using 1H-nuclear magnetic resonance and scanning electron microscopy. The heparin-loading capacity of poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles was identified as 213 ± 6 pmol/mg-particle determined with toluidine blue method. The resultant binding efficiency and release profile of basic fibroblast growth factor which is bound on heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles were quantitatively analyzed by enzyme-linked immunosorbent assay. Thus, the developed poly(d,l-lactide-co-1,3-trimethylene carbonate)6 porous microparticles presented superior capacity of growth factor cargo as 1965 ± 117 pg basic fibroblast growth factor per mg-microparticles and displayed a sustained release profile over 4 weeks with quite low initial burst. Additionally, the viability of dissociated basic fibroblast growth factor was confirmed with methylthiazolyltetrazolium quantitative assay along with in vitro culturing model of rodent neural stem cell. Collectively, our results demonstrate that heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles attained controllable and sustained delivery of bioactive basic fibroblast growth factor for 4 weeks with significantly reduced burst release. The present heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 porous microparticulate system could be potentially developed to foster a novel bioengineering platform for repair and regeneration of injured nervous system.
Collapse
Affiliation(s)
- Mingyong Gao
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenguang Zeng
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Aiping Zhu
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Haiyin Tao
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daping Quan
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Oh HK, Lee HS, Lee JH, Oh SH, Lim JY, Ahn S, Kang SB. Coadministration of basic fibroblast growth factor-loaded polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence. Int J Colorectal Dis 2015; 30:549-57. [PMID: 25592048 DOI: 10.1007/s00384-015-2121-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/01/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Basic fibroblastic growth factor (bFGF), a member of the heparin-binding growth factor family, regulates muscle differentiation. We investigated whether coadministration of autologous myoblasts and bFGF-loaded polycaprolactone beads could improve sphincter recovery in a dog model of fecal incontinence (FI). METHODS FI was induced by resecting 25% of the posterior anal sphincter in ten mongrel dogs. One month later, the dogs were randomized to receive either PKH-26-labeled autologous myoblasts alone (M group, five dogs) or autologous myoblasts and bFGF-loaded polycaprolactone beads (MBG group, five dogs). The outcomes included anal manometry, compound muscle action potentials (CMAPs) of the pudendal nerve, and histology. RESULTS The increase in anal contractile pressure over 3 months was significantly greater in the MBG group (from 4.85 to 6.83 mmHg) than that in the M group (from 4.94 to 4.25 mmHg), with a coefficient for the difference in recovery rate of 2.672 (95% confidence interval [CI] 0.962 to 4.373, p = 0.002). The change in the CMAP amplitude was also significantly greater in the MBG group (from 0.59 to 1.56 mV) than that in the M group (from 0.81 to 0.67 mV) (coefficient 1.114, 95% CI 0.43 to 1.80, p = 0.001). Labeled cells were detected in 2/5 (40%) and 5/5 (100%) dogs in the M and MBG groups, respectively. CONCLUSION Coadministration of bFGF-loaded PCL beads and autologous myoblasts improved the recovery of sphincter function in a dog model of FI and had better outcomes than cell-based therapy alone.
Collapse
Affiliation(s)
- Heung-Kwon Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim TH, Oh SH, An DB, Lee JY, Lee JH. Dual growth factor-immobilized microspheres for tissue reinnervation: in vitro and preliminary in vivo studies. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:322-37. [PMID: 25597228 DOI: 10.1080/09205063.2015.1008882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors (GFs) (basic fibroblast growth factor (bFGF) and/or nerve growth factor (NGF))-immobilized polycaprolactone (PCL)/Pluronic F127 microspheres were prepared using an isolated particulate-melting method and the sequential binding of heparin and GFs onto the microspheres. The GFs immobilized on the microspheres were released in a sustained manner over 28 days, regardless of GF type. From the in vitro culture of muscle-derived stem cells, it was observed that the NGF-immobilized microspheres induced more neurogenic differentiation than the bFGF-immobilized microspheres, as evidenced by a quantitative real-time polymerase chain reaction using specific neurogenic markers (Nestin, GFAP, β-tubulin, and MAP2) and Western blot (Nestin and β-tubulin) analyses. The dual bFGF/NGF-immobilized microspheres showed better neurogenic differentiation than the microspheres immobilized with single bFGF or NGF. From the preliminary animal study, the dual bFGF/NGF-immobilized microsphere group also showed effective nerve regeneration, as evaluated by immunocytochemistry using a marker - β-tubulin. The dual bFGF/NGF-immobilized PCL/Pluronic F127 microspheres may be a promising candidate for nerve regeneration in certain target tissues (i.e. muscles) leading to sufficient reinnervation.
