1
|
Kłusak A, Gazińska MA. Recent progress of poly(glycerol adipate)-based network materials toward tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1447340. [PMID: 39355275 PMCID: PMC11442387 DOI: 10.3389/fbioe.2024.1447340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Poly(glycerol adipate) (PGA) is one of the aliphatic polyesters of glycerol. The most studied biomedical application of poly(glycerol adipate) is the use of its nanoparticles as drug delivery carriers. The PGA prepolymer can be crosslinked to network materials. The biomedical application of PGA-based network materials has largely remained unexplored till recently. The PGA-based network materials, such as poly(glycerol sebacate) elastomers, can be used in soft tissue regeneration due to their mechanical properties. The modulus of elasticity of PGA elastomers is within the range of MPa, which corresponds to the mechanical properties of human soft tissues. This short review aims at briefly summarizing the possible applications of PGA-based elastomers in tissue engineering, as indicated in recent years in research publications.
Collapse
Affiliation(s)
| | - Małgorzata Anna Gazińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
2
|
Hernández-Sánchez F, Rodríguez-Fuentes N, Sánchez-Pech JC, Ávila-Ortega A, Carrillo-Escalante HJ, Talavera-Pech WA, Martín-Pat GE. Comparative study of iodine-doped and undoped pyrrole grafting with plasma on poly (glycerol sebacate) scaffolds and its human dental pulp stem cells compatibility. J Biomater Appl 2024; 39:207-220. [PMID: 38820599 DOI: 10.1177/08853282241258304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
This study addresses the morphological and chemical characterization of PGS scaffolds after (6, 12, 18, 24, and 30 min) residence in undoped pyrrole plasma (PGS-PPy) and the evaluation of cell viability with human dental pulp stem cells (hDPSCs). The results were compared with a previous study that used iodine-doped pyrrole (PGS-PPy/I). Analyses through SEM and AFM revealed alterations in the topography and quantity of deposited PPy particles. FTIR spectra of PGS-PPy scaffolds confirmed the presence of characteristic absorption peaks of PPy, with higher intensities observed in the nitrile and -C≡C- groups compared to PGS-PPy/I scaffolds, while raman spectra indicated a lower presence of polaron N+ groups. On the other hand, PGS scaffolds modified with PPy exhibited lower cytotoxicity compared to PGS-PPy/I scaffolds, as evidenced by the Live/Dead assay. Furthermore, the PGS-PPy scaffolds at 6 and 12 min, and particularly the PGS-PPy/I scaffold at 6 min, showed the best results in terms of cell viability by the fifth day of culture. The findings of this study suggest that undoped pyrrole plasma modification for short durations could also be a viable option to enhance the interaction with hDPSCs, especially when the treatment times range between 6 min and 12 min.
Collapse
Affiliation(s)
| | - Nayeli Rodríguez-Fuentes
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Yucatán, México
- Consejo Nacional de Ciencias y Tecnologías, Cd. de México, México
| | | | | | | | | | - Gaspar Eduardo Martín-Pat
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Yucatán, México
- Consejo Nacional de Ciencias y Tecnologías, Cd. de México, México
| |
Collapse
|
3
|
Chen YT, Chuang YH, Chen CM, Wang JY, Wang J. Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 153:213562. [PMID: 37549480 DOI: 10.1016/j.bioadv.2023.213562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023]
Abstract
The development of treatments for critical-sized bone defects has been considered an important topic in the biomedical field because of the high demand for transplantable bone grafts. Following the concept of tissue engineering, implantation of biocompatible porous scaffolds carrying cells and regulating factors is the most efficient strategy to stimulate clinical bone regeneration. With the advancement in the development of 3D-printing techniques, scaffolds with highly controllable architectures can be fabricated to further improve healing efficacies. However, challenges such as the limited biocompatibility of resin materials and poor cell-carrying capacities still exist in the application of current scaffolds. In this study, a novel biodegradable polymer, poly (ethylene glycol)-co-poly (glycerol sebacate) acrylate (PEGSA), was synthesized and blended with hydroxyapatite (HAP) nanoparticles to produce osteoinductive and photocurable resins for 3D printing. The composites were optimized and applied in the fabrication of gyroid scaffolds with biomimetic characteristics and high permeability, followed by the combination of bioactive hydrogels containing Wharton's jelly-derived mesenchymal stem cells (WJMSC) to increase the efficiency of cell delivery. The promotion of osteogenesis from 3D-printed scaffolds was confirmed in-vivo while the hybrid scaffolds were proven to be great platforms for WJMSC culture and differentiation in-vitro. These results indicate that the proposed hybrid systems, combining osteoinductive 3D-printed scaffolds and cell-laden hydrogels, have great potential for bone tissue engineering and are expected to be applied in the treatment of bone defects based on active tissue regeneration.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ya-Han Chuang
- Interdisciplinary Program of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics Surgery and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jir-You Wang
- Department of Orthopedics Surgery and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
4
|
