1
|
Rerkshanandana P, Zhao X, Xiong Y, Chen Y, Steffen A, Chaiwaree S, Kloypan C, Pruss A, Georgieva R, Bäumler H. Hemoglobin in Submicron Particles (HbMPs) Is Stabilized Against Oxidation. Antioxidants (Basel) 2024; 13:1477. [PMID: 39765806 PMCID: PMC11672935 DOI: 10.3390/antiox13121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Superoxide dismutase (SOD) and Catalase (CAT) play a crucial role as the first line of defense antioxidant enzymes in a living cell. These enzymes neutralize the superoxide anion from the autooxidation of oxyhemoglobin (Oxy-Hb) and convert hydrogen peroxides into water and molecular oxygen. In this study, we fabricated hemoglobin submicron particles (HbMPs) using the Coprecipitation Crosslinking Dissolution (CCD) technique and incorporating first-line antioxidant enzymes (CAT, SOD) and second-line antioxidant (ascorbic acid, Vit. C) to investigate a protective effect of modified HbMPs via cyclically oxygenation and deoxygenation. Thereafter, the total hemoglobin (Hb) content and Oxy-Hb content to HbMPs were determined. The results revealed that the HbMPs have a protective effect against oxidation from hydrogen peroxide and potentially neutralizing hydrogen peroxide to water over 16 times exposure cycles. No significant differences in total Hb content were found between normal HbMPs and enzyme-modified HbMPs in the absence of Vit. C. The Oxy-Hb of CAT-HbMPs showed significantly higher values than normal HbMPs. The functional Hb of normal HbMPs and enzyme-modified HbMPs was increased by 60-77% after a short time Vit. C (1:25) exposure. The co-immobilization of CAT and SOD in hemoglobin particles (CAT-SOD-HbMPs) in the presence of Vit. C provides protective effects against oxidation in cyclic Oxygenation and Deoxygenation and shows the lowest reduction of functional Hb. Our studies show that the CCD technique-modified HbMPs containing antioxidant enzymes and a reducing agent (ascorbic acid) demonstrate enhanced Hb functionality, providing protective effects and stability under oxidative conditions.
Collapse
Affiliation(s)
- Pichayut Rerkshanandana
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
| | - Xiaotong Zhao
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
| | - Yao Chen
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
| | - Axel Steffen
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
| | - Saranya Chaiwaree
- Department of Pharmaceutical Technology and Biotechnology, Faculty of Pharmacy, Payap University, Chiang Mai 50000, Thailand;
| | - Chiraphat Kloypan
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand;
| | - Axel Pruss
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
- Department of Medical Physics, Biophysics and Radiology, Faculty of Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (P.R.); (X.Z.); (Y.X.); (Y.C.); (A.S.); (A.P.); (R.G.)
- Department of Pharmaceutical Technology and Biotechnology, Faculty of Pharmacy, Payap University, Chiang Mai 50000, Thailand;
| |
Collapse
|
2
|
Rodriguez-Brotons A, Bietiger W, Peronet C, Langlois A, Magisson J, Mura C, Sookhareea C, Polard V, Jeandidier N, Zal F, Pinget M, Sigrist S, Maillard E. Comparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation. Tissue Eng Part A 2016; 22:1327-1336. [PMID: 27796164 DOI: 10.1089/ten.tea.2016.0064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transplantation of encapsulated islets in a bioartificial pancreas is a promising alternative to free islet cell therapy to avoid immunosuppressive regimens. However, hypoxia, which can induce a rapid loss of islets, is a major limiting factor. The efficiency of oxygen delivery in an in vitro model of bioartificial pancreas involving hypoxia and confined conditions has never been investigated. Oxygen carriers such as perfluorocarbons and hemoglobin might improve oxygenation. To verify this hypothesis, this study aimed to identify the best candidate of perfluorodecalin (PFD) or HEMOXCell® to reduce cellular hypoxia in a bioartificial pancreas in an in vitro model of encapsulation ex vivo. The survival, hypoxia, and inflammation markers and function of rat islets seeded at 600 islet equivalents (IEQ)/cm2 and under 2% pO2 were assessed in the presence of 50 μg/mL of HEMOXCell or 10% PFD with or without adenosine. Both PFD and HEMOXCell increased the cell viability and decreased markers of hypoxia (hypoxia-inducible factor mRNA and protein). In these culture conditions, adenosine had deleterious effects, including an increase in cyclooxygenase-2 and interleukin-6, in correlation with unregulated proinsulin release. Despite the effectiveness of PFD in decreasing hypoxia, no restoration of function was observed and only HEMOXCell had the capacity to restore insulin secretion to a normal level. Thus, it appeared that the decrease in cell hypoxia as well as the intrinsic superoxide dismutase activity of HEMOXCell were both mandatory to maintain islet function under hypoxia and confinement. In the context of islet encapsulation in a bioartificial pancreas, HEMOXCell is the candidate of choice for application in vivo.
