1
|
Yang W, Li Y, Tang Y, Tao Z, Yu M, Sun C, Ye Y, Xu B, Zhao X, Zhang Y, Lu X. Mesenchymal stem cells overexpressing neuropeptide S promote the recovery of rats with spinal cord injury by activating the PI3K/AKT/GSK3β signaling pathway. Stem Cell Res Ther 2025; 16:100. [PMID: 40022159 PMCID: PMC11871753 DOI: 10.1186/s13287-025-04250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Transplantation of nasal mucosa-derived mesenchymal stem cells (EMSCs) overexpressing neuropeptide S (NPS) is a promising approach for treating spinal cord injury (SCI). Despite the potential of stem cell therapy, challenges remain regarding cell survival and differentiation control. We aimed to conduct orthotopic transplantation of transected spinal cord to treat rats with complete SCI. METHODS In this study, we loaded NPS-overexpressing EMSCs onto hydrogels to enhance cell survival in vivo and promote neuronal differentiation both in vitro and in vivo. However, in vitro co-culture promoted greater neuronal differentiation of neural stem cells (P < 0.01). When transplanted in vivo, NPS-overexpressing EMSCs showed greater cell survival in the transplanted area compared with stem cells without gene modification within 4 weeks after spinal cord implantation in rats (P < 0.01). RESULTS Compared with those in the other groups, stable overexpression of NPS-EMSCs in a rat model with SCI significantly improved the treatment effect, reduced glial scar formation, promoted neural regeneration and endogenous neural stem cell proliferation and differentiation into neurons, and improved motor function. CONCLUSIONS These results indicate that this effect may be achieved by the overexpression of NPS-EMSCs through the activation of the PI3K/Akt/GSK3β signaling pathway. Overall, the overexpression of EMSCs significantly improved the therapeutic effect of SCI in rats, strongly supporting the potential for gene modification of mesenchymal stem cells in clinical applications.
Collapse
Affiliation(s)
- Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
- Pharmaceutical Department, Inner Mongolia Forestry General Hospital, Hulunbuir, Inner Mongolia Autonomous Region, 022150, PR China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yushi Tang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhenxing Tao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Mengyuan Yu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Cuiping Sun
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yang Ye
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Bai Xu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Xudong Zhao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, PR China.
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China.
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
2
|
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor‐1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021; 15:419-441. [DOI: 10.1002/term.3192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2025]
Affiliation(s)
- Quan Fu Gan
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Ker Woon Choy
- Department of Anatomy Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Selangor Malaysia
| | - Chai Nien Foo
- Population Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Pooi Pooi Leong
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Soon Keng Cheong
- Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| |
Collapse
|
3
|
Martín-Saavedra F, Crespo L, Escudero-Duch C, Saldaña L, Gómez-Barrena E, Vilaboa N. Substrate Microarchitecture Shapes the Paracrine Crosstalk of Stem Cells with Endothelial Cells and Osteoblasts. Sci Rep 2017; 7:15182. [PMID: 29123118 PMCID: PMC5680323 DOI: 10.1038/s41598-017-15036-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
We examined the hypothesis that substrate microarchitecture regulates the crosstalk between human mesenchymal stem cells (hMSC) and cell types involved in bone regeneration. Compared with polyester flat substrates having uniformly distributed homogenous pores (2D), three-dimensional polystyrene substrates with randomly oriented and interconnected pores of heterogeneous size (3D) stimulated the stromal secretion of IGF-1 while lessened the production of VEGFR-1, MCP-1 and IL-6. The medium conditioned by hMSC cultured in 3D substrates stimulated tube formation by human endothelial cells (hEC) to a higher extent than medium from 2D cultures. 3D co-cultures of hMSC and hEC contained higher secreted levels of IGF-1, EGF and FGF-2 than 2D co-cultures, resulting in increased hEC proliferation and migration. Substrate microarchitecture influenced the secretion of factors related to bone remodeling as the ratio RANKL to OPG, and the levels of M-CSF and IL-6 were higher in 3D co-cultures of hMSC and human osteoblasts (hOB) than in 2D co-cultures. Cytokine microenvironment in 3D co-cultures stimulated osteoblast matrix reorganization while demoted the late steps of osteoblastic maturation. Altogether, data in this study may unveil a new role of scaffold microarchitecture during bone regeneration, as modulator of the paracrine relationships that hMSC establish with hEC and hOB.