Awale GM, Barajaa MA, Kan HM, Seyedsalehi A, Nam GH, Hosseini FS, Ude CC, Schmidt TA, Lo KWH, Laurencin CT. Regenerative engineering of long bones using the small molecule forskolin. Proc Natl Acad Sci U S A 2023; 120:e2219756120. [PMID: 37216527 PMCID: PMC10235978 DOI: 10.1073/pnas.2219756120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Bone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.4 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopedic surgeons to stimulate bone tissue formation alone and when paired with biomaterials. However, significant limitations such as immunogenicity, high production cost, and ectopic bone growth from these therapies remain. Therefore, efforts have been made to discover and repurpose osteoinductive small-molecule therapeutics to promote bone regeneration. Previously, we have demonstrated that a single-dose treatment with the small-molecule forskolin for just 24 h induces osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro, while mitigating adverse side effects attributed with prolonged small-molecule treatment schemes. In this study, we engineered a composite fibrin-PLGA [poly(lactide-co-glycolide)]-sintered microsphere scaffold for the localized, short-term delivery of the osteoinductive small molecule, forskolin. In vitro characterization studies showed that forskolin released out of the fibrin gel within the first 24 h and retained its bioactivity toward osteogenic differentiation of bone marrow-derived stem cells. The forskolin-loaded fibrin-PLGA scaffold was also able to guide bone formation in a 3-mo rabbit radial critical-sized defect model comparable to recombinant human bone morphogenetic protein-2 (rhBMP-2) treatment, as demonstrated through histological and mechanical evaluation, with minimal systemic off-target side effects. Together, these results demonstrate the successful application of an innovative small-molecule treatment approach within long bone critical-sized defects.
Collapse
Affiliation(s)
- Guleid M. Awale
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical Engineering, University of Connecticut, Storrs, CT06269
| | - Mohammed A. Barajaa
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University,31451Dammam, Saudi Arabia
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Amir Seyedsalehi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
| | - Ga Hie Nam
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT06030
| | - Fatemeh S. Hosseini
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, CT06030
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
| | - Kevin W.-H. Lo
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Division of Endocrinology, Department of Medicine, UConn Health, Farmington, CT06030
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT06030
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
5
|
Solvent-Free Production by Extrusion of Bio-Based Poly(glycerol-co-diacids) Sheets for the Development of Biocompatible and Electroconductive Elastomer Composites. Polymers (Basel) 2022; 14:polym14183829. [PMID: 36145974 PMCID: PMC9502118 DOI: 10.3390/polym14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Faced with growing global demand for new potent, bio-based, biocompatible elastomers, the present study reports the solvent-free production of 13 pure and derived poly(glycerol-co-diacid) composite sheets exclusively using itaconic acid, sebacic acid, and 2,5-furandicarboxylic acid (FDCA) with glycerol. Herein, modified melt polycondensation and Co(II)-catalyzed polytransesterification were employed to produce all exploitable prepolymers, enabling the easy and rapid manufacturing of elastomer sheets by extrusion. Most of our samples were loaded with 4 wt% of various additives such as natural polysaccharides, synthetic polymers, and/or 25 wt% sodium chloride as porogen agents. The removal of unreacted monomers and acidic short oligomers was carried out by means of washing with NaHCO3 aqueous solution, and pH monitoring was conducted until efficient sheet surface neutralization. For each sheet, their surface morphologies were observed by Field-emission microscopy, and DSC was used to confirm their amorphous nature and the impact of the introduction of every additive. The chemical constitution of the materials was monitored by FTIR. Then, cytotoxicity tests were performed for six of our most promising candidates. Finally, we achieved the production of two different types of extrusion-made PGS elastomers loaded with 10 wt% PANI particulates and 4 wt% microcrystalline cellulose for adding potential electroconductivity and stability to the material, respectively. In a preliminary experiment, we showed the effectiveness of these materials as performant, time-dependent electric pH sensors when immersed in a persistent HCl atmosphere.
Collapse
|
6
|
Poly (glycerol sebacate) and polyhydroxybutyrate electrospun nanocomposite facilitates osteogenic differentiation of mesenchymal stem cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Jaafar IH, Jedlicka SS, Coulter JP. Poly(glycerol sebacate) – a revolutionary biopolymer. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Novel materials possessing physical, mechanical, and chemical properties similar to those found in vivo provide a potential platform for building artificial microenvironments for tissue engineering applications. Poly(glycerol sebacate) is one such material. It has tunable mechanical properties within the range of common tissue, and favorable cell response without surface modification with adhesive ligands, and biodegradability. In this chapter, an overview of the material is presented, focusing on synthesis, characterization, microfabrication, use as a substrate in in vitro mammalian cell culture, and degradation characteristics.