Collapse
Affiliation(s)
- Tae Ho Kim
- a Department of Advanced Materials , Hannam University , Daejeon 305-811 , Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Oh SH, Bae JW, Kang JG, Kim IG, Son JY, Lee JY, Park KD, Lee JH. Dual growth factor-loaded in situ gel-forming bulking agent: passive and bioactive effects for the treatment of urinary incontinence. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5365. [PMID: 25578713 DOI: 10.1007/s10856-014-5365-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
Stress urinary incontinence (SUI) is one of the major medical problems for adult females and has a devastating effect on their quality of life. The major cause of the development of the SUI is dysfunction of the urethral supporting tissues as a result of aging and childbirth. In this study, in situ gel-forming bulking agent loaded with dual growth factors, nerve growth factor (NGF) and basic fibroblast growth factor (bFGF), was fabricated. The bulking agent consisted of three components; (i) polycaprolactone (PCL) beads, (ii) bFGF-loaded nanogels, and (iii) NGF-loaded in situ gel forming solution. The bulking agent can provide an initial passive bulking effect (from the PCL beads) and regenerate malfunctioning tissues around the urethra (from the sequential and continuous release of growth factors from the hydrogel) for the effective treatment of SUI. The PCL beads were located stably at the applied urethra site (urinary incontinent SD rat) without migration to provide a passive bulking effect. The sequential release of the growth factors (NGF within a week and bFGF for more than 4 weeks) from the bulking agent provided regeneration of damaged nerve and smooth muscle, and thus enhanced biological function around the urethra. From the findings, we suggest that dual growth factor (NGF and bFGF)-loaded in situ gel-forming bulking agent may be a promising injectable bioactive system for the treatment for SUI.
Collapse
Affiliation(s)
- Se Heang Oh
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 330-714, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Parmar N, Ahmadi R, Day RM. A novel method for differentiation of human mesenchymal stem cells into smooth muscle-like cells on clinically deliverable thermally induced phase separation microspheres. Tissue Eng Part C Methods 2014; 21:404-12. [PMID: 25205072 DOI: 10.1089/ten.tec.2014.0431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications.
Collapse
Affiliation(s)
- Nina Parmar
- Applied Biomedical Engineering Group, Division of Medicine, University College London , London, United Kingdom
| | | | | |
Collapse
|
14
|
Lee SH, Kim IG, Jung AR, Shrestha KR, Lee JH, Park KD, Chung BH, Kim SW, Kim KH, Lee JY. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction. Tissue Eng Part A 2014; 20:2446-54. [PMID: 24673637 DOI: 10.1089/ten.tea.2013.0495] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with human ADSC into the CN and bFGF-incorporated hydrogel into the corpus carvernosum improved nearly normal erectile function in a rat model of postprostatectomy ED. This result suggests that a combined application of bFGF+ADSC/BDNF might be a promising treatment for postprostatectomy ED.
