1
|
Mohapatra SR, Rama E, Melcher C, Call T, Al Enezy-Ulbrich MA, Pich A, Apel C, Kiessling F, Jockenhoevel S. From In Vitro to Perioperative Vascular Tissue Engineering: Shortening Production Time by Traceable Textile-Reinforcement. Tissue Eng Regen Med 2022; 19:1169-1184. [PMID: 36201158 PMCID: PMC9679079 DOI: 10.1007/s13770-022-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
Background: The production of tissue-engineered vascular graft (TEVG) usually involves a prolonged bioreactor cultivation period of up to several weeks to achieve maturation of extracellular matrix and sufficient mechanical strength. Therefore, we aimed to substantially shorten this conditioning time by combining a TEVG textile scaffold with a recently developed copolymer reinforced fibrin gel as a cell carrier. We further implemented our grafts with magnetic resonance imaging (MRI) contrast agents to allow the in-vitro monitoring of the TEVG’s remodeling process. Methods: Biodegradable polylactic-co-glycolic acid (PLGA) was electrospun onto a non-degradable polyvinylidene fluoride scaffold and molded along with copolymer-reinforced fibrin hydrogel and human arterial cells. Mechanical tests on the TEVGs were performed both instantly after molding and 4 days of bioreactor conditioning. The non-invasive in vitro monitoring of the PLGA degradation and the novel imaging of fluorinated thermoplastic polyurethane (19F-TPU) were performed using 7T MRI. Results: After 4 days of close loop bioreactor conditioning, 617 ± 85 mmHg of burst pressure was achieved, and advanced maturation of extracellular matrix (ECM) was observed by immunohistology, especially in regards to collagen and smooth muscle actin. The suture retention strength (2.24 ± 0.3 N) and axial tensile strength (2.45 ± 0.58 MPa) of the TEVGs achieved higher values than the native arteries used as control. The contrast agents labeling of the TEVGs allowed the monitorability of the PLGA degradation and enabled the visibility of the non-degradable textile component. Conclusion: Here, we present a concept for a novel textile-reinforced TEVG, which is successfully produced in 4 days of bioreactor conditioning, characterized by increased ECM maturation and sufficient mechanical strength. Additionally, the combination of our approach with non-invasive imaging provides further insights into TEVG’s clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00482-0.
Collapse
Affiliation(s)
- Saurav Ranjan Mohapatra
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Christoph Melcher
- Institute for Textile Technology, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074, Aachen, Germany
| | - Tobias Call
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | | | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Evin M, Sudres P, Weber P, Godio-Raboutet Y, Arnoux PJ, Wagnac E, Petit Y, Tillier Y. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison. Acta Biomater 2022; 140:446-456. [PMID: 34838701 DOI: 10.1016/j.actbio.2021.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/01/2022]
Abstract
Introduction This study aims at identifying mechanical characteristics under bi-axial loading conditions of extracted swine pia mater (PM) and dura and arachnoid complex (DAC). Methods 59 porcine spinal samples have been tested on a bi-axial experimental device with a pre-load of 0.01 N and a displacement rate of 0.05 mm·s-1. Post-processing analysis included an elastic modulus, as well as constitutive model identification for Ogden model, reduced Gasser Ogden Holzapfel (GOH) model, anisotropic GOH model, transverse isotropic and anisotropic Gasser models as well as a Mooney-Rivlin model including fiber strengthening for PM. Additionally, micro-structure of the tissue was investigated using a bi-photon microscopy. Results Linear elastic moduli of 108 ± 40 MPa were found for DAC longitudinal direction, 53 ± 32 MPa for DAC circumferential direction, with a significant difference between directions (p < 0.001). PM presented significantly higher longitudinal than circumferential elastic moduli (26 ± 13 MPa vs 13 ± 9 MPa, p < 0.001). Transversely isotropic and anisotropic Gasser models were the most suited models for DAC (r2 = 0.99 and RMSE:0.4 and 0.3 MPa) and PM (r2 = 1 and RMSE:0.06 and 0.07 MPa) modelling. Conclusion This work provides reference values for further quasi-static bi-axial studies, and is the first for PM. Collagen structures observed by two photon microscopy confirmed the use of anisotropic Gasser model for PM and the existence of fenestration. The results from anisotropic Gasser model analysis depicted the best fit to experimental data as per this protocol. Further investigations are required to allow the use of meningeal tissue mechanical behaviour in finite element modelling with respect to physiological applications. STATEMENT OF SIGNIFICANCE: This study is the first to present biaxial tensile test of pia mater as well as constitutive model comparisons for dura and arachnoid complex tissue based on such tests. Collagen structures observed by semi-quantitative analysis of two photon microscopy confirmed the use of anisotropic Gasser model for pia mater and existence of fenestration. While clear identification of fibre population was not possible in DAC, results from anisotropic Gasser model depicted better fitting on experimental data as per this protocol. Bi-axial mechanical testing allows quasi-static characterization under conditions closer to the physiological context and the results presented could be used for further simulations of physiology. Indeed, the inclusion of meningeal tissue in finite element models will allow more accurate and reliable numerical simulations.