Collapse
Affiliation(s)
- Israd H. Jaafar
- Mechanical Engineering , Utah Valley University , 800 W University Parkway , Orem , UT , USA
| | - Sabrina S. Jedlicka
- Materials Science and Engineering , Lehigh University , Bethlehem , PA , USA
| | - John P. Coulter
- Mechanical Engineering and Mechanics , Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
8
|
E-Beam Effects on Poly(Xylitol Dicarboxylate-co-diol Dicarboxylate) Elastomers Tailored by Adjusting Monomer Chain Length. MATERIALS 2021; 14:ma14071765. [PMID: 33918460 PMCID: PMC8038286 DOI: 10.3390/ma14071765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.
Collapse
|
9
|
Ma Y, Dong S, Li X, Kim BYS, Yang Z, Jiang W. Extracellular Vesicles: An Emerging Nanoplatform for Cancer Therapy. Front Oncol 2021; 10:606906. [PMID: 33628730 PMCID: PMC7897670 DOI: 10.3389/fonc.2020.606906] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs' therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xuefeng Li
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Risley BB, Ding X, Chen Y, Miller PG, Wang Y. Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties. Macromol Biosci 2021; 21:e2000301. [PMID: 33205616 PMCID: PMC8360362 DOI: 10.1002/mabi.202000301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Indexed: 11/08/2022]
Abstract
Poly(glycerol-sebacate) (PGS) is a biodegradable elastomer known for its mechanical properties and biocompatibility for soft tissue engineering. However, harsh thermal crosslinking conditions are needed to make PGS devices. To facilitate the thermal crosslinking, citric acid is explored as a crosslinker to form poly(glycerol sebacate citrate) (PGSC) elastomers. The effects of varying citrate contents and curing times are investigated on the mechanical properties, elasticity, degradation, and hydrophilicity. To examine the potential presence of unreacted citric acid, material acidity is monitored in relation to the citrate content and curing times. It is discovered that a low citrate content and a short curing time produce PGSC with tunable mechanical characteristics similar to PGS with enhanced elasticity. The materials demonstrate good cytocompatibility with human umbilical vein endothelial cells similar to the PGS control. The research study suggests that PGSC is a potential candidate for large-scale biomedical applications because of the quick thermal crosslink and tunable elastomeric properties.
Collapse
Affiliation(s)
- Brandon B. Risley
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY 14853
| | - Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY 14853
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931
| | - Ying Chen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY 14853
| | - Paula G. Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY 14853
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY 14853
| |
Collapse
|
11
|
|
12
|
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Sun B, Zhu W, Chen S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem Rev 2020; 120:10695-10743. [PMID: 32323975 PMCID: PMC7572843 DOI: 10.1021/acs.chemrev.9b00810] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time. Only in the past decade has there been deliberate development to expand the materials toolbox for 3D printing applications to meet the true potential of 3D printing technologies. Herein, we review the development of biomaterials suited for light-based 3D printing modalities with an emphasis on bioprinting applications. We discuss the chemical mechanisms that govern photopolymerization and highlight the application of natural, synthetic, and composite biomaterials as 3D printed hydrogels. Because the quality of a 3D printed construct is highly dependent on both the material properties and processing technique, we included a final section on the theoretical and practical aspects behind light-based 3D printing as well as ways to employ that knowledge to troubleshoot and standardize the optimization of printing parameters.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kathleen L Miller
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xuanyi Ma
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bingjie Sun
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Chemical Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Patel A, Zaky SH, Li H, Schoedel K, Almarza AJ, Sfeir C, Sant V, Sant S. Bottom-Up Self-assembled Hydrogel-Mineral Composites Regenerate Rabbit Ulna Defect without Added Growth Factors. ACS APPLIED BIO MATERIALS 2020; 3:5652-5663. [PMID: 35021797 DOI: 10.1021/acsabm.0c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based biomaterials have advanced bone tissue engineering approaches in the last decade, through their ability to serve as a carrier for potent growth factor, bone morphogenic protein-2 (BMP-2). However, biophysical properties of hydrogels such as multiscale structural hierarchy and bone extracellular matrix (ECM)-mimetic microarchitecture are underutilized while designing current bone grafts. Incorporation of these properties offers great potential to create a favorable biomimetic microenvironment to harness their regenerative potential. Here, we present our approach to fabricate collagen-inspired bioactive hydrogel scaffolds (referred to as "RegenMatrix") to guide and enhance bone regeneration in a rabbit ulna defect model through the mimicry of multiscale architecture of bone ECM, i.e., native collagen. Specifically, we employed polyelectrolyte complexation to promote bottom-up self-assembly of oppositely charged polysaccharides (chitosan and kappa-carrageenan) at multiple length scales forming fibrils, which further assemble into fibers. The self-assembly and bioinspired scaffold fabrication method resulted in robust cylindrical RegenMatrix with excellent retention of the multiscale architecture and uniform mineral deposition throughout the scaffolds. RegenMatrix, in both nonmineralized and mineralized forms, enhanced bone regeneration in the semiload-bearing ulna defect when compared to the empty defect. RegenMatrix also showed greater histocompatibility without any fibrous tissue formation. Collectively, the RegenMatrix developed in this study has a great potential as a bioactive bone graft without any added growth factors.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Samer H Zaky