Collapse
Affiliation(s)
- Seung Hwan Lee
- 1 Department of Urology, Gangnam Severance Hospital, Yousei University Health System , Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: in vitro evaluation on adipose-derived stem cell differentiation. Acta Biomater 2014; 10:1272-9. [PMID: 24370639 DOI: 10.1016/j.actbio.2013.12.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 11/21/2022]
Abstract
Polycaprolactone (PCL)/Pluronic F127 membrane with reverse gradients of dual platelet-derived growth factor-β (PDGF-BB) and bone morphogenetic protein 2 (BMP-2) concentrations was fabricated using a diffusion method to investigate the effect of reverse gradients of dual growth factor concentrations on adipose-derived stem cell (ASC) differentiations, such as tenogenesis and osteogenesis. The PDGF-BB and BMP-2 were continuously released from the membrane for up to 35 days, with reversely increasing/decreasing growth factors along the membrane length. Human ASCs were seeded on the membrane with reverse PDGF-BB and BMP-2 gradients. The cells were confluent after 1 week of culture, regardless of growth factor types or concentrations on the membrane. Gene expression (real-time polymerase chain reaction), Western blot and immunohistological analyses after 1 and 2 weeks of ASC culture showed that the membrane sections with higher PDGF-BB and lower BMP-2 concentrations provided a better environment for ASC tenogenesis, while the membrane sections with higher BMP-2 and lower PDGF-BB concentrations were better for promoting osteogenesis. The results suggest that the membrane with reverse gradients of PDGF-BB and BMP-2 may be promising for tendon-to-bone repair, as most essential biological processes are mediated by gradients of biological molecules in the body.
Collapse
|
16
|
Kim TH, Oh SH, Chun SY, Lee JH. Bone morphogenetic proteins-immobilized polydioxanone porous particles as an artificial bone graft. J Biomed Mater Res A 2013; 102:1264-74. [PMID: 23703875 DOI: 10.1002/jbm.a.34803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/10/2013] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic proteins (BMPs)-immobilized polydioxanone (PDO)/Pluronic F127 porous particles were prepared as a bone graft using a melt-molding particulate-leaching method, and the sequential binding of heparin and BMPs (BMP-2 and BMP-7, single or dual) onto the porous particles. The prepared PDO/Pluronic F127 porous particles gradually degraded with time, with ∼30% of the initial particle weight remaining after 16 weeks. The degradation rate of the PDO/Pluronic F127 porous particles may parallel the bone-healing rate. The BMPs were easily immobilized onto the pore surfaces of PDO/Pluronic F127 particles via heparin binding and were released in a sustained manner for up to 21 days, regardless of BMP type. The BMPs (single BMP-2 or dual BMP-2/BMP-7)-immobilized porous particles were effective for in vitro osteogenesis of bone marrow stem cells (BMSCs), as analyzed by alkaline phosphatase activity, calcium content, time polymerase chain reaction using specific markers for osteogenesis (Type I collagen, osteocalcin, osteopotin, and RunX2), and immunohistochemical staining. The BMPs (single BMP-2 or dual BMP-2/BMP-7)-immobilized porous particles were also effective in promoting new bone formation, as analyzed by the preliminary animal study using a full-thickness skull defect model of Sprague-Dawley rats (microcomputed tomography). The synergistic effect of dual BMPs on the osteogenesis of BMSCs and bone regeneration was not significant in our system. The BMP-2 or dual BMPs (BMP-2/BMP-7)-immobilized PDO/Pluronic F127 porous particles may be a promising candidate as a bone graft for the delayed and insufficient bone healing in clinical fields.
