1
|
Sierra-Sánchez Á, Sanabria-de la Torre R, Ubago-Rodríguez A, Quiñones-Vico MI, Montero-Vílchez T, Sánchez-Díaz M, Arias-Santiago S. Blood Plasma, Fibrinogen or Fibrin Biomaterial for the Manufacturing of Skin Tissue-Engineered Products and Other Dermatological Treatments: A Systematic Review. J Funct Biomater 2025; 16:79. [PMID: 40137358 PMCID: PMC11942893 DOI: 10.3390/jfb16030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
The use of blood plasma, fibrinogen or fibrin, a natural biomaterial, has been widely studied for the development of different skin tissue-engineered products and other dermatological treatments. This systematic review reports the preclinical and clinical studies which use it alone or combined with other biomaterials and/or cells for the treatment of several dermatological conditions. Following the PRISMA 2020 Guidelines, 147 preclinical studies have revealed that the use of this biomaterial as a wound dressing or as a monolayer (one cell type) skin substitute are the preferred strategies, mainly for the treatment of excisional or surgical wounds. Moreover, blood plasma is mainly used alone although its combination with other biomaterials such as agarose, polyethylene glycol or collagen has also been reported to increase its wound healing potential. However, most of the 17 clinical reviewed evaluated its use for the treatment of severely burned patients as a wound dressing or bilayer (two cell types) skin substitute. Although the number of preclinical studies evaluating the use of blood plasma as a dermatological treatment has increased during the last fifteen years, this has not been correlated with a wide variety of clinical studies. Its safety and wound healing potential have been proved; however, the lack of a standard model and the presence of several approaches have meant that its translation to a clinical environment is still limited. A higher number of clinical studies should be carried out in the coming years to set a standard wound healing strategy for each dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NA 27101, USA
| | - Raquel Sanabria-de la Torre
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, University of Granada, 18071 Granada, Spain
| | - Ana Ubago-Rodríguez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - María I. Quiñones-Vico
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| | - Trinidad Montero-Vílchez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Sierra-Sánchez Á, Cabañas-Penagos J, Igual-Roger S, Martínez-Heredia L, Espinosa-Ibáñez O, Sanabria-de la Torre R, Quiñones-Vico MI, Ubago-Rodríguez A, Lizana-Moreno A, Fernández-González A, Guerrero-Calvo J, Fernández-Porcel N, Ramírez-Muñoz A, Arias-Santiago S. Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process. Regen Biomater 2024; 11:rbae115. [PMID: 39469583 PMCID: PMC11513639 DOI: 10.1093/rb/rbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the in vitro properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
| | - Jorge Cabañas-Penagos
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Sandra Igual-Roger
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Luis Martínez-Heredia
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Olga Espinosa-Ibáñez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Raquel Sanabria-de la Torre
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María I Quiñones-Vico
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Lizana-Moreno
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Ana Fernández-González
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Jorge Guerrero-Calvo
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Natividad Fernández-Porcel
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Arena Ramírez-Muñoz
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Salvador Arias-Santiago
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
3
|
Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022; 27:molecules27144504. [PMID: 35889381 PMCID: PMC9322155 DOI: 10.3390/molecules27144504] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The first bioprocess that occurs in response to wounding is the deterrence of local hemorrhage. This is accomplished by platelet aggregation and initiation of the hemostasis cascade. The resulting blood clot immediately enables the cessation of bleeding and then functions as a provisional matrix for wound healing, which begins a few days after injury. Here, fibrinogen and fibrin fibers are the key players, because they literally serve as scaffolds for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. Fibrin is also an important modulator of healing and a host defense system against microbes that effectively maintains incoming leukocytes and acts as reservoir for growth factors. This review presents recent advances in the understanding and applications of fibrin and fibrin-fiber-incorporated biomedical materials applied to wound healing and subsequent tissue repair. It also discusses how fibrin-based materials function through several wound healing stages including physical barrier formation, the entrapment of bacteria, drug and cell delivery, and eventual degradation. Pure fibrin is not mechanically strong and stable enough to act as a singular wound repair material. To alleviate this problem, this paper will demonstrate recent advances in the modification of fibrin with next-generation materials exhibiting enhanced stability and medical efficacy, along with a detailed look at the mechanical properties of fibrin and fibrin-laden materials. Specifically, fibrin-based nanocomposites and their role in wound repair, sustained drug release, cell delivery to wound sites, skin reconstruction, and biomedical applications of drug-loaded fibrin-based materials will be demonstrated and discussed.