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Hongshuai Li
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Karen Schoedel
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alejandro J Almarza
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15260, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Ding X, Chen Y, Chao CA, Wu Y, Wang Y. Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Macromol Biosci 2020; 20:e2000101. [DOI: 10.1002/mabi.202000101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Ying Chen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Corson Andrew Chao
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Yen‐Lin Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| |
Collapse
|
15
|
Tailoring the Physico-Chemical Properties of Poly(xylitol-dicarboxylate- co-butylene dicarboxylate) Polyesters by Adjusting the Cross-Linking Time. Polymers (Basel) 2020; 12:polym12071493. [PMID: 32635345 PMCID: PMC7408360 DOI: 10.3390/polym12071493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Determining the cross-linking time resulting in the best achievable properties in elastomers is a very important factor when considering their mass production. In this paper, five biodegradable polymers were synthesized-poly(xylitol-dicarboxylate-co-butylene dicarboxylate) polymers, based on xylitol obtained from renewable sources. Five different dicarboxylic acids with even numbers of carbon atoms in the aliphatic chain were used: succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. Samples were taken directly after polycondensation (prepolymer samples) and at different stages of the cross-linking process. Physiochemical properties were determined by a gel fraction test, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), quasi-static tensile tests, nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and an in vitro biodegradation test. The best cross-linking time was determined to be 288h. Properties and degradation time can be tailored for specific applications by adjusting the dicarboxylic acid chain length.
Collapse
|
16
|
Ibrahim DM, Sani ES, Soliman AM, Zandi N, Mostafavi E, Youssef AM, Allam NK, Annabi N. Bioactive and Elastic Nanocomposites with Antimicrobial Properties for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:3313-3325. [DOI: 10.1021/acsabm.0c00250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dina M. Ibrahim
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California—Los Angeles, Los Angeles, California 90095, United States
| | - Alaa M. Soliman
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nooshin Zandi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ahmed M. Youssef
- Packaging Materials Department, National Research Centre, Giza, 12622, Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California—Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California—Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Blair MJ, Jones JD, Woessner AE, Quinn KP. Skin Structure-Function Relationships and the Wound Healing Response to Intrinsic Aging. Adv Wound Care (New Rochelle) 2020; 9:127-143. [PMID: 31993254 DOI: 10.1089/wound.2019.1021] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Significance: Chronic wounds, such as diabetic foot ulcers, venous stasis ulcers, and pressure ulcers affect millions of Americans each year, and disproportionately afflict our increasingly older population. Older individuals are predisposed to wound infection, repeated trauma, and the development of chronic wounds. However, a complete understanding of how the attributes of aging skin affect the wound healing process has remained elusive. Recent Advances: A variety of studies have demonstrated that the dermal matrix becomes thinner, increasingly crosslinked, and fragmented with advanced age. These structural changes, as well as an increase in cell senescence, result in altered collagen fiber remodeling and increased stiffness. Studies combining mechanical testing with advanced imaging techniques are providing new insights into the relationships between these age-related changes. Emerging research into the mechanobiology of aging and the wound healing process indicate that the altered mechanical environment of aged skin may have a significant effect on age-related delays in healing. Critical Issues: The interpretation and synthesis of clinical studies is confounded by the effects of common comorbidities that also contribute to the development of chronic wounds. A lack of quantitative biomarkers of wound healing and age-related changes makes understanding structure-function relationships during the wound healing process challenging. Future Directions: Additional work is needed to establish quantitative and mechanistic relationships among age-related changes in the skin microstructure, mechanical function, and the cellular responses to wound healing.