Collapse
Affiliation(s)
- Tae Ho Kim
- Department of Advanced Materials, Hannam University, 461-6 Jeonmin Dong, Yuseong Gu, Daejeon 305-811, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Choi SJ, Oh SH, Kim IG, Chun SY, Lee JY, Lee JH. Functional recovery of urethra by plasmid DNA-loaded injectable agent for the treatment of urinary incontinence. Biomaterials 2013; 34:4766-76. [PMID: 23545290 DOI: 10.1016/j.biomaterials.2013.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Stress urinary incontinence (SUI) is an embarrassing problem affecting a large number of women and interfering with their quality of life. The injury or weakness of urethral supporting tissues by childbirth and aging has been considered as key factors in the development of the SUI. In this study, plasmid DNA (pDNA; encoding for bFGF) complex-loaded poly(DL-lactic-co-glycolic acid) (PLGA)/Pluronic F127 mixture dispersed with polycaprolactone (PCL) microspheres was prepared as an injectable bioactive bulking agent that may provide bulking effect (by PCL microspheres) and allow stimulation of the defect tissues around urethra (by synthesis of bFGF from cells or tissues transfected by the pDNA complex) for the effective treatment of SUI. From in vitro experiments, the pDNA complex incorporated in the bulking agent was released in a sustained manner over 84 days (≥80% of the initial loading amount). The pDNA complex was effectively transfected into fibroblasts and the cells were continuously producing the target protein, bFGF. From the in vivo study using hairless mice and Sprague-Dawley rats, it was confirmed that the pDNA complex released from the bulking agent is transfected into surrounding cells/tissue, and the cells/tissues synthesize sufficient bFGF to regenerate smooth muscle with biological function around the urethra. Basis on these results, the pDNA (encoding for bFGF) complex-loaded PLGA/Pluronic F127 mixture dispersed with PCL microspheres can be a promising bioactive bulking agent system for the fundamental cure of SUI.
Collapse
Affiliation(s)
- Soo Jung Choi
- Department of Advanced Materials, Hannam University, Yuseong Gu, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Kang SB, Lee HS, Lim JY, Oh SH, Kim SJ, Hong SM, Jang JH, Cho JE, Lee SM, Lee JH. Injection of porous polycaprolactone beads containing autologous myoblasts in a dog model of fecal incontinence. JOURNAL OF THE KOREAN SURGICAL SOCIETY 2013; 84:216-24. [PMID: 23577316 PMCID: PMC3616275 DOI: 10.4174/jkss.2013.84.4.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/30/2013] [Accepted: 02/12/2013] [Indexed: 02/08/2023]
Abstract
PURPOSE Few studies have examined whether bioengineering can improve fecal incontinence. This study designed to determine whether injection of porous polycaprolactone beads containing autologous myoblasts improves sphincter function in a dog model of fecal incontinence. METHODS The anal sphincter of dogs was injured and the dogs were observed without and with (n = 5) the injection of porous polycaprolactone beads containing autologous myoblasts into the site of injury. Autologous myoblasts purified from the gastrocnemius muscles were transferred to the beads. Compound muscle action potentials (CMAP) of the pudendal nerve, anal sphincter pressure, and histopathology were determined 3 months after treatment. RESULTS The amplitudes of the CMAP in the injured sphincter were significantly lower than those measured before injury (1.22 mV vs. 3.00 mV, P = 0.04). The amplitudes were not different between dogs with and without the injection of autologous myoblast beads (P = 0.49). Resting and squeezing pressures were higher in dogs treated with autologous myoblast beads (2.00 mmHg vs. 1.80 mmHg; 6.13 mmHg vs. 4.02 mmHg), although these differences were not significant in analyses of covariance adjusted for baseline values. The injection site was stained for smooth muscle actin, but showed evidence of foreign body inflammatory reactions. CONCLUSION This was the first study to examine whether bioengineering could improve fecal incontinence. Although the results did not show definite evidence that injection of autologous myoblast beads improves sphincter function, we found that the dog model was suitable and reliable for studying the effects of a potential treatment modality for fecal incontinence.