Collapse
|
4
|
Jiang YL, Wang ZL, Fan ZX, Wu MJ, Zhang Y, Ding W, Huang YZ, Xie HQ. Human adipose-derived stem cell-loaded small intestinal submucosa as a bioactive wound dressing for the treatment of diabetic wounds in rats. BIOMATERIALS ADVANCES 2022; 136:212793. [PMID: 35929325 DOI: 10.1016/j.bioadv.2022.212793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Chronic nonhealing wounds are one of the most common and serious complications of diabetes, which can lead to disability of patients. Adipose-derived stem cells (ADSCs) have emerged as a promising tool for skin wound healing, but the therapeutic potential depends considerably on the cell delivery system. Small intestinal submucosa (SIS) is an extracellular matrix-based membranous scaffold with outstanding repair potential for skin wounds. In this study, we first fabricated a bioactive wound dressing, termed the SIS+ADSCs composite, by using human ADSCs as the seed cell and porcine SIS as the cell delivery vehicle. Then, we systematically investigated, for the first time, the healing potential of this wound dressing in a rat model of type 2 diabetes. In vitro studies revealed that SIS provided a favorable microenvironment for ADSCs and significantly promoted the expression of growth factors critical for chronic wound healing. After implantation in the full-thickness skin wounds of diabetic rats, the SIS+ADSCs composite showed a higher wound healing rate and wound healing quality than those in the PBS, ADSCs, and SIS groups. Along with the ability to modulate the polarization of macrophages in vivo, the SIS+ADSCs composite was potent at promoting wound angiogenesis, reepithelialization, and skin appendage regeneration. Taken together, these results indicate that the SIS+ADSCs composite has good therapeutic potential and high translational value for diabetic wound treatment.
Collapse
Affiliation(s)
- Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhao-Xin Fan
- Neo-life Stem Cell Biotech INC, Chengdu, Sichuan 610037, China
| | - Ming-Jun Wu
- Neo-life Stem Cell Biotech INC, Chengdu, Sichuan 610037, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Moakes RJA, Senior JJ, Robinson TE, Chipara M, Atanasov A, Naylor A, Metcalfe AD, Smith AM, Grover LM. A suspended layer additive manufacturing approach to the bioprinting of tri-layered skin equivalents. APL Bioeng 2021; 5:046103. [PMID: 34888433 PMCID: PMC8635740 DOI: 10.1063/5.0061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/15/2023] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Skin exhibits a complex structure consisting of three predominant layers (epidermis, dermis, and hypodermis). Extensive trauma may result in the loss of these structures and poor repair, in the longer term, forming scarred tissue and associated reduction in function. Although a number of skin replacements exist, there have been no solutions that recapitulate the chemical, mechanical, and biological roles that exist within native skin. This study reports the use of suspended layer additive manufacturing to produce a continuous tri-layered implant, which closely resembles human skin. Through careful control of the bioink composition, gradients (chemical and cellular) were formed throughout the printed construct. Culture of the model demonstrated that over 21 days, the cellular components played a key role in remodeling the supporting matrix into architectures comparable with those of healthy skin. Indeed, it has been demonstrated that even at seven days post-implantation, the integration of the implant had occurred, with mobilization of the adipose tissue from the surrounding tissue into the construct itself. As such, it is believed that these implants can facilitate healing, commencing from the fascia, up toward the skin surface-a mechanism recently shown to be key within deep wounds.