Collapse
Affiliation(s)
- Michael J. Blair
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Jake D. Jones
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
18
|
Byun SH, Lim HK, Cheon KH, Lee SM, Kim HE, Lee JH. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw. J Biomed Mater Res B Appl Biomater 2020; 108:2505-2512. [PMID: 32048809 PMCID: PMC7383574 DOI: 10.1002/jbm.b.34582] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 02/02/2020] [Indexed: 01/07/2023]
Abstract
The purpose of the present study was to evaluate the mechanical strength and the absorption rate of WE43 material and to develop an absorbable metallic plate and screw for craniofacial application. The extruded WE43 plate and screw were evaluated using a LeFort I osteotomy canine model of 10 beagle dogs. Animals were divided into two groups: five dogs in the experimental group and five dogs in the control group. μCT was acquired at 4, 12, and 24 weeks. At 24 weeks after the operation, all animals were sacrificed, and histologic evaluation was performed. Swelling and gas formation were observed in three dogs in the experimental groups at 8 weeks. From 12 weeks, infraorbital fistula and inflammation were observed in three dogs in the experimental group, which gradually decreased and disappeared at 24 weeks. Other two dogs showed less gas formation at 12 weeks. The plates were completely absorbed, and gas formation was not observed at 24 weeks in these two dogs. New bone was well formed around the plates and screws in both groups. Histologic examination showed no specific differences between two groups. The mechanical strength of extruded WE43 was sufficient for mid‐facial application. Plates and screws made with appropriately treated WE43 have the potential to be useful clinically.
Collapse
Affiliation(s)
- Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Hallym University Medical Center, Dongtan Sacred Heart Hospital, Hwaseong, Korea.,Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Korea
| | - Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Korea Medical University Medical Center, Guro Hospital, Seoul, Korea
| | - Kwang-Hee Cheon
- Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Sung-Mi Lee
- Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Hyoun-Ee Kim
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
19
|
Zamboulis A, Nakiou EA, Christodoulou E, Bikiaris DN, Kontonasaki E, Liverani L, Boccaccini AR. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. Int J Mol Sci 2019; 20:E6210. [PMID: 31835372 PMCID: PMC6940955 DOI: 10.3390/ijms20246210] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
In a century when environmental pollution is a major issue, polymers issued from bio-based monomers have gained important interest, as they are expected to be environment-friendly, and biocompatible, with non-toxic degradation products. In parallel, hyperbranched polymers have emerged as an easily accessible alternative to dendrimers with numerous potential applications. Glycerol (Gly) is a natural, low-cost, trifunctional monomer, with a production expected to grow significantly, and thus an excellent candidate for the synthesis of hyperbranched polyesters for pharmaceutical and biomedical applications. In the present article, we review the synthesis, properties, and applications of glycerol polyesters of aliphatic dicarboxylic acids (from succinic to sebacic acids) as well as the copolymers of glycerol or hyperbranched polyglycerol with poly(lactic acid) and poly(ε-caprolactone). Emphasis was given to summarize the synthetic procedures (monomer molar ratio, used catalysts, temperatures, etc.,) and their effect on the molecular weight, solubility, and thermal and mechanical properties of the prepared hyperbranched polymers. Their applications in pharmaceutical technology as drug carries and in biomedical applications focusing on regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eirini A. Nakiou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eleana Kontonasaki
- Department of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
20
|
A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2019; 183:110445. [PMID: 31446324 DOI: 10.1016/j.colsurfb.2019.110445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 11/24/2022]
Abstract
Thermoset polymers synthesized from the polycondensation of glycerol with biocompatible diacids represent a promising class of absorbable materials for biomedical applications. However, the utility of these polymers for bone fixation devices is hampered due to the lack of mechanical strength. Herein we synthesized a high-strength thermoset polymer, poly(glycerol-succinate) (PGS), via a catalyst-free and solvent-free reaction. The bending strength of PGS reaches 122.01 ± 8.82 MPa, signifying its great potential for fixation devices. The degradation property of the polymer can be tuned by adjusting the monomer ratio and reaction time. Bone screws based on the PGS polymer were successfully manufactured using a lathe. In vitro evaluation showed the PGS polymer was able to well support cell adhesion and proliferation. In vivo evaluation using a rat subcutaneous implantation model showed that the inflammatory response to the polymer was mild. After the PGS screws were implanted in the rabbit femoral condyle for 12 weeks, micro-computed tomography (micro-CT) and histological analysis revealed that the screws achieved good osseointegration. Consequently, the polymer developed in current study can serve as internal fixation devices due to the proper mechanical strength, excellent biocompatibility, and feasibility of manufacturing screws.