Collapse
Affiliation(s)
- Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jeong HH, Piao S, Ha JN, Kim IG, Oh SH, Lee JH, Cho HJ, Hong SH, Kim SW, Lee JY. Combined therapeutic effect of udenafil and adipose-derived stem cell (ADSC)/brain-derived neurotrophic factor (BDNF)-membrane system in a rat model of cavernous nerve injury. Urology 2013; 81:1108.e7-14. [PMID: 23522997 DOI: 10.1016/j.urology.2013.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To prevent cavernous nerve injury and corpus cavernosum apoptosis-induced erectile dysfunction (ED) after prostatectomy surgery, we investigated whether oral administration of udenafil combination with covering adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF) immobilized poly-lactic-co-glycolic (PLGA) membrane on the injured cavernous nerve could further improve erectile dysfunction. METHODS Adult Sprague-Dawley rats were divided into 5 groups: normal group (sham-operated group), bilateral cavernous nerve injury (BCNI) group (BCNI group), udenafil group (oral administration of udenafil 20 mg/kg daily), AB group (BCNI group with ADSCs covered with BDNF membrane on cavernous nerve), AB/udenafil group (AB group with udenafil group). After 4 weeks, erectile function was examined before tissue harvest. Penile tissues were evaluated in terms of the expression of smooth muscle actin (SMA), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF). The cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum was quantified by cGMP assay. RESULTS AB/udenafil treatment markedly improved erectile function and prevented the architecture damage of the corpus cavernosum, compared with other treated groups. Udenafil had no statistical significance on increasing nNOS expression, but enhanced VEGF expression. On the contrary, the AB group had no statistical significance on enhancing VEGF expression, but increased nNOS expression. AB/udenafil treatment significantly increased nNOS expression, VEGF expression, and elevated cGMP level, compared with the udenafil group and AB group. CONCLUSION The orally administered udenafil combination with ADSC/BDNF-membrane system protected cavernous nerve and improved angiogenesis in the corpus cavernosum, which further maintained erectile function in a rat model of postprostatectomy erectile dysfunction.
Collapse
Affiliation(s)
- Ho Hun Jeong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kwon SK, Song JJ, Cho CG, Park SW, Choi SJ, Oh SH, Lee JH. Polycaprolactone spheres and theromosensitive Pluronic F127 hydrogel for vocal fold augmentation: in vivo animal study for the treatment of unilateral vocal fold palsy. Laryngoscope 2013; 123:1694-703. [PMID: 23371920 DOI: 10.1002/lary.23879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS The purpose of this study was to explore a novel strategy to restore vocal gap by using polycaprolactone (PCL) spheres with thermosensitive Pluronic F127 in a paralyzed rabbit vocal fold. STUDY DESIGN In vivo study using a rabbit model. METHODS The PCL spheres were fabricated by an isolated particle-melting method. The PCL spheres/Pluronic F127 gel mixture was prepared by a simple mixture of PCL and Pluronic F127 solution. We used 33 New Zealand white rabbits, which were divided into normal (n = 3), vocal fold palsy (VFP, n = 12), PCL/Pluronic F127 gel mixture (PCL, n = 12), and Radiesse (n = 6) groups. After unilateral recurrent laryngeal nerve section, PCL or Radiesse were injected into paralyzed vocal folds. Laryngoscopic exams were performed 1, 2, 4, and 12 weeks after implantation; then larynx specimens were sampled. High-speed camera recording of vocal fold vibration and evaluation by videokymography were performed. Open quotient and asymmetric index were calculated. We evaluated the volume of the implants over time and investigated histologic changes. RESULTS Endoscopic analysis showed that PCL/Pluronic F127 gel mixture maintained its volume without migration or inflammatory response. Vocal fold gap decreased and asymmetric vocal fold movement was improved compared with the VFP group. Histologically, connective tissue growth was observed between the spheres. The remaining volume of injected material was greater than the Radiesse group, without statistical significance. CONCLUSIONS Locally injected PCL/Pluronic F127 can enhance glottal contact, suggesting it as a potential new therapeutic approach that may lead to better treatment of vocal fold palsy.