Collapse
Affiliation(s)
- Francisco Martín-Saavedra
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Lara Crespo
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Clara Escudero-Duch
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Saldaña
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Enrique Gómez-Barrena
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.,Departamento de Cirugía, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Nuria Vilaboa
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain. .,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
4
|
Hwang SJ, Cho TH, Lee B, Kim IS. Bone-healing capacity of conditioned medium derived from three-dimensionally cultivated human mesenchymal stem cells and electrical stimulation on collagen sponge. J Biomed Mater Res A 2017; 106:311-320. [PMID: 28884512 DOI: 10.1002/jbm.a.36224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
Continuing from our previous study, we hypothesized that combining electrical stimulation (ES) and three-dimensional (3D) culture would be a useful strategy to obtain more bioactive factors in conditioned medium (CM) derived from human mesenchymal stem cells (hMSC). Our aim in this study was to investigate the bone-healing capacity of CM derived from hMSC after 4 days of culture on a collagen sponge-exposed (CM-ES) or unexposed (CM-control; CM-CON) to ES in comparison with that of hMSC implantation. A cytokine assay of both CMs revealed the presence of cytokines, growth factors, and trophic factors. In vitro evaluation of both CMs showed increased cell growth and alkaline phosphatase activity of the hMSC, with little difference between CMs. We investigated the bone-healing effect using two bone disease models: bone defect and inflammatory bone loss. The calvaria defect was implanted with whole CM or 3D-precultured hMSC unexposed to ES. Microcomputed tomography analysis after 4 weeks indicated a twofold greater bone volume in the CM-CON and CM-ES groups than in the hMSC and vehicle groups, though we found no difference between the CM groups. However, CM-ES enhanced the bone healing of interleukin-1-induced bone loss to a level comparable with hMSC, whereas CM-CON did not. These results show that 3D-cultured CM had a greater or similar capacity for bone healing as treatment using hMSC transplantation, and CM-ES was especially effective against inflammatory bone loss. Thus, 3D-cultured CM with or without ES presents an encouraging alternative to MSC-based bone healing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 311-320, 2018.
Collapse
Affiliation(s)
- Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ding X, Yang G, Zhang W, Li G, Lin S, Kaplan DL, Jiang X. Increased stem cells delivered using a silk gel/scaffold complex for enhanced bone regeneration. Sci Rep 2017; 7:2175. [PMID: 28526887 PMCID: PMC5438390 DOI: 10.1038/s41598-017-02053-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
The low in vivo survival rate of scaffold-seeded cells is still a challenge in stem cell-based bone regeneration. This study seeks to use a silk hydrogel to deliver more stem cells into a bone defect area and prolong the viability of these cells after implantation. Rat bone marrow stem cells were mingled with silk hydrogels at the concentrations of 1.0 × 105/mL, 1.0 × 106/mL and 1.0 × 107/mL before gelation, added dropwise to a silk scaffold and applied to a rat calvarial defect. A cell tracing experiment was included to observe the preservation of cell viability and function. The results show that the hydrogel with 1.0 × 107/mL stem cells exhibited the best osteogenic effect both in vitro and in vivo. The cell-tracing experiment shows that cells in the 1.0 × 107 group still survive and actively participate in new bone formation 8 weeks after implantation. The strategy of pre-mingling stem cells with the hydrogel had the effect of delivering more stem cells for bone engineering while preserving the viability and functions of these cells in vivo.
Collapse
Affiliation(s)
- Xun Ding
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,Oral Bioengineering and regenerative medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guangzheng Yang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,Oral Bioengineering and regenerative medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guanglong Li
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,Oral Bioengineering and regenerative medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuxian Lin
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,Oral Bioengineering and regenerative medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - David L Kaplan
- Department of Biomedical Engineering, School of Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China. .,Oral Bioengineering and regenerative medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
6
|
Huynh NCN, Everts V, Nifuji A, Pavasant P, Ampornaramveth RS. Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone 2017; 95:76-84. [PMID: 27871909 DOI: 10.1016/j.bone.2016.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Periodontal ligament cells have the potential to differentiate into bone forming osteoblasts and thus represent a good cellular candidate for bone regeneration. This study aimed to investigate the effect of inhibition of histone deacetylases, using the inhibitor Trichostatin A (TSA), on bone regeneration by human periodontal ligament cells (hPDLCs) in a mouse calvaria bone defect. METHODS RUNX2 protein and its acetylation was analyzed by immunoprecipitation and western blotting. The effect of TSA on osteogenic differentiation of hPDLCs was investigated using in vitro 3D cultures. hPDLCs were pre-incubated with and without TSA and implanted in mouse calvaria defects with polycaprolactone/polyethylene glycol (PCL/PEG) co-polymer scaffold. Micro-CT scanning and bone histomorphometric analysis were used to quantify the amount of bone. Survival of hPDLCs as xenogenic grafts was verified by immunohistochemistry with anti-human β1-integrin. The immunological response of mice against hPDLCs xenografts was evaluated by measuring total IgG and hPDLCs-specific IgG. RESULTS Beside affecting histone protein, TSA also induced hyper-acetylation of RUNX2 which might be a crucial mechanism for enhancing osteogenesis by hPDLCs. TSA enhanced mineral deposition by hPDLCs in in vitro 3D cultures and had no effect on cell viability. In vivo bone regeneration of mouse calvaria defects was significantly enhanced by TSA pre-treated hPDLCs. By using anti-human ß1 integrin hPDLCs were shown to differentiate into osteocyte-like cells that were present in newly formed bone. hPDLCs, as a xenograft, slightly but not significantly induced an immunological response in recipient mice as demonstrated by the level of total IgG and hPDLCs-specific IgG. CONCLUSION Inhibition of histone deacetylases by TSA enhanced in vivo bone regeneration by hPDLCs. The data strongly suggest a novel approach to regenerate bone tissue.
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Kutikov AB, Skelly JD, Ayers DC, Song J. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4890-901. [PMID: 25695310 PMCID: PMC8084116 DOI: 10.1021/am508984y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School.55 Lake Ave North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jordan D. Skelly
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School.55 Lake Ave North, Worcester, MA 01655, USA
| | - David C. Ayers
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School.55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School.55 Lake Ave North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
- Corresponding Author; phone: 1-508-334-7168; fax: 1-508-334-2770
| |
Collapse
|