Collapse
Affiliation(s)
- Richard J. A. Moakes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica J. Senior
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Thomas E. Robinson
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Miruna Chipara
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Aleksandar Atanasov
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amy Naylor
- Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anthony D. Metcalfe
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alan M. Smith
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Liam M. Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Acta Biomater 2021; 134:215-227. [PMID: 34303011 DOI: 10.1016/j.actbio.2021.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Severe injuries to skin including hypodermis require full-thickness skin replacement. Here, we bioengineered a tri-layered human skin substitute (TLSS) containing the epidermis, dermis, and hypodermis. The hypodermal layer was generated by differentiation of human adipose stem cells (ASC) in a collagen type I hydrogel and combined with a prevascularized dermis consisting of human dermal microvascular endothelial cells and fibroblasts, which arranged into a dense vascular network. Subsequently, keratinocytes were seeded on top to generate the epidermal layer of the TLSS. The differentiation of ASC into adipocytes was confirmed in vitro on the mRNA level by the presence of adiponectin, as well as by the expression of perilipin and FABP-4 proteins. Moreover, functional characteristics of the hypodermis in vitro and in vivo were evaluated by Oil Red O, BODIPY, and AdipoRed stainings visualizing intracellular lipid droplets. Further, we demonstrated that both undifferentiated ASC and mature adipocytes present in the hypodermis influenced the keratinocyte maturation and homeostasis in the skin substitutes after transplantation. In particular, an enhanced secretion of TGF-β1 by these cells affected the epidermal morphogenesis as assessed by the expression of key proteins involved in the epidermal differentiation including cytokeratin 1, 10, 19 and cornified envelope formation such as involucrin. Here, we propose a novel functional hypodermal-dermo-epidermal tri-layered skin substitute containing blood capillaries that efficiently promote regeneration of skin defects. STATEMENT OF SIGNIFICANCE: The main objective of this study was to develop and assess the usefulness of a tri-layered human prevascularized skin substitute (TLSS) containing an epidermis, dermis, and hypodermis. The bioengineered hypodermis was generated from human adipose mesenchymal stem cells (ASC) and combined with a prevascularized dermis and epidermis. The TLSS represents an exceptional model for studying the role of cell-cell and cell-matrix interactions in vitro and in vivo. In particular, we observed that enhanced secretion of TGF-β1 in the hypodermis exerted a profound impact on fibroblast and keratinocyte differentiation, as well as epidermal barrier formation and homeostasis. Therefore, improved understanding of the cell-cell interactions in such a physiological skin model is essential to gain insights into different aspects of wound healing.
Collapse
|
7
|
Pappalardo A, Herron L, Alvarez Cespedes DE, Abaci HE. Quantitative Evaluation of Human Umbilical Vein and Induced Pluripotent Stem Cell-Derived Endothelial Cells as an Alternative Cell Source to Skin-Specific Endothelial Cells in Engineered Skin Grafts. Adv Wound Care (New Rochelle) 2021; 10:490-502. [PMID: 32870778 DOI: 10.1089/wound.2020.1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective: We compared the capability of human umbilical vein endothelial cells (HUVECs), induced pluripotent stem cell (iPSC)-derived endothelial cells (iECs), and human dermal blood endothelial cells (HDBECs) to effectively vascularize engineered human skin constructs (HSCs) in vitro and on immunodeficient mice. Approach: We quantified the angiogenesis within HSCs both in vitro and in vivo through computational analyses of immunofluorescent (IF) staining. We assayed with real-time quantitative PCR (RT-qPCR) the expression of key endothelial, dermal, and epidermal genes in 2D culture and HSCs. Epidermal integrity and proliferation were also evaluated through haematoxylin and eosin staining, and IF staining. Results: IF confirmed iEC commitment to endothelial phenotype. RT-qPCR showed HUVECs and iECs immaturity compared with HDBECs. In vitro, the vascular network extension was comparable for HDBECs and HUVECs despite differences in vascular diameter, whereas iECs formed unorganized rudimentary tubular structures. In vivo, all ECs produced discrete vascular networks of varying dimensions. HUVECs and HDBECs maintained a higher proliferation of basal keratinocytes. HDBECs had the best impact on extracellular matrix expression, and epidermal proliferation and differentiation. Innovation: To our knowledge, this study represents the first direct and quantitative comparison of HDBECs, HUVECs, and iECs angiogenic performance in HSCs. Conclusions: Our data indicate that HUVECs and iECs can be an alternative cell source to HDBEC to promote the short-term viability of prevascularized engineered grafts. Nevertheless, HDBECs maintain their capillary identity and outperform other EC types in promoting the maturation of the dermis and epidermis. These intrinsic characteristics of HDBECs may influence the long-term function of skin grafts.