Collapse
Affiliation(s)
- Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University Ilsan Hospital, Goyang, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
21
|
Piao S, Kim IG, Lee JY, Hong SH, Kim SW, Hwang TK, Oh SH, Lee JH, Ra JC, Lee JY. Therapeutic effect of adipose-derived stem cells and BDNF-immobilized PLGA membrane in a rat model of cavernous nerve injury. J Sex Med 2012; 9:1968-79. [PMID: 22642440 DOI: 10.1111/j.1743-6109.2012.02760.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cavernous nerve injury is the main reason for post-prostatectomy erectile dysfunction (ED). Stem cell and neuroprotection therapy are promising therapeutic strategy for ED. AIM To evaluate the therapeutic efficacy of adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF) immobilized Poly-Lactic-Co-Glycolic (PLGA) membrane on the cavernous nerve in a rat model of post-prostatectomy ED. Methods. Rats were randomly divided into five groups: normal group, bilateral cavernous nerve crush injury (BCNI) group, ADSC (BCNI group with ADSCs on cavernous nerve) group, BDNF-membrane (BCNI group with BDNF/PLGA membrane on cavernous nerve) group, and ADSC/BDNF-membrane (BCNI group with ADSCs covered with BDNF/PLGA membrane on cavernous nerve) group. BDNF was controlled-released for a period of 4 weeks in a BDNF/PLGA porous membrane system. MAIN OUTCOME MEASURES Four weeks after the operation, erectile function was assessed by detecting the ratio of intra-cavernous pressure (ICP)/mean arterial pressure (MAP). Smooth muscle and collagen content were determined by Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. Phospho-endothelial nitric oxide synthase (eNOS) protein expression and cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by Western blotting and cGMP assay, respectively. RESULTS In the ADSC/BDNF-membrane group, erectile function was significantly elevated, compared with the BCNI and other treated groups. ADSC/BDNF-membrane treatment significantly increased smooth muscle/collagen ratio, nNOS content, phospho-eNOS protein expression, and cGMP level, compared with the BCNI and other treated groups. CONCLUSIONS ADSCs with BDNF-membrane on the cavernous nerve can improve erectile function in a rat model of post-prostatectomy ED, which may be used as a novel therapy for post-prostatectomy ED.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Singh S, Wu BM, Dunn JCY. Enhancing angiogenesis alleviates hypoxia and improves engraftment of enteric cells in polycaprolactone scaffolds. J Tissue Eng Regen Med 2012; 7:925-33. [PMID: 22511397 DOI: 10.1002/term.1484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 11/07/2011] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Abstract
We examined whether expediting angiogenesis in porous polycaprolactone (PCL) scaffolds could reduce hypoxia and consequently improve the survival of transplanted enteric cells. To accelerate angiogenesis, we delivered vascular endothelial growth factor (VEGF) using PCL scaffolds with surface crosslinked heparin. The fabrication and characterization of scaffolds has been reported in our previous study. Enteric cells, isolated from intestinal tissue of neonatal mice and expanded in vitro for 10 days, exhibited high expression levels for contractile protein α-smooth muscle actin and desmin. The cultured enteric cells were seeded in scaffolds and were implanted subcutaneously in immunodeficient mice for 7 and 14 days. At day 7, the heparin-modified PCL scaffolds with VEGF exhibited significantly increased angiogenesis and engraftment of enteric cells, with a simultaneous reduction in hypoxia. At day 14, the blood vessels grew across the entire thickness of the scaffold and resulted in a significantly diminished hypoxic environment; however, the transplanted cell density did not increase further. In conclusion, the enhancement of angiogenesis reduced cellular hypoxia and improved the engraftment of enteric cells.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
23
|
Kim IG, Piao S, Hong SH, Kim SW, Hwang TK, Oh SH, Lee JH, Lee JY. The effect of a bioactive tissue-engineered sling in a rat of stress incontinence model. J Biomed Mater Res A 2011; 100:286-92. [PMID: 22045624 DOI: 10.1002/jbm.a.33259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/12/2022]
Abstract
In this study, we attempt to examine the feasibility of the bioactive tissue-engineered sling by using muscle precursor cells (MPCs)-seeded Poly(ε-caprolactone) (PCL) nanofiber sheet in a rat model of stress urinary incontinence (SUI). In vitro, MPCs were cultured on a PCL nanofiber sheet for one week, where the MPCs-seeded PCL nanofiber sheet showed constant twitching contraction by electrical field stimulation in an organ bath. In vivo, MPCs-seeded PCL nanofiber sheet was placed under the female rat's urethra after pudendal nerve denervation (animal model of SUI). The leak point pressure (LPP) was evaluated with the vertical tilt table after the operation for four weeks. The resulting LPP of MPCs-seeded PCL nanofiber sheet group was observed to be significantly higher than the denervation-only group's. Furthermore, PKH-26-labeled MPCs were observed under the urethral sphincter by immunohistochemistry. These results indicated that, the MPCs-seeded PCL nanofiber sheet have not only provided support for the deficient sphincter, but also actively improved the sphincter's function overall. In conclusion, this bioactive tissue-engineered sling could be used as an ideal material for the treatment of SUI.
