1
|
Wang H, Li T, Jiang Y, Chen S, Wu Z, Zeng X, Yang K, Duan P, Zou S. Long non-coding RNA LncTUG1 regulates favourable compression force-induced cementocytes mineralization via PU.1/TLR4/SphK1 signalling. Cell Prolif 2024; 57:e13604. [PMID: 38318762 PMCID: PMC11150144 DOI: 10.1111/cpr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a highly coordinated biomechanical response to orthodontic forces with active remodelling of alveolar bone but minor root resorption. Such antiresorptive properties of root relate to cementocyte mineralization, the mechanisms of which remain largely unknown. This study used the microarray analysis to explore long non-coding ribonucleic acids involved in stress-induced cementocyte mineralization. Gain- and loss-of-function experiments, including Alkaline phosphatase (ALP) activity and Alizarin Red S staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence analyses of mineralization-associated factors, were conducted to verify long non-coding ribonucleic acids taurine-upregulated gene 1 (LncTUG1) regulation in stress-induced cementocyte mineralization, via targeting the Toll-like receptor 4 (TLR4)/SphK1 axis. The luciferase reporter assays, chromatin immunoprecipitation assays, RNA pull-down, RNA immunoprecipitation, and co-localization assays were performed to elucidate the interactions between LncTUG1, PU.1, and TLR4. Our findings indicated that LncTUG1 overexpression attenuated stress-induced cementocyte mineralization, while blocking the TLR4/SphK1 axis reversed the inhibitory effect of LncTUG1 on stress-induced cementocyte mineralization. The in vivo findings also confirmed the involvement of TLR4/SphK1 signalling in cementocyte mineralization during OTM. Mechanistically, LncTUG1 bound with PU.1 subsequently enhanced TLR4 promotor activity and thus transcriptionally elevated the expression of TLR4. In conclusion, our data revealed a critical role of LncTUG1 in regulating stress-induced cementocyte mineralization via PU.1/TLR4/SphK1 signalling, which might provide further insights for developing novel therapeutic strategies that could protect roots from resorption during OTM.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Kuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
2
|
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T, Băciuț M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev Rep 2024; 20:656-671. [PMID: 38279054 PMCID: PMC10984898 DOI: 10.1007/s12015-024-10683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs (ncRNAs) which unlike linear RNAs, have a covalently closed continuous loop structure. circRNAs are found abundantly in human cells and their biology is complex. They feature unique expression to different types of cells, tissues, and developmental stages. To the present, the functional roles of circular RNAs are not fully understood. They reportedly act as microRNA (miRNA) sponges, therefore having key regulatory functions in diverse physiological and pathological processes. As for dentistry field, lines of evidence indicate that circRNAs play vital roles in the odontogenic and osteogenic differentiation of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Abnormal expression of circRNAs have been found in other areas of pathology frequently reflected also in the oral environment, such as inflammation or bone and soft tissue loss. Therefore, circRNAs could be of significant importance in various fields in dentistry, especially in bone and soft tissue engineering and regeneration. Understanding the molecular mechanisms occurring during the regulation of oral biological and tissue remodeling processes could augment the discovery of novel diagnostic biomarkers and therapeutic strategies that will improve orthodontic and other oral therapeutic protocols.
Collapse
Affiliation(s)
- Tudor-Sergiu Suciu
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Alexandra Iulia Aghiorghiesei
- Department of Prosthodontics and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Talida Vulcan
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Fahmy SH, Jungbluth H, Jepsen S, Winter J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin Oral Investig 2023; 28:53. [PMID: 38157054 DOI: 10.1007/s00784-023-05466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This in vitro study aimed to modify TLR-2-mediated effects on the paracrine, proliferative, and differentiation potentials of human dental pulp-derived cells using histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. MATERIALS AND METHODS Cell viability was assessed using the XTT assay. Cells were either treated with 10 μg/ml Pam3CSK4 only, or pre-treated with valproic acid (VPA) (3 mM), trichostatin A (TSA) (3 μM), and MG-149 (3 μM) for a total of 4 h and 24 h. Control groups included unstimulated cells and cells incubated with inhibitors solvents only. Transcript levels for NANOG, OCT3-4, FGF-1 and 2, NGF, VEGF, COL-1A1, TLR-2, hβD-2 and 3, BMP-2, DSPP, and ALP were assessed through qPCR. RESULTS After 24 h, TSA pre-treatment significantly upregulated the defensins and maintained the elevated pro-inflammatory cytokines, but significantly reduced healing and differentiation genes. VPA significantly upregulated the pro-inflammatory cytokine levels, while MG-149 significantly downregulated them. Pluripotency genes were not significantly affected by any regimen. CONCLUSIONS At the attempted concentrations, TSA upregulated the defensins gene expression levels, and MG-149 exerted a remarkable anti-inflammatory effect; therefore, they could favorably impact the immunological profile of hDPCs. CLINICAL RELEVANCE Targeting hDPC nuclear function could be a promising option in the scope of the biological management of inflammatory pulp diseases.
Collapse
Affiliation(s)
- Sarah Hossam Fahmy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany.
| | - Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Naudot M, Le Ber J, Marcelo P. TMT-Based Quantitative Proteomics Analysis Reveals Differentially Expressed Proteins between Different Sources of hMSCs. Int J Mol Sci 2023; 24:13544. [PMID: 37686351 PMCID: PMC10488246 DOI: 10.3390/ijms241713544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive therapeutic tool for tissue engineering and regenerative medicine owing to their regenerative and trophic properties. The best-known and most widely used are bone marrow MSCs, which are currently being harvested and developed from a wide range of adult and perinatal tissues. MSCs from different sources are believed to have different secretion potentials and production, which may influence their therapeutic effects. To confirm this, we performed a quantitative proteomic analysis based on the TMT technique of MSCs from three different sources: Wharton's jelly (WJ), dental pulp (DP), and bone marrow (BM). Our analysis focused on MSC biological properties of interest for tissue engineering. We identified a total of 611 differentially expressed human proteins. WJ-MSCs showed the greatest variation compared with the other sources. WJ produced more extracellular matrix (ECM) proteins and ECM-affiliated proteins and proteins related to the inflammatory and immune response processes. BM-MSCs expressed more proteins involved in osteogenic, adipogenic, neuronal, or muscular differentiation and proteins involved in paracrine communication. Compared to the other sources, DP-MSCs overexpressed proteins involved in the exocytosis process. The results obtained confirm the existence of differences between WJ, DP, and BM-MSCs and the need to select the MSC origin according to the therapeutic objective sought.
Collapse
Affiliation(s)
- Marie Naudot
- UR7516, CHirurgie, IMagerie et REgénération Tissulaire de l’Extrémité Céphalique (CHIMERE), Université de Picardie Jules Verne, 80039 Amiens, France;
| | - Julie Le Ber
- PLATANN, Université de Picardie Jules Verne, 80039 Amiens, France;
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
5
|
Mohamad-Fauzi N, Shaw C, Foutouhi SH, Hess M, Kong N, Kol A, Storey DB, Desai PT, Shah J, Borjesson D, Murray JD, Weimer BC. Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2023; 11:1077350. [PMID: 37009487 PMCID: PMC10055666 DOI: 10.3389/fcell.2023.1077350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.
Collapse
Affiliation(s)
- Nuradilla Mohamad-Fauzi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Claire Shaw
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Soraya H. Foutouhi
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dylan Bobby Storey
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Prerak T. Desai
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Dori Borjesson
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - James D. Murray
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| |
Collapse
|
6
|
Rivera-Cruz CM, Figueiredo ML. Evaluation of human adipose-derived mesenchymal stromal cell Toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 2023; 25:33-45. [PMID: 36257875 DOI: 10.1016/j.jcyt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.
Collapse
Affiliation(s)
- Cosette M Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
7
|
Gingival epithelial cell-derived microvesicles activate mineralization in gingival fibroblasts. Sci Rep 2022; 12:15779. [PMID: 36138045 PMCID: PMC9500071 DOI: 10.1038/s41598-022-19732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.