Collapse
Affiliation(s)
- Alberto Pappalardo
- Dermatology Department, Columbia University Medical Center, New York, New York, USA
| | - Lauren Herron
- Dermatology Department, Columbia University Medical Center, New York, New York, USA
| | | | - Hasan Erbil Abaci
- Dermatology Department, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Burns in the Elderly: Potential Role of Stem Cells. Int J Mol Sci 2020; 21:ijms21134604. [PMID: 32610474 PMCID: PMC7369885 DOI: 10.3390/ijms21134604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Burns in the elderly continue to be a challenge despite advances in burn wound care management. Elderly burn patients continue to have poor outcomes compared to the younger population. This is secondary to changes in the quality of the aged skin, leading to impaired wound healing, aggravated immunologic and inflammatory responses, and age-related comorbidities. Considering the fast-growing elderly population, it is imperative to understand the anatomic, physiologic, and molecular changes of the aging skin and the mechanisms involved in their wound healing process to prevent complications associated with burn wounds. Various studies have shown that stem cell-based therapies improve the rate and quality of wound healing and skin regeneration; however, the focus is on the younger population. In this paper, we start with an anatomical, physiological and molecular dissection of the elderly skin to understand why wound healing is delayed. We then review the potential use of stem cells in elderly burn wounds, as well as the mechanisms by which mesenchymal stem cell (MSCs)-based therapies may impact burn wound healing in the elderly. MSCs improve burn wound healing by stimulating and augmenting growth factor secretion and cell proliferation, and by modulating the impaired elderly immune response. MSCs can be used to expedite healing in superficial partial thickness burns and donor site wounds, improve graft take and prevent graft breakdown.
Collapse
|
10
|
Campos F, Bonhome-Espinosa AB, Chato-Astrain J, Sánchez-Porras D, García-García ÓD, Carmona R, López-López MT, Alaminos M, Carriel V, Rodriguez IA. Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications. Front Bioeng Biotechnol 2020; 8:596. [PMID: 32612984 PMCID: PMC7308535 DOI: 10.3389/fbioe.2020.00596] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of biocompatible and biomimetic tissue-like biomaterials is crucial to ensure the success of engineered substitutes in tissue repair. Natural biomaterials able to mimic the structure and composition of native extracellular matrices typically show better results than synthetic biomaterials. The aim of this study was to perform an in vivo time-course biocompatibility analysis of fibrin-agarose tissue-like hydrogels at the histological, imagenological, hematological, and biochemical levels. Tissue-like hydrogels were produced by a controlled biofabrication process allowing the generation of biomechanically and structurally stable hydrogels. The hydrogels were implanted subcutaneously in 25 male Wistar rats and evaluated after 1, 5, 9, and 12 weeks of in vivo follow-up. At each period of time, animals were analyzed using magnetic resonance imaging (MRI), hematological analyses, and histology of the local area in which the biomaterials were implanted, along with major vital organs (liver, kidney, spleen, and regional lymph nodes). MRI results showed no local or distal alterations during the whole study period. Hematology and biochemistry showed some fluctuation in blood cells values and in some biochemical markers over the time. However, these parameters were progressively normalized in the framework of the homeostasis process. Histological, histochemical, and ultrastructural analyses showed that implantation of fibrin-agarose scaffolds was followed by a progressive process of cell invasion, synthesis of components of the extracellular matrix (mainly, collagen) and neovascularization. Implanted biomaterials were successfully biodegraded and biointegrated at 12 weeks without any associated histopathological alteration in the implanted zone or distal vital organs. In summary, our in vivo study suggests that fibrin-agarose tissue-like hydrogels could have potential clinical usefulness in engineering applications in terms of biosafety and biocompatibility.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana Belen Bonhome-Espinosa
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Applied Physics, Faculty of Science, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | - Óscar Darío García-García
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Modesto T López-López
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Applied Physics, Faculty of Science, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ismael A Rodriguez
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Department of Histology, Faculty of Dentistry, National University of Cordoba, Cordoba, Argentina
| |
Collapse
|
11
|
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36:1111-1126. [PMID: 29563048 DOI: 10.1016/j.biotechadv.2018.03.011] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic.