Collapse
Affiliation(s)
| | - William Bietiger
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Claude Peronet
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Allan Langlois
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Carole Mura
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Cynthia Sookhareea
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Valerie Polard
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Nathalie Jeandidier
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Franck Zal
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Michel Pinget
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Séverine Sigrist
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Elisa Maillard
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| |
Collapse
|
3
|
Li C, Ma C, Zhang Y, Liu Z, Xue W. Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers. J Biomater Appl 2016; 30:1485-93. [PMID: 26980550 DOI: 10.1177/0885328215627404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) copolymers have been widely used for various biomedical applications. However, their hemocompatibility has not been clarified, which would lag their developments and clinical applications. In this work, we studied the effect of PEG-PLA copolymers on key human blood components in terms of their structure and bio-functions, including morphology and lysis of red blood cells, fibrinogen structure and conformation, and plasma and blood coagulation. To elucidate a structure-activity relationship, we used diblock PEG-PLA copolymers with different molecular weight, PEG(5 kDa)-PLA(25 kDa) and PEG(2 kDa)-PLA(2 kDa), abbreviated as PEG5k-PLA25k and PEG2k-PLA2k, respectively. The results show that the PEG-PLA copolymers at the concentration range studied in this work neither caused morphological alteration and lysis of red blood cells nor affected the oxygen delivery function and fibrinogen conformation. PEG5k-PLA25k from 10 to 100 mg/mL and PEG2k-PLA2k from 1.5 to 5 mg/mL disturbed the local microenvironments of fibrinogen molecules. PEG5k-PLA25k at up to 0.1 mg/mL did not interfere in the coagulation process of plasma or whole blood, while PEG2k-PLA2k from 0.1 mg/mL significantly interfered in the intrinsic plasma coagulation pathway and impaired whole blood coagulation. The results provide important information for the molecular design and clinical applications of PEG-PLA copolymers.
Collapse
Affiliation(s)
- Chenghua Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chengyan Ma
- Department of Critical Care Medicine, Linyi People's Hospital, Linyi, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Bowers DT, Botchwey EA, Brayman KL. Advances in Local Drug Release and Scaffolding Design to Enhance Cell Therapy for Diabetes. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:491-503. [PMID: 26192271 DOI: 10.1089/ten.teb.2015.0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Islet transplant is a curative treatment for insulin-dependent diabetes. However, challenges, including poor tissue survival and a lack of efficient engraftment, must be overcome. An encapsulating or scaffolding material can act as a vehicle for agents carefully chosen for the islet transplant application. From open porous scaffolds to spherical capsules and conformal coatings, greater immune protection is often accompanied by greater distances to microvasculature. Generating a local oxygen supply from the implant material or encouraging vessel growth through the release of local factors can create an oxygenated engraftment site. Intricately related to the vascularization response, inflammatory interaction with the cell supporting implant is a long-standing hurdle to material-based islet transplant. Modulation of the immune responses to the islets as well as the material itself must be considered. To match the post-transplant complexity, the release rate can be tuned to orchestrate temporal responses. Material degradation properties can be utilized in passive approaches or external stimuli and biological cues in active approaches. A combination of multiple carefully chosen factors delivered in an agent-specialized manner is considered by this review to improve the long-term function of islets transplanted in scaffolding and encapsulating materials.
Collapse
Affiliation(s)
- Daniel T Bowers
- 1 Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
- 2 Department of Surgery, University of Virginia , Charlottesville, Virginia
| | - Edward A Botchwey
- 3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Kenneth L Brayman
- 1 Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
- 2 Department of Surgery, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
5
|
Bian Y, Chang TMS. A novel nanobiotherapeutic poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2015; 43:1-9. [PMID: 25297052 PMCID: PMC4268802 DOI: 10.3109/21691401.2014.964554] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