Collapse
|
21
|
Ragno D, Di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Fantin G, Bertoldo M, Massi A. Oxidative NHC-Catalysis as Organocatalytic Platform for the Synthesis of Polyester Oligomers by Step-Growth Polymerization. Chemistry 2019; 25:14701-14710. [PMID: 31486558 DOI: 10.1002/chem.201903557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Indexed: 12/20/2022]
Abstract
The application of N-heterocyclic carbene (NHC) catalysis to the polycondensation of diols and dialdehydes under oxidative conditions is herein presented for the synthesis of polyesters using fossil-based (ethylene glycol, phthalaldehydes) and bio-based (furan derivatives, glycerol, isosorbide) monomers. The catalytic dimethyl triazolium/1,8-diazabicyclo[5.4.0]undec-7-ene couple and stoichiometric quinone oxidant afforded polyester oligomers with a number-average molecular weight (Mn ) in the range of 1.5-7.8 kg mol-1 as determined by NMR analysis. The synthesis of a higher molecular weight polyester (polyethylene terephthalate, PET) by an NHC-promoted two-step procedure via oligoester intermediates is also illustrated together with the catalyst-controlled preparation of cross-linked or linear polyesters derived from the trifunctional glycerol. The thermal properties (TGA and DSC analyses) of the synthesized oligoesters are also reported.
Collapse
Affiliation(s)
- Daniele Ragno
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Graziano Di Carmine
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Pier Paolo Giovannini
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Giancarlo Fantin
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti, 101-40129, Bologna, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutica Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| |
Collapse
|
22
|
Krook NM, Jaafar IH, Sarkhosh T, LeBlon C, Coulter JP, Jedlicka SS. In vitro examination of poly(glycerol sebacate) degradation kinetics: effects of porosity and cure temperature. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1596907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nadia M. Krook
- Department of Materials Science & Engineering, Whitaker Laboratory, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Israd H. Jaafar
- Department of Mechanical Engineering and Mechanics, Packard Laboratory, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Tooba Sarkhosh
- Department of Materials Science & Engineering, Whitaker Laboratory, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Courtney LeBlon
- Department of Mechanical Engineering and Mechanics, Packard Laboratory, Lehigh University, Bethlehem, Pennsylvania, USA
| | - John P. Coulter
- Department of Mechanical Engineering and Mechanics, Packard Laboratory, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Sabrina S. Jedlicka
- Department of Materials Science & Engineering, Whitaker Laboratory, Lehigh University, Bethlehem, Pennsylvania, USA
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
23
|
Zhang N, Zhao D, Liu N, Wu Y, Yang J, Wang Y, Xie H, Ji Y, Zhou C, Zhuang J, Wang Y, Yan J. Assessment of the degradation rates and effectiveness of different coated Mg-Zn-Ca alloy scaffolds for in vivo repair of critical-size bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:138. [PMID: 30120628 PMCID: PMC6105203 DOI: 10.1007/s10856-018-6145-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 05/24/2023]
Abstract
Surgical repair of bone defects remains challenging, and the search for alternative procedures is ongoing. Devices made of Mg for bone repair have received much attention owing to their good biocompatibility and mechanical properties. We developed a new type of scaffold made of a Mg-Zn-Ca alloy with a shape that mimics cortical bone and can be filled with morselized bone. We evaluated its durability and efficacy in a rabbit ulna-defect model. Three types of scaffold-surface coating were evaluated: group A, no coating; group B, a 10-μm microarc oxidation coating; group C, a hydrothermal duplex composite coating; and group D, an empty-defect control. X-ray and micro-computed tomography(micro-CT) images were acquired over 12 weeks to assess ulnar repair. A mechanical stress test indicated that bone repair within each group improved significantly over time (P < 0.01). The degradation behavior of the different scaffolds was assessed by micro-CT and quantified according to the amount of hydrogen gas generated; these measurements indicated that the group C scaffold better resisted corrosion than did the other scaffold types (P < 0.05). Calcein fluorescence and histology revealed that greater mineral densities and better bone responses were achieved for groups B and C than for group A, with group C providing the best response. In conclusion, our Mg-Zn-Ca-alloy scaffold effectively aided bone repair. The group C scaffold exhibited the best corrosion resistance and osteogenesis properties, making it a candidate scaffold for repair of bone defects.