| | - Jana Zarubova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkyne University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Hooman Motarjemi
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| | - Martin Molitor
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| |
Collapse
|
12
|
Fontana G, Delgado LM, Cigognini D. Biologically Inspired Materials in Tissue Engineering. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
El-Serafi AT, El-Serafi IT, Elmasry M, Steinvall I, Sjöberg F. Skin regeneration in three dimensions, current status, challenges and opportunities. Differentiation 2017; 96:26-29. [PMID: 28628852 DOI: 10.1016/j.diff.2017.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023]
Abstract
Skin regeneration is a life-saving need for many patients, whom list is stretched from burn victims to motor-car accidents. Spraying cells, either keratinocytes or stem cells, were associated with variable results and, in many cases, unfavorable outcomes. As the spatial configuration of the skin is distinctive, many trials investigated the bio-printing or the construction of three dimensional skin models where different layers of the skin were preserved. Although some of these models showed the histological configuration of the skin, their acceptance by the wound was questionable as a consequence of delayed vascularization. In this mini-review, different models for three dimensional regeneration of the skin will be discussed with their main points of strength and challenges as well as their possible opportunities.
Collapse
Affiliation(s)
- Ahmed T El-Serafi
- Sharjah Institute for Medical Research and College of Medicine, University of Sharjah, M27-138, P.O. Box 27272, Sharjah, UAE; Faculty of Medicine, Suez Canal University, Egypt.
| | - Ibrahim T El-Serafi
- Division of Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet, Sweden and Faculty of Medicine, Port-Said University, Egypt; The Burns Centre, Department of Hand Surgery and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Moustafa Elmasry
- Plastic Surgery Unit, Surgery Department, Suez Canal University, Egypt; The Burns Centre, Department of Hand Surgery and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Ingrid Steinvall
- The Burns Centre, Department of Hand Surgery and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Folke Sjöberg
- The Burns Centre, Department of Hand Surgery and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| |
Collapse
|
14
|
Barba C, Alonso C, Sánchez I, Suñer E, Sáez-Martín LC, Coderch L. Soybean-fragmented proteoglycans against skin aging. J COSMET LASER THER 2017; 19:237-244. [PMID: 28151058 DOI: 10.1080/14764172.2017.1288259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The majority of age-dependent skin changes happen in the dermis layer inducing changes in skin collagen and in the proteoglycans. The main aim of this work is to study the efficacy of a Proteum serum, containing soybean-fragmented proteoglycans, against skin aging. MATERIALS AND METHODS In vitro tests were performed to evaluate the Proteum serum ability on activating the production of collagen and proteoglycans. An in vivo long-term study was performed to determine the efficacy of the Proteum serum when applied on skin. Protection of healthy skin against detergent-induced dermatitis and the antioxidant properties of the applied Proteum serum were also studied. RESULTS AND DISCUSSION The in vitro tests demonstrated that the Proteum serum was able to elevate the production of molecules which are essential for supporting the dermal extracellular matrix organization. These results were correlated by the in vivo measurements where a clear trend on improving the measured skin parameters due to the Proteum serum application was found. CONCLUSIONS A beneficial effect of the Proteum serum was demonstrated with an improvement in the skin roughness and a reinforcement of the skin barrier function. Moreover, a significant protector effect on human stratum corneum against lipids peroxides (LPO) was demonstrated.