Collapse
Affiliation(s)
- In Gul Kim
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, 505 Banpo Dong, Seocho Gu, Seoul 137-040, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Creating growth factor gradients in three dimensional porous matrix by centrifugation and surface immobilization. Biomaterials 2011; 32:8254-60. [PMID: 21798593 DOI: 10.1016/j.biomaterials.2011.07.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/08/2011] [Indexed: 01/13/2023]
Abstract
Polycaprolactone (PCL)/Pluronic F127 cylindrical scaffolds with gradually increasing growth factor concentrations were fabricated by the centrifugation of fibril-like PCLs and the subsequent fibril surface immobilization of growth factors. The cylindrical scaffolds exhibited gradually increasing surface areas along the longitudinal direction [from 3.17 ± 0.05 m(2)/g (top position) to 5.42 ± 0.01 m(2)/g (bottom position)]. The growth factors (BMP-7, TGF-β(2) and VEGF(165)) as model bioactive molecules were immobilized onto the fibril surfaces of the scaffolds via heparin binding to produce scaffolds with gradually increasing concentrations of growth factors from the top position (BMP-7, 60.89 ± 2.51; TGF-β(2), 42.85 ± 2.00; VEGF(165), 42.52 ± 3.22 ng/scaffold section) to the bottom position (BMP-7, 181.07 ± 3.21; TGF-β(2), 142.08 ± 2.91; VEGF(165), 112.00 ± 4.00 ng/scaffold section). The released amount of growth factor (VEGF(165)) from the cylindrical scaffold gradually decreased along the longitudinal direction in a sustained manner for up to 35 days, which can allow for a minutely controlled spatial distribution of growth factors in a 3D environment. The 3D porous scaffold with a concentration gradient of growth factors may become a useful tool for basic studies, including in vitro investigations of 3D chemotaxis/haptotaxis for the control of specific biological process. It may also be used as a tissue engineering scaffolding system for a variety of tissues/organs requiring the spatial regulation of growth factors for effective regeneration.
Collapse
|
25
|
Kim IG, Oh SH, Lee JY, Lee JY, Lee JH. Bioactive porous beads as an injectable urethral bulking agent: in vivo animal study for the treatment of urinary incontinence. Tissue Eng Part A 2011; 17:1527-35. [PMID: 21275847 DOI: 10.1089/ten.tea.2010.0600] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In our previous study, growth factor (basic fibroblast growth factor [bFGF] or vascular endothelial growth factor)-immobilized polycaprolactone (PCL)/Pluronic F127 porous beads were fabricated by an isolated particle-melting/melt-molding particulate-leaching method. The growth factors were easily immobilized onto the pore surfaces of the PCL/F127 beads via heparin binding, and were continuously released for up to 28 days. In this study, the growth factor-immobilized porous beads were investigated for their potential use as an injectable urethral bulking agent for the treatment of stress urinary incontinence (SUI). From the in vivo study using Sprague-Dawley rats as an urinary incontinent animal model, it was observed that the growth factor (bFGF or vascular endothelial growth factor)-immobilized porous beads had effective cure behaviors for SUI as follows: the narrowed urethral lumen and the regeneration of smooth muscle around the urethra. In particular, the bFGF-immobilized PCL/F127 porous beads showed desirable smooth muscle regeneration and electrical contractility, which indicates it can be a good candidate as an injectable bioactive bulking agent for the treatment of SUI.
Collapse
Affiliation(s)
- In Gul Kim
- Department of Advanced Materials, Hannam University, Daejeon, South Korea
| | | | | | | | | |
Collapse
|