Collapse
|
8
|
Kim J, Tran ANT, Lee JY, Park SH, Park SR, Min BH, Choi BH. Human Fetal Cartilage-Derived Progenitor Cells Exhibit Anti-Inflammatory Effect on IL-1β-Mediated Osteoarthritis Phenotypes In Vitro. Tissue Eng Regen Med 2022; 19:1237-1250. [PMID: 35932427 PMCID: PMC9679083 DOI: 10.1007/s13770-022-00478-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 10/15/2022] Open
Abstract
BACKGROUND In this study, we have investigated whether human fetal cartilage progenitor cells (hFCPCs) have anti-inflammatory activity and can alleviate osteoarthritis (OA) phenotypes in vitro. METHODS hFCPCs were stimulated with various cytokines and their combinations and expression of paracrine factors was examined to find an optimal priming factor. Human chondrocytes or SW982 synoviocytes were treated with interleukin-1β (IL-1β) to produce OA phenotype, and co-cultured with polyinosinic-polycytidylic acid (poly(I-C))-primed hFCPCs to address their anti-inflammatory effect by measuring the expression of OA-related genes. The effect of poly(I-C) on the surface marker expression and differentiation of hFCPCs into 3 mesodermal lineages was also examined. RESULTS Among the priming factors tested, poly(I-C) (1 µg/mL) most significantly induced the expression of paracrine factors such as indoleamine 2,3-dioxygenase, histocompatibility antigen, class I, G, tumor necrosis factor- stimulated gene-6, leukemia inhibitory factor, transforming growth factor-β1 and hepatocyte growth factor from hFCPCs. In the OA model in vitro, co-treatment of poly(I-C)-primed hFCPCs significantly alleviated IL-1β-induced expression of inflammatory factors such as IL-6, monocyte chemoattractant protein-1 and IL-1β, and matrix metalloproteinases in SW982, while it increased the expression of cartilage extracellular matrix such as aggrecan and collagen type II in human chondrocytes. We also found that treatment of poly(I-C) did not cause significant changes in the surface marker profile of hFCPCs, while showed some changes in the 3 lineages differentiation. CONCLUSION These results suggest that poly(I-C)-primed hFCPCs have an ability to modulate inflammatory response and OA phenotypes in vitro and encourage further studies to apply them in animal models of OA in the future.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, 22212, Korea
| | - An Nguyen-Thuy Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Ji Young Lee
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Pusan, 48513, Korea
| | - So Ra Park
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, 22212, Korea
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea.
| |
Collapse
|
9
|
Kong Y, Zhang X, Ma X, Wu L, Chen D, Su B, Liu D, Wang X. Silicon-substituted calcium phosphate promotes osteogenic-angiogenic coupling by activating the TLR4/PI3K/AKT signaling axis. J Biomater Appl 2022; 37:459-473. [PMID: 35623361 DOI: 10.1177/08853282221105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silicon-substituted calcium phosphate (Si-CaP) is a promising bioactive material for bone tissue engineering. The mechanism of Si-CaP regulates osteogenic-angiogenic coupling during bone regeneration has not been fully elucidated. In this study, we screened the targets of Si-CaP and osteogenic-angiogenic coupling. 83 common genes were regarded as key targets for Si-CaP regulation of the osteogenic-angiogenic coupling. Then, we performed protein-protein interaction analysis, GO and KEGG enrichment analysis of these 83 targets to further predict their molecular mechanism. Our results showed that Si-CaP treatment could regulate the osteogenic-angiogenic coupling by up-regulating the expression of Toll-like receptor 4 (TLR4), and the phosphorylation of AKT which in turn activating the PI3K/AKT signaling pathway, promoting the expression of RUNX2, OPN, VEGF. In addition, we also found that TLR4 siRNA treatment could block the PI3K/AKT signaling pathway, while inhibiting the promoting effect of Si-CaP. However, although LY294002 can achieve the same inhibitory effect as TLR4 siRNA by blocking the PI3K/AKT signaling pathway, it could not affect the expression of TLR4. This indicates that TLR4 is an upstream activator of PI3K/AKT signaling pathway. These results are highly consistent with the prediction of bioinformatics. In conclusion, we have elucidated the role of TLR4/PI3K/AKT signaling axis in Si-CaP mediated osteogenic-angiogenic coupling for the first time. This study provides new data onto the regulatory role and molecular mechanism of Si-CaP in the process of osteogenic-angiogenic coupling, which strongly supports its wide application for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanhang Kong
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xin Zhang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xinnan Ma
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Leilei Wu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Chen
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Su
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daqian Liu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintao Wang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Potapnev MP. Analysis of approaches to increase the efficacy of cell therapy based on mesenchymal stromal cells. GENES & CELLS 2021; 16:22-28. [DOI: 10.23868/202112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review considers the main stages of isolating, processing and clinical use of human mesenchymal stromal cells (MSCs). They included: donor selection, selection of the source of MSCs, methods of isolation of cellular suspension from tissue, culturing in vitro for cell biomass propagation, priming of the resulting cell product, timing and ways of its clinical application, selection of the recipient of MSCs. The analysis of the stages of MSCs preparation and conditions for their use was carried out from the position of the influence on the final therapeutic effect of cell therapy in patients (or experimental animals - in preclinical studies). The optimal parameters of work with MSCs at each stage, the possibility to improve their quality / biological activity in order to increase their therapeutic efficacy were determined. The analysis and ways of avoiding the influence of adverse factors associated with the manufacturing and use of MSCs on the effectiveness of cell therapy in patients were given.
Collapse
|
11
|
Adipose Tissue-Derived Mesenchymal Stem Cells as a Potential Restorative Treatment for Cartilage Defects: A PRISMA Review and Meta-Analysis. Pharmaceuticals (Basel) 2021; 14:ph14121280. [PMID: 34959680 PMCID: PMC8705514 DOI: 10.3390/ph14121280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cartilage defects are a predisposing factor for osteoarthritis. Conventional therapies are mostly palliative and there is an interest in developing newer therapies that target the disease’s progression. Mesenchymal stem cells (MSCs) have been suggested as a promising therapy to restore hyaline cartilage to cartilage defects, though the optimal cell source has remained under investigation. A PRISMA systematic review was conducted utilising five databases (MEDLINE, EMBASE, Cochrane Library, Scopus, Web of Science) which identified nineteen human studies that used adipose tissue-derived MSC (AMSC)-based therapies, including culture-expanded AMSCs and stromal vascular fraction, to treat cartilage defects. Clinical, imaging and histological outcomes, as well as other relevant details pertaining to cartilage regeneration, were extracted from each study. Pooled analysis revealed a significant improvement in WOMAC scores (mean difference: −25.52; 95%CI (−30.93, −20.10); p < 0.001), VAS scores (mean difference: −3.30; 95%CI (−3.72, −2.89); p < 0.001), KOOS scores and end point MOCART score (mean: 68.12; 95%CI (62.18, 74.05)), thus showing improvement. The studies in this review demonstrate the safety and efficacy of AMSC-based therapies for cartilage defects. Establishing standardised methods for MSC extraction and delivery, and performing studies with long follow-up should enable future high-quality research to provide the evidence needed to bring AMSC-based therapies into the market.
Collapse
|
12
|
Li W, Mao M, Hu N, Wang J, Huang J, Gu S. In vitro evaluation of periapical lesion-derived stem cells for dental pulp tissue engineering. FEBS Open Bio 2021; 12:270-284. [PMID: 34826215 PMCID: PMC8727956 DOI: 10.1002/2211-5463.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 11/12/2022] Open
Abstract
Dental pulp tissue engineering is a promising alternative treatment for pulpitis and periapical periodontitis, and dental pulp stem cells (DPSCs) are considered to be the gold standard for dental seed cell research. Periapical lesions harbor mesenchymal stem cells with the capacity for self-renewal and multilineage differentiation. However, it remains unknown whether these periapical lesion-derived stem cells (PLDSCs) are suitable for dental pulp tissue engineering. To investigate this possibility, PLDSCs and DPSCs were isolated using the tissue outgrowth method and cultured under identical conditions. We then performed in vitro experiments to investigate their biological characteristics. Our results indicate that PLDSCs proliferate actively in vitro and exhibit similar morphology, immunophenotype and multilineage differentiation ability as DPSCs. Simultaneously, PLDSCs exhibit stronger migrative ability and express more vascular endothelial growth factor and glial cell line-derived neurotrophic factor than DPSCs, and PLDSC-derived conditioned medium was more effective in tube formation assay. The mRNA expression levels of immunomodulatory genes HLA-G, IDO and ICAM-1 were also higher in PLDSCs. However, regarding osteo/odontogenic differentiation, PLDSCs showed weaker alkaline phosphatase staining and lower calcified nodule formation compared to DPSCs, as well as lower expression of ALP, RUNX2 and DSPP, as confirmed by a quantitative RT-PCR. The osteo/odontogenic protein expression levels of DSPP, RUNX2, DMP1 and SP7 were also higher in DPSCs. The present study demonstrates that PLDSCs demonstrate potential use as seed cells for dental pulp regeneration, especially for achieving enhanced neurovascularization.