We crosslink hemoglobin (Hb), superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) to form a soluble polyHb-SOD-CAT-CA nanobiotechnological complex. The obtained product is a soluble complex with three enhanced red blood cell (RBC) functions and without blood group antigens. In the present study, 2/3 of blood volume was removed to result in 90-min hemorrhagic shock at mean arterial blood pressure (MAP) of 30 mmHg. This was followed by the reinfusion of different resuscitation fluids, then followed for another 60 min. PolyHb-SOD-CAT-CA maintained the MAP at 87.5 ± 5 mmHg as compared with 3 volumes of lactated Ringer's solution, 43.3 ± 2.8 mmHg; blood, 91.3 ± 3.6 mmHg; polyHb-SOD-CAT, 86.0 ± 4.6 mmHg; poly stroma-free hemolysate (polySFHb), 85.0 ± 2.5 mmHg; and polyHb, 82.6 ± 3.5 mmHg. PolyHb-SOD-CAT-CA was superior to the blood and other fluids based on the following criteria. PolyHb-SOD-CAT-CA reduced tissue pCO2 from 98 ± 4.5 mmHg to 68.6 ± 3 mmHg. This was significantly (p < 0.05) more effective than lactated Ringer's solution (98 ± 4.5 mmHg), polyHb (90.1 ± 4.0 mmHg), polyHb-SOD-CAT (90.9 ± 1.4 mmHg), blood (79.1 ± 4.7 mmHg), and polySFHb (77 ± 5 mmHg). PolyHb-SOD-CAT-CA reduced the elevated ST level to 21.7 ± 6.7% and is significantly (< 0.05) better than polyHb (57.7 ± 8.7%), blood (39.1 ± 1.5%), polySFHb (38.3% ± 2.1%), polyHb-SOD-CAT (27.8 ± 5.6%), and lactated Ringer's solution (106 ± 3.1%). The plasma cardiac troponin T (cTnT) level of polyHb-SOD-CAT-CA group was significantly (P < 0.05) lower than that of all the other groups. PolyHb-SOD-CAT-CA reduced plasma lactate level from 18 ± 2.3 mM/L to 6.9 ± 0.3 mM/L. It was significantly more effective (P < 0.05) than lactated Ringer's solution (12.4 ± 0.6 mM/L), polyHb (9.6 ± 0.7 mM/L), blood (8.1 ± 0.2 mM/L), polySFHb (8.4 ± 0.1 mM/L), and polyHb-SOD-CAT (7.6 ± 0.3 mM/L). PolyHb-SOD-CAT-CA can be stored for 320 days at room temperature. Lyophilized poly-Hb-SOD-CAT-CA can be heat pasteurized at 68F for 2 h. This can be important if there is a need to inactivate human immunodeficiency virus, Ebola virus, and other infectious organisms.
Collapse
Affiliation(s)
- Yuzhu Bian
- Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
|
7
|
Li C, Zhong D, Zhang Y, Tuo W, Li N, Wang Q, Liu Z, Xue W. The effect of the gene carrier material polyethyleneimine on the structure and function of human red blood cells in vitro. J Mater Chem B 2013; 1:1885-1893. [DOI: 10.1039/c3tb00024a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Nadithe V, Mishra D, Bae YH. Poly(ethylene glycol) cross-linked hemoglobin with antioxidant enzymes protects pancreatic islets from hypoxic and free radical stress and extends islet functionality. Biotechnol Bioeng 2012; 109:2392-401. [PMID: 22447333 DOI: 10.1002/bit.24501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 02/07/2023]
Abstract
The objective of this study was to investigate the efficiency of multifunctional poly(ethylene glycol)-based hemoglobin conjugates crosslinked with antioxidant enzymes for their ability to protect an oxygen carrier (hemoglobin) and insulin secreting islets from the combination of hypoxic and free radical stress under simulated transplantation conditions. In this study, RINm5F cells and isolated pancreatic islets were challenged with oxidants (H(2)O(2) or xanthine and xanthine oxidase) and incubated with conjugates (hemoglobin-hemoglobin or superoxide dismutase-catalase-hemoglobin) in normoxia (21% oxygen) or hypoxia (6% or 1% oxygen). Hemoglobin protection, intracellular free radical activity and cell viability in RINm5F cells measured by methemoglobin, dichlorofluorescein-diacetate, and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, respectively, showed that cells were better protected by conjugates containing antioxidant enzymes. Insulin secretion from islets and qualitative confocal evaluation of viability showed beta cells were protected by conjugates containing antioxidant enzymes when exposed to induced stress. Our study suggested that antioxidant enzymes play a significant role in hemoglobin protection and thus extended cell protection.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
9
|
Perfluorodecalin-enriched fibrin matrix for human islet culture. Biomaterials 2011; 32:9282-9. [PMID: 21899883 DOI: 10.1016/j.biomaterials.2011.08.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/16/2011] [Indexed: 11/22/2022]
Abstract
Disruption of microenvironment and decrease in oxygen supply during isolation and culture lead to pancreatic islet injury and their poor survival after transplantation. This study aimed to create a matrix for culturing islets, using fibrin as scaffold and perfluorodecalin as oxygen diffusion enhancing medium. Human pancreatic islets were divided in four groups: control, islets cultured in fibrin, islets in fibrin containing non-emulsified perfluorodecalin, and finally islets in fibrin supplemented with emulsified perfluorodecalin. After an overnight culture, cell damage (viability, proinsulin and insulin unregulated release, apoptosis (caspase-3 activation), secretory function, and presence of hypoxia markers (HIF-1a and VEGF expression) were assessed. Islets cultured in a matrix, had similar islet viability to controls (no matrix) but decreased levels of active caspase-3 and unregulated hormone release, but high level of hypoxia markers expression. Although the supplementation of fibrin with non-emulsified perfluorodecalin improves secretory response, there was no decrease in hypoxia markers expression. In contrast, emulsified perfluorodecalin added to the matrix improved islet function, islet viability and maintained level of hypoxia markers similar to control. Fibrin matrix supplemented with emulsified perfluorodecalin can provide a beneficial physical and chemical environment for improved pancreatic human islet function and viability in vitro.
Collapse
|