Collapse
|
3
|
Shaik TA, Baria E, Wang X, Korinth F, Lagarto JL, Höppener C, Pavone FS, Deckert V, Popp J, Cicchi R, Krafft C. Structural and Biochemical Changes in Pericardium upon Genipin Cross-Linking Investigated Using Nondestructive and Label-Free Imaging Techniques. Anal Chem 2022; 94:1575-1584. [PMID: 35015512 DOI: 10.1021/acs.analchem.1c03348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue cross-linking represents an important and often used technique to enhance the mechanical properties of biomaterials. For the first time, we investigated biochemical and structural properties of genipin (GE) cross-linked equine pericardium (EP) using optical imaging techniques in tandem with quantitative atomic force microscopy (AFM). EP was cross-linked with GE at 37 °C, and its biochemical and biomechanical properties were observed at various time points up to 24 h. GE cross-linked EP was monitored by the normalized ratio between its second-harmonic generation (SHG) and two-photon autofluorescence emissions and remained unchanged for untreated EP; however, a decreasing ratio due to depleted SHG and elevated autofluorescence and a fluorescence band at 625 nm were found for GE cross-linked EP. The mean autofluorescence lifetime of GE cross-linked EP also decreased. The biochemical signature of GE cross-linker and shift in collagen bands were detected and quantified using shifted excitation Raman difference spectroscopy as an innovative approach for tackling artifacts with high fluorescence backgrounds. AFM images indicated a higher and increasing Young's modulus correlated with cross-linking, as well as collagen structural changes in GE cross-linked EP, qualitatively explaining the observed decrease in the second-harmonic signal. In conclusion, we obtained detailed information about the biochemical, structural, and biomechanical effects of GE cross-linked EP using a unique combination of optical and force microscopy techniques in a nondestructive and label-free manner.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Enrico Baria
- National Institute of Optics, National Research Council (CNR-INO), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Xinyue Wang
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07743 Jena, Germany
| | - Florian Korinth
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - João L Lagarto
- National Institute of Optics, National Research Council (CNR-INO), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Christiane Höppener
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07743 Jena, Germany
| | - Francesco S Pavone
- National Institute of Optics, National Research Council (CNR-INO), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Volker Deckert
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07743 Jena, Germany
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (CNR-INO), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", Albert-Einstein-Strasse 9, 07745 Jena, Germany
| |
Collapse
|
4
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
5
|
Birer M, Acartürk F. Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mehmet Birer
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
6
|
Shaik TA, Lagarto JL, Baria E, Goktas M, Onoja PI, Blank KG, Pavone FS, Popp J, Krafft C, Cicchi R. Monitoring Changes in Biochemical and Biomechanical Properties of Collagenous Tissues Using Label-Free and Nondestructive Optical Imaging Techniques. Anal Chem 2021; 93:3813-3821. [PMID: 33596051 DOI: 10.1021/acs.analchem.0c04306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We demonstrate the ability of nondestructive optical imaging techniques such as second-harmonic generation (SHG), two-photon fluorescence (TPF), fluorescence lifetime imaging (FLIM), and Raman spectroscopy (RS) to monitor biochemical and mechanical alterations in tissues upon collagen degradation. Decellularized equine pericardium (EP) was treated with 50 μg/mL bacterial collagenase at 37 °C for 8, 16, 24, and 32 h. The SHG ratio (defined as the normalized ratio between SHG and TPF signals) remained unchanged for untreated EP (stored in phosphate-buffered solution (PBS)), whereas treated EP showed a trend of a decreasing SHG ratio with increasing collagen degradation. In the fluorescence domain, treated EP experienced a red-shifted emission and the fluorescence lifetime had a trend of decreasing lifetime with increasing collagen digestion. RS monitors collagen degradation, the spectra had less intense Raman bands at 814, 852, 938, 1242, and 1270 cm-1. Non-negative least-squares (NNLS) modeling quantifies collagen loss and relative increase of elastin. The Young's modulus, derived from atomic force microscope-based nanoindentation experiments, showed a rapid decrease within the first 8 h of collagen degradation, whereas more gradual changes were observed for optical modalities. We conclude that optical imaging techniques like SHG, RS, and FLIM can monitor collagen degradation in a label-free manner and coarsely access mechanical properties in a nondestructive manner.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - João L Lagarto
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Enrico Baria
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Melis Goktas
- Mechano(bio)chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Patrick Igoche Onoja