Collapse
Affiliation(s)
- Weiping Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengying Mao
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nan Hu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shensheng Gu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
13
|
Najar M, Merimi M, Faour WH, Lombard CA, Moussa Agha D, Ouhaddi Y, Sokal EM, Lagneaux L, Fahmi H. In Vitro Cellular and Molecular Interplay between Human Foreskin-Derived Mesenchymal Stromal/Stem Cells and the Th17 Cell Pathway. Pharmaceutics 2021; 13:1736. [PMID: 34684029 PMCID: PMC8537928 DOI: 10.3390/pharmaceutics13101736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Foreskin, considered a biological waste material, has been shown to be a reservoir of therapeutic cells. The immunomodulatory properties of mesenchymal stromal/stem cells (MSCs) from the foreskin (FSK-MSCs) are being evaluated in cell-based therapy for degenerative, inflammatory and autoimmune disorders. Within the injured/inflamed tissue, proinflammatory lymphocytes such as IL-17-producing T helper cells (Th17) may interact with the stromal microenvironment, including MSCs. In this context, MSCs may encounter different levels of T cells as well as specific inflammatory signals. Uncovering the cellular and molecular changes during this interplay is central for developing an efficient and safe immunotherapeutic tool. To this end, an in vitro human model of cocultures of FSK-MSCs and T cells was established. These cocultures were performed at different cell ratios in the presence of an inflammatory setting. After confirming that FSK-MSCs respond to ISCT criteria by showing a typical phenotype and multilineage potential, we evaluated by flow cytometry the expression of Th17 cell markers IL-17A, IL23 receptor and RORγt within the lymphocyte population. We also measured 15 human Th17 pathway-related cytokines. Regardless of the T cell/MSC ratio, we observed a significant increase in IL-17A expression associated with an increase in IL-23 receptor expression. Furthermore, we observed substantial modulation of IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, INF-γ, sCD40, and TNF-α secretion. These findings suggest that FSK-MSCs are receptive to their environment and modulate the T cell response accordingly. The changes within the secretome of the stromal and immune environment are likely relevant for the therapeutic effect of MSCs. FSK-MSCs represent a valuable cellular product for immunotherapeutic purposes that needs to be further clarified and developed.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.N.); (L.L.)
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.M.); (D.M.A.)
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Wissam H. Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos 5053, Lebanon;
| | - Catherine A. Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (C.A.L.); (E.M.S.)
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.M.); (D.M.A.)
| | - Yassine Ouhaddi
- Orthopaedics Division, Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital (MGH), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H3G 1A4, Canada;
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (C.A.L.); (E.M.S.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.N.); (L.L.)
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
14
|
Endocannabinoids Regulate Stem Cells of the Apical Papilla via a Cannabinoid Receptor and TRPV1-Independent Mechanism. J Endod 2021; 47:1617-1624. [PMID: 34293356 DOI: 10.1016/j.joen.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Endogenous cannabinoids (endocannabinoids [eCBs]) have been shown to have a multitude of functions including neurotransmission and immune modulatory effects. This study aimed to evaluate if stem cells of the apical papilla (SCAP) express the receptors and enzymes of the endocannabinoid system (ECS) and whether eCBs regulate their proliferation and mineralization potential. METHODS Gene expression of the main components of the ECS and transient receptor potential vanilloid 1 (TRPV1) was evaluated in SCAP cultures. SCAP were treated with 2 concentrations of eCBs and/or capsazepine, a TRPV1 antagonist. SCAP viability was evaluated after 1, 4, and 7 days. Osteogenic differentiation was assessed after 14 days, and the gene expression of mineralization markers was assessed after 7 days. RESULTS The enzymes of ECS and TRPV1 but not the cannabinoid receptors (cannabinoid receptors 1 and 2) were expressed in SCAP. Anandamide, 2-arachidonoylglycerol, and N-arachidonoylphenolamine (AM-404) reduced SCAP viability in all experimental periods at the highest concentration compared with the group with no treatment. Anandamide and AM-404 did not inhibit SCAP differentiation potential, but 2-arachidonoylglycerol at the highest concentration did. SCAP treated with AM-404 presented a down-regulation in gene expression of alkaline phosphatase (ALP), dentin matrix protein 1 (DMP-1), and dentin sialophosphoprotein (DSPP) compared with the proliferation medium group but not with control group. CONCLUSIONS SCAP expressed the genes of the main components of ECS and TRPV1, and eCBs can affect SCAP viability, mineralization, and gene expression.
Collapse
|
15
|
Parra-Izquierdo I, Sánchez-Bayuela T, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells. FEBS J 2021; 288:6528-6542. [PMID: 34009721 DOI: 10.1111/febs.16026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Growing evidence supports a role for viral and cell-derived double-stranded (ds)-RNA in cardiovascular pathophysiology. Poly(I:C), a dsRNA surrogate, has been shown to induce inflammation, type I interferon (IFN) responses, and osteogenesis through Toll-like receptor 3 in aortic valve interstitial cells (VIC). Here, we aimed to determine whether IFN signaling via Janus kinase (JAK)/Signal transducers and activators of transcription (STAT) mediates dsRNA-induced responses in primary human VIC. Western blot, ELISA, qPCR, calcification, flow cytometry, and enzymatic assays were performed to evaluate the mechanisms of dsRNA-induced inflammation and calcification. Poly(I:C) triggered a type I IFN response characterized by IFN-regulatory factors gene upregulation, IFN-β secretion, and STAT1 activation. Additionally, Poly(I:C) promoted VIC inflammation via NF-κB and subsequent adhesion molecule expression, and cytokine secretion. Pretreatment with ruxolitinib, a clinically used JAK inhibitor, abrogated these responses. Moreover, Poly(I:C) promoted a pro-osteogenic phenotype and increased VIC calcification to a higher extent in cells from males. Inhibition of JAK with ruxolitinib or a type I IFN receptor blocking antibody blunted Poly(I:C)-induced calcification. Mechanistically, Poly(I:C) promoted VIC apoptosis in calcification medium, which was inhibited by ruxolitinib. Moreover, Poly(I:C) co-operated with IFN-γ to increase VIC calcification by synergistically activating extracellular signal-regulated kinases and hypoxia-inducible factor-1α pathways. In conclusion, JAK/STAT signaling mediates dsRNA-triggered inflammation, apoptosis, and calcification and may contribute to a positive autocrine loop in human VIC in the presence of IFN-γ. Blockade of dsRNA responses with JAK inhibitors may be a promising therapeutic avenue for CAVD.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Tania Sánchez-Bayuela
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Irene Castaños-Mollor
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Javier López
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina Gómez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - J Alberto San Román
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Carmen García-Rodríguez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
16
|
Khodabandehloo F, Aflatoonian R, Zandieh Z, Rajaei F, Sayahpour FA, Nassiri-Asl M, Baghaban Eslaminejad M. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J Cell Mol Med 2021; 25:5138-5149. [PMID: 33939261 PMCID: PMC8178267 DOI: 10.1111/jcmm.16506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.
Collapse
Affiliation(s)
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Forugh-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Pharmacology and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Zhu D, Yu H, Liu P, Yang Q, Chen Y, Luo P, Zhang C, Gao Y. Calycosin modulates inflammation via suppressing TLR4/NF-κB pathway and promotes bone formation to ameliorate glucocorticoid-induced osteonecrosis of the femoral head in rat. Phytother Res 2021; 35:2824-2835. [PMID: 33484002 DOI: 10.1002/ptr.7028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Glucocorticoid (GC) administration is one of the main causes of osteonecrosis of the femoral head (ONFH). Inflammation, especially the TLR4/NF-κB pathway, has been demonstrated to play a pivotal role in the pathogenesis of GC-induced ONFH. Calycosin, the main bioactive extract of Astragali Radix, could substantially regulate the TLR4/NF-κB pathway. Therefore, in this study, we hypothesized that calycosin could exert beneficial effects in GC-induced ONFH. In vitro, effects of calycosin on the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) were determined using Alizarin red staining, alkaline phosphatase activity examination, and osteogenic-related gene assay. Meanwhile, inflammatory cytokines were detected by enzyme-linked immunosorbent assay. In vivo, 60 male Sprague-Dawley rats were randomly separated into three groups: the control group, the methylprednisolone (MPS) group, and the MPS + calycosin group. The results showed that calycosin could significantly promote dynamic bone formation and retard TLR4/NF-κB pathway. in vivo investigations indicated that calycosin could decrease the morbidity of ONFH and alleviate pathological manifestations within the femoral head. Meanwhile, calycosin could protect osseous blood supply and facilitate dynamic bone formation. The findings collectively demonstrated that calycosin could ameliorate GC-induced ONFH in rat and might become a potential candidate for pharmaceutical prevention of this intractable disease.