Collapse
Affiliation(s)
- Clara Barba
- a Department of Chemical and Surfactants Technology , Instituto de Química Avanzada de Cataluña , Barcelona , Spain
| | - Cristina Alonso
- a Department of Chemical and Surfactants Technology , Instituto de Química Avanzada de Cataluña , Barcelona , Spain
| | - Isabel Sánchez
- b Hospital Universitario de Getafe, Banco de Tejidos , Getafe , Spain
| | - Elisa Suñer
- c Laboratorios Martiderm , Barcelona , Spain
| | | | - Luisa Coderch
- a Department of Chemical and Surfactants Technology , Instituto de Química Avanzada de Cataluña , Barcelona , Spain
| |
Collapse
|
15
|
Kuna VK, Padma AM, Håkansson J, Nygren J, Sjöback R, Petronis S, Sumitran-Holgersson S. Significantly Accelerated Wound Healing of Full-Thickness Skin Using a Novel Composite Gel of Porcine Acellular Dermal Matrix and Human Peripheral Blood Cells. Cell Transplant 2016; 26:293-307. [PMID: 27503828 DOI: 10.3727/096368916x692690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here we report the fabrication of a novel composite gel from decellularized gal-gal-knockout porcine skin and human peripheral blood mononuclear cells (hPBMCs) for full-thickness skin wound healing. Decellularized skin extracellular matrix (ECM) powder was prepared via chemical treatment, freeze drying, and homogenization. The powder was mixed with culture medium containing hyaluronic acid to generate a pig skin gel (PSG). The effect of the gel in regeneration of full-thickness wounds was studied in nude mice. We found significantly accelerated wound closure already on day 15 in animals treated with PSG only or PSG + hPBMCs compared to untreated and hyaluronic acid-treated controls (p < 0.05). Addition of the hPBMCs to the gel resulted in marked increase of host blood vessels as well as the presence of human blood vessels. At day 25, histologically, the wounds in animals treated with PSG only or PSG + hPBMCs were completely closed compared to those of controls. Thus, the gel facilitated generation of new skin with well-arranged epidermal cells and restored bilayer structure of the epidermis and dermis. These results suggest that porcine skin ECM gel together with human cells may be a novel and promising biomaterial for medical applications especially for patients with acute and chronic skin wounds.
Collapse
|
16
|
Arnal-Pastor M, Martínez-Ramos C, Vallés-Lluch A, Pradas MM. Influence of scaffold morphology on co-cultures of human endothelial and adipose tissue-derived stem cells. J Biomed Mater Res A 2016; 104:1523-33. [DOI: 10.1002/jbm.a.35682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- M. Arnal-Pastor
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
| | - C. Martínez-Ramos
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
| | - A. Vallés-Lluch
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
| | - M. Monleón Pradas
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine; Valencia Spain
| |
Collapse
|
17
|
Zhe Z, Jun D, Yang Z, Mingxi X, Ke Z, Ming Z, Zhong W, Mujun L. Bladder Acellular Matrix Grafts Seeded with Adipose-Derived Stem Cells and Incubated Intraperitoneally Promote the Regeneration of Bladder Smooth Muscle and Nerve in a Rat Model of Bladder Augmentation. Stem Cells Dev 2016; 25:405-14. [PMID: 26863067 DOI: 10.1089/scd.2015.0246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the feasibility of bladder acellular matrix grafts (BAMGs) seeded with adipose-derived stem cells (ASCs) followed by intraperitoneal incubation for bladder reconstruction in a rat model of bladder augmentation, and to explore the underlying mechanism. Autologous CM-DiI-labeled ASC-seeded (experimental group) and unseeded (control group) BAMGs were incubated in the peritoneum of male rats for 2 weeks and then harvested for bladder augmentation. Histological analysis of the incubated BAMGs revealed numerous cells growing in homogeneous collagen bundles in both groups. In the control BAMGs, these cells were mesenchyme derived, while in the ASC-seeded BAMGs, myofibroblasts and mesothelial cells were found inside and on the surface of the scaffold, respectively. Immunofluorescence analysis demonstrated that some of the myofibroblasts were transdifferentiated from the ASCs after 2 weeks of intraperitoneal incubation. The greater bladder capacity was found in the experimental group than the control group both 4 and 14 weeks postoperatively. Histological analysis revealed that the entire urothelium regenerated well both in the experimental group and the control group without significant difference 4 weeks and 14 weeks postoperatively. From the quantitative data of immunohistochemical and immunofluorescence staining, the smooth muscle cells (SMCs) regenerated significantly better in the experimental group than the control group both 4 weeks and 14 weeks postoperatively. Also significantly more nerve cells were found in the experimental group 14 weeks postoperatively. At 4 weeks postoperatively, the immunofluorescence double staining revealed that some SMCs in the BAMG were transdifferentiated from the implanted ASCs, but no CM-DiI labeling of ASCs was detected 14 weeks postoperatively. Taken together, our results demonstrate that ASC-seeded and peritoneally incubated BAMGs promote not only the morphological regeneration of the bladder smooth muscle and nerve, but also the bladder capacity, which indicates their potential for bladder regeneration.