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Kerstin G Blank
- Mechano(bio)chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Francesco S Pavone
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Strasse 6, 07745 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Riccardo Cicchi
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Kennedy EBL, Patel RP, Perez CP, Clubb BL, Uyeno TA, Clark AJ. Comparative biomechanics of hagfish skins: diversity in material, morphology, and movement. ZOOLOGY 2020; 145:125888. [PMID: 33508724 DOI: 10.1016/j.zool.2020.125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022]
Abstract
The baggy skins of hagfishes confer whole-body flexibility that enables these animals to tie themselves into knots without injury. The skin's looseness is produced by a subcutaneous blood sinus that decouples the skin and body core and permits the core to contort dramatically without loading the skin in tension or shear. Hagfish skin represents a biological composite material comparable in strength and stiffness to the conventionally taut skins of other fishes. However, our understanding of hagfish skin is restricted to only one of 78 species: The Pacific hagfish Eptatretus stoutii. To determine if other hagfish share similar characteristics with E. stoutii, we measured material properties and compared histological data sets from the skins of four hagfish species: E. springeri, E. stoutii, Myxine glutinosa, and M. hubbsi. We also compared these material properties data with skins from the American eel, Anguilla rostrata. We subjected skin samples from all species to uniaxial tensile tests in order to measure strength, stiffness, extensibility, and toughness of skins stretched along longitudinal and circumferential axes. We also used a series of equibiaxial tensile tests on skin samples from E. stoutii, M. glutinosa, and A. rostrata to measure stiffness of skins simultaneously strained along both axes. Significant results of uniaxial and biaxial tests show that the skins from Eptatretus are anisotropic, being stiffer in the longitudinal axis, and more extensible than the isotropic skins of Myxine. Skins of A. rostrata were stiffer in the circumferential axis and they were stronger, tougher, and stiffer than all hagfish skins examined. The skins of Eptatretus are histologically distinct from Myxine skins and possess arrays of fibers that stain like muscle. These interspecific differences across hagfish skins show a phylogenetic pattern with knotting kinematics and flexibility; both genera belong to distinct but major subfamilies within the Myxinidae, and Eptatretus is known for creating and manipulating a greater diversity of knotting styles than Myxine.
Collapse
Affiliation(s)
- E B Lane Kennedy
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Raj P Patel
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Crystina P Perez
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Benjamin L Clubb
- Department of Biology, Valdosta State University, 1500 N Patterson Street, Valdosta, GA, 31698, USA
| | - Theodore A Uyeno
- Department of Biology, Valdosta State University, 1500 N Patterson Street, Valdosta, GA, 31698, USA
| | - Andrew J Clark
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA.
| |
Collapse
|
8
|
Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 2017; 14:383-392. [PMID: 28447487 DOI: 10.1080/17434440.2017.1324293] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Conventional synthetic vascular grafts are limited by the inability to remodel, as well as issues of patency at smaller diameters. Tissue-engineered vascular grafts (TEVGs), constructed from biologically active cells and biodegradable scaffolds have the potential to overcome these limitations, and provide growth capacity and self-repair. Areas covered: This article outlines the TEVG design, biodegradable scaffolds, TEVG fabrication methods, cell seeding, drug delivery, strategies to reduce wait times, clinical trials, as well as a 5-year view with expert commentary. Expert commentary: TEVG technology has progressed significantly with advances in scaffold material and design, graft design, cell seeding and drug delivery. Strategies have been put in place to reduce wait times and improve 'off-the-shelf' capability of TEVGs. More recently, clinical trials have been conducted to investigate the clinical applications of TEVGs.
Collapse
Affiliation(s)
- Chin Siang Ong
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Xun Zhou
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Chen Yu Huang
- b Department of Physics & Astronomy , Johns Hopkins University , Baltimore , MD , USA
| | - Takuma Fukunishi
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Huaitao Zhang
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Narutoshi Hibino
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| |
Collapse
|
9
|
Park HW, Yoon WB. Measuring ring tensile stress and strain of surimi gels using a novel ring tensile test with image analysis. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
11
|
Laterreur V, Ruel J, Auger FA, Vallières K, Tremblay C, Lacroix D, Tondreau M, Bourget JM, Germain L. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes. J Mech Behav Biomed Mater 2014; 34:253-63. [DOI: 10.1016/j.jmbbm.2014.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
|