Collapse
Affiliation(s)
- Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Shahsavari A, Weeratunga P, Ovchinnikov DA, Whitworth DJ. Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells. Sci Rep 2021; 11:3486. [PMID: 33568729 PMCID: PMC7875972 DOI: 10.1038/s41598-021-82856-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
With a view towards harnessing the therapeutic potential of canine mesenchymal stromal cells (cMSCs) as modulators of inflammation and the immune response, and to avoid the issues of the variable quality and quantity of harvested cMSCs, we examined the immunomodulatory properties of cMSCs derived from canine induced pluripotent stem cells (ciMSCs), and compared them to cMSCs harvested from adipose tissue (cAT-MSC) and bone marrow (cBM-MSC). A combination of deep sequencing and quantitative RT-PCR of the ciMSC transcriptome confirmed that ciMSCs express more genes in common with cBM-MSCs and cAT-MSCs than with the ciPSCs from which they were derived. Both ciMSCs and harvested cMSCs express a range of pluripotency factors in common with the ciPSCs including NANOG, POU5F1 (OCT-4), SOX-2, KLF-4, LIN-28A, MYC, LIF, LIFR, and TERT. However, ESRRB and PRDM-14, both factors associated with naïve, rather than primed, pluripotency were expressed only in the ciPSCs. CXCR-4, which is essential for the homing of MSCs to sites of inflammation, is also detectable in ciMSCs, cAT- and cBM-MSCs, but not ciPSCs. ciMSCs constitutively express the immunomodulatory factors iNOS, GAL-9, TGF-β1, PTGER-2α and VEGF, and the pro-inflammatory mediators COX-2, IL-1β and IL-8. When stimulated with the canine pro-inflammatory cytokines tumor necrosis factor-α (cTNF-α), interferon-γ (cIFN-γ), or a combination of both, ciMSCs upregulated their expression of IDO, iNOS, GAL-9, HGF, TGF-β1, PTGER-2α, VEGF, COX-2, IL-1β and IL-8. When co-cultured with mitogen-stimulated lymphocytes, ciMSCs downregulated their expression of iNOS, HGF, TGF-β1 and PTGER-2α, while increasing their expression of COX-2, IDO and IL-1β. Taken together, these findings suggest that ciMSCs possess similar immunomodulatory capabilities as harvested cMSCs and support further investigation into their potential use for the management of canine immune-mediated and inflammatory disorders.
Collapse
Affiliation(s)
- Arash Shahsavari
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia
| | - Prasanna Weeratunga
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia
| | - Dmitry A. Ovchinnikov
- grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067 Australia
| | - Deanne J. Whitworth
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
19
|
Najar M, Martel-Pelletier J, Pelletier JP, Fahmi H. Novel insights for improving the therapeutic safety and efficiency of mesenchymal stromal cells. World J Stem Cells 2020; 12:1474-1491. [PMID: 33505596 PMCID: PMC7789128 DOI: 10.4252/wjsc.v12.i12.1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted great interest in the field of regenerative medicine. They can home to damaged tissue, where they can exert pro-regenerative and anti-inflammatory properties. These therapeutic effects involve the secretion of growth factors, cytokines, and chemokines. Moreover, the functions of MSCs could be mediated by extracellular vesicles (EVs) that shuttle various signaling messengers. Although preclinical studies and clinical trials have demonstrated promising therapeutic results, the efficiency and the safety of MSCs need to be improved. After transplantation, MSCs face harsh environmental conditions, which likely dampen their therapeutic efficacy. A possible strategy aiming to improve the survival and therapeutic functions of MSCs needs to be developed. The preconditioning of MSCs ex vivo would strength their capacities by preparing them to survive and to better function in this hostile environment. In this review, we will discuss several preconditioning approaches that may improve the therapeutic capacity of MSCs. As stated above, EVs can recapitulate the beneficial effects of MSCs and may help avoid many risks associated with cell transplantation. As a result, this novel type of cell-free therapy may be safer and more efficient than the whole cell product. We will, therefore, also discuss current knowledge regarding the therapeutic properties of MSC-derived EVs.
Collapse
Affiliation(s)
- Mehdi Najar
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada.
| | - Johanne Martel-Pelletier
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean Pierre Pelletier
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
20
|
The Histone Demethylase KDM3B Promotes Osteo-/Odontogenic Differentiation, Cell Proliferation, and Migration Potential of Stem Cells from the Apical Papilla. Stem Cells Int 2020; 2020:8881021. [PMID: 33082788 PMCID: PMC7563049 DOI: 10.1155/2020/8881021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding the regulation mechanisms of mesenchymal stem cells (MSCs) can assist in tissue regeneration. The histone demethylase (KDM) family has a crucial role in differentiation and cell proliferation of MSCs, while the function of KDM3B in MSCs is not well understood. In this study, we used the stem cells from the apical papilla (SCAPs) to test whether KDM3B could regulate the function of MSCs. By an alkaline phosphatase (ALP) activity assay, Alizarin red staining, real-time RT-PCR, and western blot analysis, we found that KDM3B enhanced the ALP activity and mineralization of SCAPs and promoted the expression of runt-related transcription factor 2 (RUNX2), osterix (OSX), dentin sialophosphoprotein (DSPP), and osteocalcin (OCN). Additionally, the CFSE, CCK-8, and flow cytometry assays revealed that KDM3B improved cell proliferation by accelerating cell cycle transition from the G1 to S phase. Scratch and transwell migration assays displayed that KDM3B promoted the migration potential of SCAPs. Mechanically, microarray results displayed that 98 genes were upregulated, including STAT1, CCND1, and FGF5, and 48 genes were downregulated after KDM3B overexpression. Besides, we found that the Toll-like receptor and JAK-STAT signaling pathway may be involved in the regulating function of KDM3B in SCAPs. In brief, we discovered that KDM3B promoted the osteo-/odontogenic differentiation, cell proliferation, and migration potential of SCAPs and provided a novel target and theoretical basis for regenerative medicine.
Collapse
|
21
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
22
|
Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, Fawzy El-Sayed KM. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int 2020; 2020:1327405. [PMID: 32184830 PMCID: PMC7060886 DOI: 10.1155/2020/1327405] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Oral mesenchymal stem/progenitor cells (MSCs) are renowned in the field of tissue engineering/regeneration for their multilineage differentiation potential and easy acquisition. These cells encompass the periodontal ligament stem/progenitor cells (PDLSCs), the dental pulp stem/progenitor cells (DPSCs), the stem/progenitor cells from human exfoliated deciduous teeth (SHED), the gingival mesenchymal stem/progenitor cells (GMSCs), the stem/progenitor cells from the apical papilla (SCAP), the dental follicle stem/progenitor cells (DFSCs), the bone marrow mesenchymal stem/progenitor cells (BM-MSCs) from the alveolar bone proper, and the human periapical cyst-mesenchymal stem cells (hPCy-MSCs). Apart from their remarkable regenerative potential, oral MSCs possess the capacity to interact with an inflammatory microenvironment. Although inflammation might affect the properties of oral MSCs, they could inversely exert a multitude of immunological actions to the local inflammatory microenvironment. The present review discusses the current understanding about the immunomodulatory role of oral MSCs both in periodontitis and systemic diseases, their "double-edged sword" uniqueness in inflammatory regulation, their affection of the immune system, and the underlying mechanisms, involving oral MSC-derived extracellular vesicles.
Collapse
Affiliation(s)
- Li-li Zhou
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Wei Liu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Yan-min Wu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei-lian Sun
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - C. E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - K. M. Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11435, Egypt
| |
Collapse
|
23
|
Huang X, Cen X, Zhang B, Liao Y, Zhu G, Liu J, Zhao Z. Prospect of circular RNA in osteogenesis: A novel orchestrator of signaling pathways. J Cell Physiol 2019; 234:21450-21459. [PMID: 31131457 DOI: 10.1002/jcp.28866] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) were initially regarded as by-products of aberrant splicing. But now, there are substantial evidence on their various roles in the regulation of genes during the development of organs and diseases. Consistent with these breakthroughs, it is experiencing rapid growth that circRNAs function as the important checkpoints during the osteogenesis. Therefore, characterizing the roles of circRNAs is useful and critical to better understanding the process of osteogenic differentiation, which could provide new avenues for the diagnosis and treatment of bone diseases, such as bone defects and osteoporosis. In this review, we presented a map of the interaction between circRNAs and the molecules of signaling pathways associated with osteogenesis, summarized the current knowledge of the biological functions of circRNAs during the osteogenic differentiation, figured out the limits of existing research works, and provided a novel look on the diagnostic and therapeutic methods of bone diseases based on circRNAs.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019; 2019:7692973. [PMID: 31531025 PMCID: PMC6721436 DOI: 10.1155/2019/7692973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.