Collapse
Affiliation(s)
- Zhou Zhe
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Da Jun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhao Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xu Mingxi
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ke
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ming
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Wang Zhong
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Lu Mujun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
18
|
Kearney CJ, Pandit A. Special Collection: Closing the Gaps in Skin Wound Healing. Tissue Eng Part A 2016; 22:401-2. [PMID: 26671466 DOI: 10.1089/ten.tea.2015.0549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Cathal J Kearney
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Abhay Pandit
- 3 Network of Excellence for Functional Biomaterials, National University of Ireland Galway, Galway, Ireland .,4 CÚRAM, Centre for Research in Medical Devices , Galway, Ireland
| |
Collapse
|
19
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|
20
|
Generation of a Fibrin Based Three-Layered Skin Substitute. BIOMED RESEARCH INTERNATIONAL 2015; 2015:170427. [PMID: 26236715 PMCID: PMC4508374 DOI: 10.1155/2015/170427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
Abstract
A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. However, the main focus in research and clinical application lies on dermal and epidermal substitutes whereas the development of a subcutaneous replacement (hypodermis) is often disregarded. In this study we used fibrin sealant as hydrogel scaffold to generate a three-layered skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes were embedded in the fibrin hydrogel and were combined with another fibrin clot with fibroblasts for the construction of the dermal layer. Keratinocytes were added on top of the two-layered construct to form the epidermal layer. The three-layered construct was cultivated for up to 3 weeks. Our results show that ASCs and fibroblasts were viable, proliferated normally, and showed physiological morphology in the skin substitute. ASCs were able to differentiate into mature adipocytes during the course of four weeks and showed morphological resemblance to native adipose tissue. On the surface keratinocytes formed an epithelial-like layer. For the first time we were able to generate a three-layered skin substitute based on a fibrin hydrogel not only serving as a dermal and epidermal substitute but also including the hypodermis.
Collapse
|
21
|
Lin X, Huang J, Shi Y, Liu W. Tissue Engineering and Regenerative Medicine in Applied Research: A Year in Review of 2014. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:177-86. [PMID: 25588683 DOI: 10.1089/ten.teb.2015.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xunxun Lin
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Jia Huang
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yuan Shi
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Wei Liu
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
22
|
Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci 2014; 15:19791-815. [PMID: 25365172 PMCID: PMC4264139 DOI: 10.3390/ijms151119791] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/12/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
In patients with chronic wounds, autologous tissue repair is often not sufficient to heal the wound. These patients might benefit from regenerative medicine or the implantation of a tissue-engineered scaffold. Both wound healing and tissue engineering is dependent on the formation of a microvascular network. This process is highly regulated by hypoxia and the transcription factors hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α). Even though much is known about the function of HIF-1α in wound healing, knowledge about the function of HIF-2α in wound healing is lacking. This review focuses on the function of HIF-1α and HIF-2α in microvascular network formation, wound healing, and therapy strategies.
Collapse
|