Collapse
Affiliation(s)
- Nan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Dewei Zhao
- The Affiliated Zhongshan hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Na Liu
- The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Yunfeng Wu
- Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Jiahui Yang
- The Affiliated Zhongshan hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Yuefei Wang
- Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Huanxin Xie
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ye Ji
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Changlong Zhou
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jinpeng Zhuang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yaming Wang
- Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Jinglong Yan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
24
|
Liu Z, Lu Y, Feng W, Yang J, Gao S, Song L, Wang Y, Wang B. Synthesis and Properties of PGS-Li Scaffold. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Harris JJ, Lu S, Gabriele P. Commercial challenges in developing biomaterials for medical device development. POLYM INT 2018. [DOI: 10.1002/pi.5590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Lee SH, Lee KW, Gade PS, Robertson AM, Wang Y. Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2018; 29:907-916. [PMID: 28569644 PMCID: PMC5738282 DOI: 10.1080/09205063.2017.1335076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
Abstract
The biodegradable elastomeric polyester poly(glycerol sebacate) (PGS) was developed for soft-tissue engineering. It has been used in various research applications such as wound healing, cartilage tissue engineering, and vascular grafting due to its biocompatibility and elastomeric properties. However conventional PGS manufacture is generally limited by the laborious reaction conditions needed for curing which requires elevated reaction temperatures, high vacuum and multi-day reaction times. In this study, we developed a microwave irradiation methodology to fabricate PGS scaffolds under milder conditions with curing times that are 8 times faster than conventional methods. In particular, we determined microwave reaction temperatures and times for maximum crosslinking of PGS elastomers, demonstrating that PGS is fully crosslinked using gradual heating up to 160 °C for 3 h. Porosity and mechanical properties of these microwave-cured PGS elastomers were shown to be similar to PGS elastomers fabricated by the conventional polycondensation method (150 °C under 30 Torr for 24 h). To move one step closer to clinical application, we also examined the biocompatibility of microwave-cured PGS using in vitro cell viability assays with primary baboon arterial smooth muscle cells (SMCs). These combined results show microwave curing of PGS is a viable alternative to conventional curing.
Collapse
Affiliation(s)
- Soo Hyon Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kee-Won Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Piyusha S. Gade
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Anne M. Robertson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA, USA
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
27
|
Pan Q, Guo Y, Kong F. Poly(glycerol sebacate) combined with chondroitinase ABC promotes spinal cord repair in rats. J Biomed Mater Res B Appl Biomater 2017; 106:1770-1777. [PMID: 28901688 DOI: 10.1002/jbm.b.33984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Pan
- Department of Neurosurgery; Xinjiang Uygur Autonomous Region Corps Hospital of Chinese People's Armed Police Force; Urumqi 830091 China
| | - Yan Guo
- Department of Ophthalmology; Shanghai Corps Hospital of Chinese People's Armed Police Force; Shanghai 201103 China
| | - Fanyong Kong
- Department of Neurosurgery, Yueyang Hospital of Integrated Chinese and Western Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 200437 China
| |
Collapse
|
28
|
Slavko E, Taylor MS. Catalyst-controlled polycondensation of glycerol with diacyl chlorides: linear polyesters from a trifunctional monomer. Chem Sci 2017; 8:7106-7111. [PMID: 29147540 PMCID: PMC5637463 DOI: 10.1039/c7sc01886j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Selective activation of diol groups by a borinic acid catalyst enables the synthesis of strictly linear polyesters from glycerol, a trifunctional monomer.
Diarylborinic acids catalyze the formation of linear polyesters from glycerol, a trifunctional, carbohydrate-based monomer. The selective activation of 1,2-diols over isolated alcohols by the organoboron catalyst results in polymers that are essentially free of branching or cross-linking and possess a high fraction of 1,3-enchained glycerol units, as assessed by 1H and 13C NMR spectroscopy. The ability to generate well-defined polyester architectures from glycerol is significant in light of the numerous applications of such macromolecules, particularly in the biomedical area. Isomerization, post-polymerization functionalization and controlled cross-linking reactions of the obtained linear poly(glycerol esters) are demonstrated.
Collapse
Affiliation(s)
- Ekaterina Slavko
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
| | - Mark S Taylor
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
| |
Collapse
|
29
|
Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, Prabhakaran MP, Foroughi MR, Kharaziha M, Saadatkish N, Ramakrishna S. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:75-87. [PMID: 28866225 DOI: 10.1016/j.msec.2017.05.125] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022]
Abstract
Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (β-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of β-TCP nanoparticles in the structure of nanofibers containing 15% β-TCP. Moreover by addition of β-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of β-TCP in the structure of nanofibers, while addition of 15% of β-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% β-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% β-TCP could be selected as the optimum GBR membrane in view point of physical and mechanical properties along with cell behavior. PCL/PGS nanofibers containing 10% β-TCP were electrospun on the GTR layer for fabrication of final membrane. Addition of chitosan in the structure of PCL/PGS nanofibers was found to decrease fiber diameter, contact angle and porosity which are favorable for GTR layer. Two-layered dental membrane fabricated in this study can serve as a suitable substrate for application in dentistry as it provides appropriate osteoconductivity and flexibility along with barrier properties.