Collapse
|
25
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
26
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
27
|
Zhu Y, Li Q, Zhou Y, Li W. TLR activation inhibits the osteogenic potential of human periodontal ligament stem cells through Akt signaling in a Myd88- or TRIF-dependent manner. J Periodontol 2019; 90:400-415. [PMID: 30362568 DOI: 10.1002/jper.18-0251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study investigated the effects of Toll-like receptors (TLRs) on human periodontal ligament stem cells (hPDLSCs) osteogenic differentiation and the associated mechanisms. METHODS TLR1, TLR3, TLR4, and TLR6 expression in hPDLSCs was evaluated by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and flow cytometry, whereas their functional roles were assessed based on nuclear factor (NF)-κB activation and proinflammatory cytokine expression. The osteogenic effects of these TLRs were analyzed by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. The roles of Myd88, TRIF, and downstream molecules mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) in TLR-mediated impaired osteogenic differentiation were examined by real-time RT-PCR and western blotting using specific small interfering RNA siRNA and pharmacologic inhibitors. The involvement of Akt activation in restoring TLR1-, 4-, and 6-mediated osteogenic suppression was verified using the Akt activator SC-79. RESULTS TLR1, TLR3, TLR4, and TLR6 were highly expressed functionally in hPDLSCs and high doses of TLR ligands inhibited osteogenic potential. Furthermore, blocking Myd88 partly rescued the decrease in osteogenesis mediated by TLR1, TLR4, and TLR6 activation by enhancing Akt phosphorylation; likewise, TRIF suppression partially rescued lipopolysaccharide (LPS)-mediated osteogenic inhibition through ERK and Akt activation. Moreover, Akt activation restored the TLR-mediated inhibition of hPDLSC osteogenic differentiation. CONCLUSIONS High doses of TLR1, TLR4, and TLR6 ligands suppress hPDLSC osteogenic differentiation by inhibiting Akt activation through Myd88- or TRIF-dependent signaling pathways. Blocking these adaptors or reactivating Akt could restore the TLR-mediated decrease in hPDLSC osteogenesis, and might be an ideal strategy for periodontitis treatment.
Collapse
Affiliation(s)
- Yunyan Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
28
|
Wang H, Feng C, Jin Y, Tan W, Wei F. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells. J Cell Physiol 2018; 234:10166-10177. [PMID: 30422310 DOI: 10.1002/jcp.27686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play critical roles in signal transduction during cell proliferation, differentiation, and apoptosis in a posttranscriptional manner. Recently, circRNAs have been proved to be a large class of animal RNAs with regulatory potency. However, whether circRNAs can respond to mechanical force (MF) and impact on human periodontal ligament stem cells (PDLSCs) and the orthodontic tooth movement (OTM) process remain unknown. Here, we investigated the circRNAs expression patterns in PDLSCs induced by MF and found that circRNAs were responsive to the MF in PDLSCs. Through the valid reads' distribution analysis, we found that the majority of reads in both the control PDLSCs and the MF-induced PDLSCs were distributed in exons. Then we analyzed Gene Ontology terms of genes that overlap with or are neighbors of the stress-responsive circRNAs and found unique enrichment patterns in biological processes, molecular function, and cellular component of PDLSCs. Next, we predicted the possible functions of circRNAs through circRNAs-miRNAs networks. We found that one circRNA may regulate one or several miRNA/miRNAs and one miRNA may interact with one or multiple circRNA/circRNAs. Importantly, a number of circRNAs were predicted to directly or indirectly regulate miRNAs-mediated osteogenic differentiation in mesenchymal stem cells. For instance, circRNA3140 was highly and widely associated with microRNA-21, which plays a critical role in MF-induced osteogenic differentiation of PDLSCs. Taken together, these findings reveal a previously unrecognized mechanism that MF can induce the expression changes of circRNAs in PDLSCs, which may modulate the OTM process and the alveolar bone remodeling.
Collapse
Affiliation(s)
- Hong Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Cheng Feng
- Jinan Hospital of Traditional Chinese Medicine, Jinan, China
| | - Ye Jin
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Wanye Tan
- Department of Stomatology, Qilu Hospital, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
29
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
30
|
Yu L, Qu H, Yu Y, Li W, Zhao Y, Qiu G. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. J Cell Mol Med 2018; 22:6134-6147. [PMID: 30338912 PMCID: PMC6237555 DOI: 10.1111/jcmm.13892] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to explore the differential expression of long noncoding RNAs (lncRNA)‐PCAT1, miR‐145‐5p and TLR4 in osteogenic differentiation via the Toll‐like receptor (TLR) signalling pathway and consequently determine the potential molecular mechanism. The mRNAs and pathways related to the osteogenic differentiation in human adipose‐derived stem cells (hADSCs) were analysed by bioinformatics. The MiRanda and TargetScan database were employed to detect the potential binding sites of miRNAs on lncRNAs and mRNAs. The differential expression of lncRNA‐PCAT1, miR‐145‐5p and TLR4 were detected by qRT‐PCR. Rrelated protein expression was analysed by Western blot. The targeted relationships between lncRNA‐PCAT1, miR‐145‐5p and TLR4 were verified by dual‐luciferase reporter assay. Alkaline phosphatase (ALP) activity and ARS staining assays were used to measure the impacts exerted by lncRNA PCAT1, miR‐145‐5p and TLR4 mRNA on osteogenic differentiation. After the induction of osteoblast differentiation, the expression of lncRNA‐PCAT1 and TLR4 increased, while the expression of miR‐145‐5p decreased. Dual‐luciferase reporter assay confirmed the targeted relationship between lncRNA‐PCAT1, miR‐145‐5p, and TLR4. LncRNA‐PCAT1 negatively regulated miR‐145‐5p and positively regulated TLR4. Knockdown of lncRNA‐PCAT1 or TLR4 decreased the expression of osteogenic differentiation‐related proteins, reduced the ALP and ARS levels and the activity of the TLR signalling pathway. MiR‐145‐5p could reverse the effects of PCAT1 and TLR4 in hADSCs osteogenic differentiation. LncRNA‐PCAT1 negatively regulated miR‐145‐5p, which promoted TLR4 expression to promote osteogenic differentiation by activating the TLR signalling pathway.
Collapse
Affiliation(s)
- Lingjia Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Hao Qu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Yifeng Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical Medical College of Peking University, Xicheng District, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| |
Collapse
|
31
|
Alonso-Pérez A, Franco-Trepat E, Guillán-Fresco M, Jorge-Mora A, López V, Pino J, Gualillo O, Gómez R. Role of Toll-Like Receptor 4 on Osteoblast Metabolism and Function. Front Physiol 2018; 9:504. [PMID: 29867550 PMCID: PMC5952219 DOI: 10.3389/fphys.2018.00504] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a process whose main function is to fight against invading pathogens or foreign agents. Nonetheless, it is widely accepted that inflammation takes part in multiple processes in a physiological or pathophysiological context. Among these processes the inflammation has been closely related to bone metabolism. It is well-known that in systemic inflammatory diseases such as rheumatoid arthritis the inflammatory environment contributes to the reduction of the bone mineral density. This has been further evidenced in different animals models of osteoporosis where the deletion of key inflammatory molecules dramatically reduced the bone loss. On the contrary, it is also well-known that certain degree of inflammation is required to allow bone fractures healing. In fact, excessive use of anti-inflammatory drugs inhibits bone fracture consolidation. The innate immune responses (IIRs) contribute to the development and maintenance of the inflammation. These responses have been observed in cells of the musculoskeletal system. Chondrocytes and osteoblasts are equipped with the molecular repertoire necessary to setting up these IIR, including the expression of several toll-like receptors. Specifically, toll-like receptor 4 (TLR4) activation in mesenchymal stem cells, osteoblasts, and osteocytes has been involved in catabolic and anabolic process. Accordingly, in this review we have summarized the current knowledge about the physiology of TLR4, including its signaling, and its endogenous agonists. In addition we have focused on its role on osteoblast metabolism and function.
Collapse
Affiliation(s)
- Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
- Division of Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Verónica López
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Jesús Pino
- Division of Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| |
Collapse
|
32
|
Ding H, Jin M, Liu D, Wang S, Zhang J, Song X, Huang R. Tenascin‑C promotes the migration of bone marrow stem cells via toll‑like receptor 4‑mediated signaling pathways: MAPK, AKT and Wnt. Mol Med Rep 2018; 17:7603-7610. [PMID: 29620204 PMCID: PMC5983947 DOI: 10.3892/mmr.2018.8855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
There are currently limitations in stem cell therapy due to the low rate of homing and proliferation of cells following transplantation. The present study was designed to investigate the effects of Tenascin-C (TN-C) on bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanisms. BMSCs were obtained from C57BL/6 mice. The survival and proliferation of BMSCs was analyzed by Cell Counting Kit-8 assay, migration was evaluated using the Transwell method, and differentiation was assessed by immunocytochemistry and immunofluorescence. In addition, the levels of proteins were detected by western blotting. High concentrations of TN-C promoted the migration of BMSCs. H2O2 at concentrations of 60–90 µmol/ml induced cell death in BMSCs, and thus, it was used to simulate oxidative stress in the microenvironment of acute myocardial infarction (AMI). High concentrations of TN-C were able to protect BMSCs from cell death, and promoted the migration of BMSCs (P<0.05). However, TAK-242 [the inhibitor of Toll-like receptor 4, (TLR4)] reduced the promoting effect of TN-C (P<0.05). By contrast, TN-C had no effect on the proliferation and differentiation of BMSCs. TN-C reduced the phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), and increased the phosphorylation levels of Ser473 protein kinase B (AKT) and β-catenin, all of which were inhibited by TAK-242 (P<0.05). In the simulated AMI microenvironment, TN-C promoted the migration of BMSCs via TLR4-mediated signaling pathways, including MAPK, AKT and Wnt.
Collapse
Affiliation(s)
- Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingyu Jin
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dai Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jianing Zhang
- College of Life Sciences and Pharmacy, Dalian University of Technology, Dalian, Liaoning 116027, P.R. China
| | - Xiantao Song
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Rongchong Huang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
33
|
Abbasi A, Kukia NR, Froushani SMA, Hashemi SM. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils. Life Sci 2018. [DOI: 10.1016/j.lfs.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Najar M, Fayyad-Kazan M, Raicevic G, Fayyad-Kazan H, Meuleman N, Bron D, Lagneaux L. Advanced Glycation End-Products-, C-Type Lectin- and Cysteinyl/ Leukotriene-Receptors in Distinct Mesenchymal Stromal Cell Populations: Differential Transcriptional Profiles in Response to Inflammation. CELL JOURNAL 2018; 20:250-258. [PMID: 29633603 PMCID: PMC5893297 DOI: 10.22074/cellj.2018.5104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We aimed at characterizing the transcription profiles of immunological receptors associated with the biology of mesenchymal stromal cells (MSCs). MATERIALS AND METHODS In this experimental study, quantitative real time-polymerase chain reaction (qRTPCR) was performed to establish the transcription profiles of advanced glycation end-products (RAGE) receptor, C-type lectin receptors (CLRs, including DECTIN-1, DECTIN-2 and MINCLE), leukotriene B4 (LTB4) receptors (BLT1 and BLT2) and cysteinyl leukotrienes (CysLTs) receptors (CYSLTR1 and CYSLTR2) in distinct populations of MSCs grown under basic or inflammatory conditions. RESULTS MSCs derived from adipose tissue (AT), foreskin (FSK), Wharton's jelly (WJ) and bone marrow (BM) exhibited significantly different transcription levels for these genes. Interestingly, these transcription profiles substantially changed following exposure of MSCs to inflammatory signals. CONCLUSIONS Collectively, for the first time, our data highlights that MSCs depending on their tissue-source, present several relevant receptors potentially involved in the regulation of inflammatory and immunological responses. Understanding the roles of these receptors within MSCs immunobiology will incontestably improve the efficiency of utilization of MSCs during cell-based therapies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium
| | - Mohammad Fayyad-Kazan
- Institute of Molecular Biology and Medicine, Free University of Brussels, Gosselies, Belgium
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium.,Experimental Hematology, Institute of Jules Bordet, Free University of Brussels, Waterloo Street, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium.,Experimental Hematology, Institute of Jules Bordet, Free University of Brussels, Waterloo Street, Brussels, Belgium
| | - Laurence Lagneaux
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Wang Z, Wang Z, Zhu J, Long X, Yan J. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE -/- mice as well as smooth muscle cells. Vascular 2017; 26:18-26. [PMID: 28587577 DOI: 10.1177/1708538117713395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and objectives Vascular calcification is a common complication in atherosclerosis. Accumulating evidence showed that Toll-like receptors (TLRs) mediate pro-inflammatory and atherosclerosis. Recent studies demonstrated that vascular calcification is one of the detrimental effects of vitamin K (Vit K) antagonists. However, the effects of Vit K on the expression of TLR2 and 4 and intimal calcification in artery remained unidentified. Methods and results Eighteen ApoE-/- mice were randomly divided into model group, Vit K-treated group, and control group. The mice of model and Vit K-treated group were fed with high-fat diet, while control group mice were fed with normal diet. Mice of Vit K-treated group were administered orally with vitamin K2 (40 mg.kg-1.day-1) for 12 weeks. Twelve weeks later the aortic sections of mice were acquired and stained with hematoxylin and eosin and von Kossa, respectively. Calcium content and activity of alkaline phosphatase (ALP) at aortic tissues were measured. The expression levels of TLR2 and TLR4 in aorta sections were detected by immunohistochemisty and RT-PCR, respectively. The effects of Vit K on cellular calcification were further studied in A7r5 SMCs. Results demonstrated that high-fat diet induced typical atherosclerosis with intimal calcification in ApoE-/- mice, while in Vit K-treated group atherosclerosis and calcium deposits were not serious; Vit K2 also inhibited cellular calcification in A7r5 SMCs. Quantitative analysis showed that calcium and ALP activity at aortic tissues in the Vit K-treated mice were significantly lower than that of the model group ( P < 0.01); Compared to the control group, the expression levels of TLR2 and TLR4 in the model group were significantly higher ( P < 0.05), while in Vit K-treated group the levels of TLR2 and 4 were significantly lower than that in the model group. Furthermore, the content of calcium was positively related to the expression levels of TLR2 and TLR4 mRNA at aortic tissues ( r = 0.77 and r = 0.79, respectively, both P < 0.001). Conclusion VitK2 can inhibit intimal calcification of aortic artery induced by high-fat diet in ApoE-/- mice and A7r5 SMCs calcification induced by β-sodium glycerophosphate, and meanwhile can reduce the expression of TLR2 and TLR4. These results suggested that the effects of VitK2 on vascular calcification may be associated with the expression of TLR2 and TLR4.
Collapse
Affiliation(s)
- Zhaojun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Jie Zhu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Xinguang Long
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
36
|
Raicevic G, Najar M, Busser H, Crompot E, Bron D, Toungouz M, Lagneaux L. Comparison and immunobiological characterization of retinoic acid inducible gene-I-like receptor expression in mesenchymal stromal cells. Sci Rep 2017; 7:2896. [PMID: 28588282 PMCID: PMC5460162 DOI: 10.1038/s41598-017-02850-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 04/20/2017] [Indexed: 01/06/2023] Open
Abstract
Due to their immunomodulatory and regenerative properties, Mesenchymal stromal cells (MSC) have generated major interests in several clinical settings including transplantation and inflammatory diseases. MSC functions can be influenced by their tissue origin. Their microenvironment strongly affects their biology notably through TLR sensing. In this study, we show that MSC isolated from four different sources express another type of cytosolic pathogen recognition receptors known as retinoic acid inducible gene-I (RIG-I)-like receptors (RLR). RLR activation in MSC induces the production of Type I IFN (IFN-β) and Type III IFN (IFN-λ1). The highest producers are adipose tissue(AT)-MSC. We further show that Interferon production is induced through TBK1/IKK-ε signaling and IRF7 phosphorylation. Depending on MSC source, the knockdown of TLR3 and/or RIG-I decreases the MSC response to RLR ligand poly(I:C)/Lyovec. Among the different MSC types, AT-MSCs display the highest sensitivity to viral stimuli as shown by the alteration of their viability after prolonged stimulation. Our work indicates that this could be linked to an increase of pro-apoptotic Noxa expression. Finally, the expression of IDO1 and LIF upon RLR activation indicate the increase of MSC immunomodulatory potential, especially in AT-MSCs. Altogether, these data should be considered when designing MSC-based therapy in clinical settings where inflammation or infection are present.