Collapse
Affiliation(s)
- Maryam Masoudi Rad
- Department of Chemical Engineering, Isfahan university of technology, Isfahan 84156-83111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan university of technology, Isfahan 84156-83111, Iran.
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile engineering, Isfahan university of technology, Isfahan 84156-83111, Iran.
| | - Molamma P Prabhakaran
- Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
| | - Mohammad Reza Foroughi
- Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Niloufar Saadatkish
- Department of Chemical Engineering, Isfahan university of technology, Isfahan 84156-83111, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
30
|
Kerativitayanan P, Tatullo M, Khariton M, Joshi P, Perniconi B, Gaharwar AK. Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2017; 3:590-600. [DOI: 10.1021/acsbiomaterials.7b00029] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Marco Tatullo
- Maxillofacial
Unit, Calabrodental Clinic, 88900 Crotone, Italy
- Regenerative
Medicine Section, Tecnologica Research Institute, 88900 Crotone, Italy
| | | | | | | | - Akhilesh K. Gaharwar
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
31
|
Chai Y, Lin D, Ma Y, Yuan Y, Liu C. RhBMP-2 loaded MBG/PEGylated poly(glycerol sebacate) composite scaffolds for rapid bone regeneration. J Mater Chem B 2017; 5:4633-4647. [DOI: 10.1039/c7tb00505a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An rhBMP-2 loaded MBG/PEGS composite scaffold with optimal performances and rapid osteoinductive capacity was successfully designed and fabricated.
Collapse
Affiliation(s)
- Yanjun Chai
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| | - Dan Lin
- Engineering Research Center for Biomaterials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Yifan Ma
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| |
Collapse
|
32
|
Huang P, Bi X, Gao J, Sun L, Wang S, Chen S, Fan X, You Z, Wang Y. Phosphorylated poly(sebacoyl diglyceride) – a phosphate functionalized biodegradable polymer for bone tissue engineering. J Mater Chem B 2016; 4:2090-2101. [DOI: 10.1039/c5tb02542g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study demonstrates a simply powerful way to make therapeutic materials: using small functional units (phosphates) to control bioactivity (osteogenesis).
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Xiaoping Bi
- Department of Ophthalmology
- Shanghai Ninth Peoples' Hospital affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai
- P. R. China
| | - Jin Gao
- Departments of Bioengineering, Chemical Engineering
- Surgery, and the McGowan Institute
- University of Pittsburgh
- Pittsburgh
- USA
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Shaofei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Xianqun Fan
- Department of Ophthalmology
- Shanghai Ninth Peoples' Hospital affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai
- P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Yadong Wang
- Departments of Bioengineering, Chemical Engineering
- Surgery, and the McGowan Institute
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
33
|
Chaya A, Yoshizawa S, Verdelis K, Myers N, Costello BJ, Chou DT, Pal S, Maiti S, Kumta PN, Sfeir C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater 2015; 18:262-9. [PMID: 25712384 DOI: 10.1016/j.actbio.2015.02.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
Abstract
Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current devices, like plates and screws, are made with permanent metals or resorbable polymers. Permanent metals provide strength and biocompatibility, but cause long-term complications and may require removal. Resorbable polymers reduce long-term complications, but are unsuitable for many load-bearing applications. To mitigate complications, degradable magnesium (Mg) alloys are being developed for craniofacial and orthopedic applications. Their combination of strength and degradation make them ideal for bone fixation. Previously, we conducted a pilot study comparing Mg and titanium devices with a rabbit ulna fracture model. We observed Mg device degradation, with uninhibited healing. Interestingly, we observed bone formation around degrading Mg, but not titanium, devices. These results highlighted the potential for these fixation devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and bone formation were evaluated using microcomputed tomography, histology and biomechanical tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40±0.04mm/year after 8 weeks. In addition, we observed fracture healing by 8 weeks, and maturation after 16 weeks. In accordance with our pilot study, we observed bone formation surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data suggest that Mg devices provide stabilization to facilitate healing, while degrading and stimulating new bone formation.
Collapse
Affiliation(s)
- Amy Chaya
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sayuri Yoshizawa
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kostas Verdelis
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Myers
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernard J Costello
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral and Maxillofacial Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da-Tren Chou
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Siladitya Pal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prashant N Kumta
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Sfeir
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
35
|
Zaky SH, Hangadora CK, Tudares MA, Gao J, Jensen A, Wang Y, Sfeir C, Almarza AJ. Poly (glycerol sebacate) elastomer supports osteogenic phenotype for bone engineering applications. Biomed Mater 2014; 9:025003. [DOI: 10.1088/1748-6041/9/2/025003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|