Collapse
Affiliation(s)
- Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Hélène Busser
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Hematology, Jules Bordet Institute, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Michel Toungouz
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology-Hematology-Transfusion, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
37
|
Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Netw 2017; 17:89-102. [PMID: 28458620 PMCID: PMC5407987 DOI: 10.4110/in.2017.17.2.89] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are potential cellular candidates for several immunotherapy purposes. Their multilineage potential and immunomodulatory properties make them interesting tools for the treatment of various immunological diseases. However, depending on the local microenvironment, diverse biological functions of MSCs can be modulated. Indeed, during infections such as obtained following TLR-agonist engagement (called as TLR priming), the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs can present critical changes, which could further affect their therapeutic potential. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects in particular during infectious episodes and to find the suitable experimental settings to study that. Pre-stimulation of MSCs with a specific TLR ligand may serve as an effective priming step to modulate one of its function to achieve a desired therapeutic issue.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| |
Collapse
|
38
|
Yu L, Xu Y, Wang F, Yang C, Liu G, Song X. Functional Roles of Pattern Recognition Receptors That Recognize Virus Nucleic Acids in Human Adipose-Derived Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9872138. [PMID: 28105439 PMCID: PMC5220457 DOI: 10.1155/2016/9872138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/01/2016] [Indexed: 12/24/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hAD-MSCs) are mesenchymal stem cells with the capability to modulate immune responses. Evidence showing that hAD-MSCs could mediate innate immune responses through pattern recognition receptors (PRRs) is increasing. However, the roles of PRRs in regulating the innate sensing of virus nucleic acids (RNA and DNA) in hAD-MSCs have not yet been investigated. This study focused on the abundant expression of PRRs, including Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I), which recognize viral RNA, and gamma-interferon inducible protein 16 (IFI16), which recognizes viral DNA in hAD-MSCs. Poly(I:C), a synthetic dsRNA analogy, activated TLR3 and RIG-I and induced the expression of type I interferons (IFN-α/β) and antivirus proteins, including IFN-stimulating gene 15, 2'5'-oligoadenylate synthetase, and Mx GTPase 1 in hAD-MSCs, which were attenuated by the knockdown of each TLR3 or RIG-I. Synthetic herpes simplex viral DNA (HSV60) activated IFI16 and induced the expression of IFN-α/β and antivirus proteins in hAD-MSCs, which were inhibited by the knockdown of IFI16. Both poly(I:C) and HSV60 induced the expression of IFN-α/β through the phosphorylation of IFN-regulatory factor 3. All these results indicated that PRRs recognizing virus nucleic acids were expressed and can mediate antivirus responses in hAD-MSCs.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Yongtao Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fangchao Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Can Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Guoyan Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Xiangfeng Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| |
Collapse
|
39
|
Shirjang S, Mansoori B, Solali S, Hagh MF, Shamsasenjan K. Toll-like receptors as a key regulator of mesenchymal stem cell function: An up-to-date review. Cell Immunol 2016; 315:1-10. [PMID: 28284487 DOI: 10.1016/j.cellimm.2016.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/07/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
Understanding the role of toll-like receptors (TLRs) in the immunomodulation potential, differentiation, migration, and survival of mesenchymal stem cells (MSCs) is absolutely vital to fully exploiting their MSC-based therapeutic potential. Furthermore, through recognition of exogenous or endogenous ligands produced upon injury, TLRs have been linked to allograft rejection and maintenance of chronic inflammatory diseases, including Crohn's disease, rheumatoid arthritis. Characterizing the effect of TLRs in biological control of MSCs fate and function could improve our knowledge about the MSC-based cell therapy and immunotherapy. In this paper, we outline the impacts of TLR activation and mechanisms on MSCs immunomodulatory functions, differentiation, migration, and survivability. Moreover, we indicate that the expression patterns of TLRs in MSCs from different sources.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues. Stem Cell Rev Rep 2016; 11:570-85. [PMID: 25381565 PMCID: PMC4493719 DOI: 10.1007/s12015-014-9569-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells (MSC) isolated from human term placental tissues possess unique characteristics, including their peculiar immunomodulatory properties and their multilineage differentiation potential. The osteogenic differentiation capacity of placental MSC has been widely disputed, and continues to be an issue of debate. This review will briefly discuss the different MSC populations which can be obtained from different regions of human term placenta, along with their unique properties, focusing specifically on their osteogenic differentiation potential. We will present the strategies used to enhance osteogenic differentiation potential in vitro, such as through the selection of subpopulations more prone to differentiate, the modification of the components of osteo-inductive medium, and even mechanical stimulation. Accordingly, the applications of three-dimensional environments in vitro and in vivo, such as non-synthetic, polymer-based, and ceramic scaffolds, will also be discussed, along with results obtained from pre-clinical studies of placental MSC for the regeneration of bone defects and treatment of bone-related diseases.
Collapse
|
41
|
Abstract
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Collapse
|
42
|
TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS One 2016; 11:e0149876. [PMID: 26930594 PMCID: PMC4773221 DOI: 10.1371/journal.pone.0149876] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/06/2016] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.
Collapse
|
43
|
Ebert R, Benisch P, Krug M, Zeck S, Meißner-Weigl J, Steinert A, Rauner M, Hofbauer L, Jakob F. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res 2015; 15:231-9. [PMID: 26135899 DOI: 10.1016/j.scr.2015.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/20/2015] [Accepted: 06/21/2015] [Indexed: 01/05/2023] Open
Abstract
The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation and mineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1β, CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| | - Peggy Benisch
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Jutta Meißner-Weigl
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Andre Steinert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes Bone Metabolism, Technical University of Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lorenz Hofbauer
- Division of Endocrinology, Diabetes Bone Metabolism, Technical University of Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|
44
|
Zhan Q, Song R, Zeng Q, Yao Q, Ao L, Xu D, Fullerton DA, Meng X. Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-κB and ERK1/2 pathways. Int J Biol Sci 2015; 11:482-93. [PMID: 25798067 PMCID: PMC4366646 DOI: 10.7150/ijbs.10905] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is characterized by chronic inflammation and progressive calcification in valve leaflets. Aortic valve interstitial cells (AVICs) play a critical role in the pathogenesis of CAVD. Previous studies show that stimulation of Toll-like receptor (TLR) 2 or TLR4 in AVICs in vitro up-regulates the expression of osteogenic mediators. Double-stranded RNA (dsRNA) can activate pro-inflammatory signaling through TLR3, the NLRP3 inflammasome and RIG-I-like receptors. The objective of this study is to determine the effect of dsRNA on AVIC osteogenic activities and the mechanism of its action. Methods and results: AVICs isolated from normal human valves were exposed to polyinosinic-polycytidylic acid [poly(I:C)], a mimic of dsRNA. Treatment with poly(I:C) increased the production of bone morphogenetic protein-2 (BMP-2), transforming growth factor beta-1 (TGF-β1) and alkaline phosphatase (ALP), and resulted in calcium deposit formation. Poly(I:C) induced the phosphorylation of NF-κB and ERK1/2. Knockdown of TLR3 essentially abrogated NF-κB and ERK1/2 phosphorylation, and markedly reduced the effect of poly(I:C) on the production of BMP-2, TGF-β1 and ALP. Further, inhibition of either NF-κB or ERK1/2 markedly reduced the levels of BMP-2, TGF-β1 and ALP in cells exposed to poly(I:C). Conclusion: Poly(I:C) up-regulates the production of BMP-2, TGF-β1 and ALP, and promotes calcium deposit formation in human AVICs. The pro-osteogenic effect of poly(I:C) is mediated primarily by TLR3 and the NF-κB and ERK1/2 pathways. These findings suggest that dsRNA, when present in aortic valve tissue, may promote CAVD progression through up-regulation of AVIC osteogenic activities.
Collapse
Affiliation(s)
- Qiong Zhan
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA. ; 2. Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rui Song
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA. ; 3. Departments of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Qingchun Zeng
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA. ; 2. Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingzhou Yao
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA. ; 4. Medical Research Center of Guangdong General Hospital, Southern Medical University. Guangzhou 510080, China
| | - Lihua Ao
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Dingli Xu
- 2. Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - David A Fullerton
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Xianzhong Meng
- 1. Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
45
|
He W, Wang Z, Luo Z, Yu Q, Jiang Y, Zhang Y, Zhou Z, Smith AJ, Cooper PR. LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway. J Cell Physiol 2015; 230:554-61. [PMID: 25104580 DOI: 10.1002/jcp.24732] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
Abstract
Human dental pulp stem cells (hDPSCs) show significant potential for exploitation in novel regeneration strategies, although lack of understanding of their responses to bacterial challenge constrains their application. The present study aimed to investigate whether lipopolysaccharide (LPS), the major pathogenic factor of Gram-negative bacteria, regulates the differentiation of hDPSCs and which intracellular signaling pathways may be involved. LPS treatment significantly promoted the differentiation of hDPSCs demonstrable by increased mineralized nodule formation and mRNA expression of several odontoblastic markers in a dose-dependent manner. While inhibition of TLR4, p38, and ERK signaling markedly antagonized LPS-mediated differentiation of hDPSCs. The inhibition of JNK and NF-κB signaling had no detectable effect on LPS activation of hDPSCs. LPS stimulation resulted in phosphorylation of NF-κB p65, IκB-α, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in DPSCs in a time-dependent manner, which was markedly suppressed by their specific inhibitors, respectively. Data demonstrated that LPS promoted odontoblastic differentiation of hDPSCs via TLR4, ERK, and P38 MAPK signaling pathways, but not NF-κB signaling.
Collapse
Affiliation(s)
- Wenxi He
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Effects of toll-like receptors 3 and 4 in the osteogenesis of stem cells. Stem Cells Int 2014; 2014:917168. [PMID: 25610471 PMCID: PMC4290028 DOI: 10.1155/2014/917168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/16/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
Objective. To investigate the effects of Toll-like receptors in stem cell osteogenesis. Methods. Bone marrow mesenchymal stem cells (BMSCs) were divided into the blank group, the TLR-3 activated group, and the TLR-4 activated group. After 10 days' osteogenic-promoting culture, expression of type I collagen and osteocalcin was determined by Western blot. Osteoblasts (OBs) were also divided into three groups mentioned above. Alkaline phosphatase (ALP) and alizarin red staining were performed after 10 days' ossification-inducing culture. The expression of β-catenin was investigated by Western blot. Results. Both the TLR-3 and TLR-4 activated groups had increased expression of type I collagen and osteocalcin; the effect of TLR-4 was stronger. The intensity of alizarin red and ALP staining was strongest in the TLR-3 activated group and weakest in the TLR-4 activated group. Activation of TLR-4 decreased the expression of β-catenin, whilst activation of TLR-3 did not affect the expression of β-catenin. Discussion. This study suggested that both TLR-3 and -4 promoted differentiation of BMSCs to OBs. TLR-3 had an inducing effect on the ossification of OBs to osteocytes, whilst the effect of TLR-4 was the opposite because of its inhibitory effect on the Wnt signaling pathway.
Collapse
|
47
|
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 2014; 11:159-70. [PMID: 25512010 DOI: 10.1038/nrrheum.2014.209] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Raicevic G, Najar M, Najimi M, El Taghdouini A, van Grunsven LA, Sokal E, Toungouz M. Influence of inflammation on the immunological profile of adult-derived human liver mesenchymal stromal cells and stellate cells. Cytotherapy 2014; 17:174-85. [PMID: 25455740 DOI: 10.1016/j.jcyt.2014.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Stem cell therapy for liver diseases has recently emerged as a promising alternative to liver transplantation. Eligible cells should have an appropriate immunophenotype. The aim of the present study was to define the immunological profile of two human liver-derived mesenchymal stromal cell populations, namely, stem cells (ADHLSC) and hepatic stellate cells (HSC). METHODS The study was conducted under normal and inflammatory conditions with the use of human bone marrow mesenchymal stromal cells (BM-MSC) as reference. RESULTS Like BM-MSC and ADHLSC, HSC were negative for hematopoietic (CD45) and endothelial (CD34) markers but positive for stromal markers. All cell types were constitutively positive for HLA class I and negative for human leukocyte antigen (HLA) class II and co-stimulatory molecules (CD80, CD86, CD134 and CD252). Inflammation induced the expression of CD40 in all cell types, but the highest values were observed on HSCs; high CD252 expression was only observed on HSC as compared with ADHLSC and BM-MSC. The expression of various adhesion molecules (CD54, CD58, CD106 and CD166) was dissimilar in these three cell types and was differentially influenced by inflammation as well. ADHLSC and HSC constitutively expressed the immunosuppressive molecule HLA-G, whereas CD274 expression was induced by inflammation, as in the case of BM-MSC. Moreover, all cell types expressed the two major natural killer ligands CD112 and CD115. CONCLUSIONS Toll-like receptors (TLR) 1, 3, 4 and 6 messenger RNA was expressed by both cell types, whereas TLR 2, 5, 7, 9 and 10 were only expressed by ADHLSC. Inflammation increased the expression of TLR 2 and 3 by ADHLSC and HSC. Finally, both liver-derived cell types were immunosuppressive because they inhibited the proliferation of mitogen-activated T cells.
Collapse
Affiliation(s)
- Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Adil El Taghdouini
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Toungouz
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
49
|
Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PLoS One 2014; 9:e101558. [PMID: 25004159 PMCID: PMC4086816 DOI: 10.1371/journal.pone.0101558] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/09/2014] [Indexed: 01/17/2023] Open
Abstract
Background and objectives Multipotent mesenchymal stromal cells (MSCs) represent a promising cell-based therapy for a number of inflammatory or autoimmune diseases. Herein, Toll like receptor (TLR) expression by MSCs and their immune regulatory roles are investigated. In this study, we investigated the influence of TLR on the immune response, proliferation, and differentiation potential of human turbinated MSC (hTMSC) cultures in vitro. Subjects and Methods After isolating hTMSCs from discarded inferior turbinate tissue, FACS analysis was used to assess the expression of TLRs such as TLR2, TLR3, TLR4, and TLR5 in hTMSCs and cell proliferation was assessed using a cell counting kit (CCK)-8. Cytokine and chemokine secretions were analyzed with multiplex immunoassays for IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, IP-10 (CXCL10), RANTES (CCL5), TNF-a, GM-CSF, and IFN-γ. The differentiation potential of hTMSCs was evaluated in the osteogenic, chondogenic, and adipogeinc media and analyzed by histology and gene expression related to differentiation. Results FACS analysis revealed that TLR3 and TLR4 expression consisted of a relatively high percentage of the surface proteins expressed by hTMSCs. The proliferation of hTMSCs was influenced and significantly increased by the presence of TLR4 agonists. In particular, hTMSCs produced a set of cytokines and chemokines and the expression of IL-6, IL-8, IL-12, IP-10 (CXCL10), RANTES (CCL5), TNF-α, and GM-CSF were up-regulated in response to the TLR4 agonist LPS. The osteogenic and adipogeinc differentiation potential of hTMSCs was not affected by TLR agonists. Conclusions We conclude that TLR4 stimulation affects TLR expression, proliferation, and the immunomodulation potential of hTMSCs. Understanding the mechanism behind TLR's influence on hTMSCs and their immunomodulating properties would be useful for providing a novel target to exploit in the improvement of stem cell-based therapeutic strategies.
Collapse
|
50
|
Kol A, Foutouhi S, Walker NJ, Kong NT, Weimer BC, Borjesson DL. Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells Dev 2014; 23:1831-43. [PMID: 24803072 DOI: 10.1089/scd.2014.0128] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are somatic, multipotent stromal cells with potent immunomodulatory and regenerative properties. Although MSCs have pattern recognition receptors and are modulated by Toll-like receptor ligands, MSC-microbial interactions are poorly defined. The objectives of this study were to determine the effect of bacterial association on MSC function. We hypothesized that gastrointestinal bacteria associate with MSCs and alter their immunomodulatory properties. The effect of MSC-microbial interactions on MSC morphology, viability, proliferation, migration, and immunomodulatory functions was investigated. MSCs associated with a remarkable array of enteric pathogens and commensal bacteria. MSC interactions with two model organisms, the pathogen Salmonella typhimurium and the probiotic Lactobacillus acidophilus, were further investigated. While ST readily invaded MSCs, LB adhered to the MSC plasma membrane. Neither microbe induced MSC death, degeneration, or diminished proliferation. Microbial association did not upregulate MHC-II, CD80/86, or CD1 expression. MSC-microbial interaction significantly increased transcription of key immunomodulatory genes, including COX2, IL6, and IL8, coupled with significantly increased prostaglandin E2 (PGE2), interleukin (IL)6, and IL8 secretion. MSC-ST coincubation resulted in increased MSC expression of CD54, and significant augmentation of MSC inhibition of mitogen-induced T-cell proliferation. T-cell proliferation was partially restored when PGE2 secretion was blocked from ST-primed MSCs. MSC-microbe interactions have a profound effect on MSC function and may be pivotal in a variety of clinical settings where MSCs are being explored as potential therapeutics in the context of microbial communities, such as Crohn's disease, chronic nonhealing wounds, and sepsis.
Collapse
Affiliation(s)
- Amir Kol
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California , Davis, California
| | | | | | | | | | | |
Collapse
|