1
|
Ahn J, Nam YS. Assessing Barrier Function in Psoriasis and Cornification Models of Artificial Skin Using Non-Invasive Impedance Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400111. [PMID: 38995098 PMCID: PMC11575500 DOI: 10.1002/advs.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Reconstructed epidermal equivalents (REEs) consist of two distinct cell layers - the stratum corneum (SC) and the keratinocyte layer (KL). The interplay of these layers is particularly crucial in pruritic inflammatory disorders, like psoriasis, where a defective SC barrier is associated with immune dysregulation. However, independent evaluation of the skin barrier function of the SC and KL in REEs is highly challenging because of the lack of quantitative methodologies that do not disrupt the counter layer. Here, a non-invasive impedance spectroscopy technique is introduced for dissecting the distinct contributions of the SC and KL to overall skin barrier function without disrupting the structure. These findings, inferred from the impedance spectra, highlight the individual barrier resistances and maturation levels of each layer. Using an equivalent circuit model, a correlation between impedance parameters and specific skin layers, offering insights beyond traditional impedance methods that address full-thickness skin only is established. This approach successfully detects subtle changes, such as increased paracellular permeability due to mild irritants and the characterization of an immature SC in psoriatic models. This research has significant implications, paving the way for detailed mechanistic investigations and fostering the development of therapies for skin irritation and inflammatory disorders.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Zuniga K, Ghousifam N, Shaffer L, Brocklehurst S, Van Dyke M, Christy R, Natesan S, Rylander MN. Development of a Static Avascular and Dynamic Vascular Human Skin Equivalent Employing Collagen/Keratin Hydrogels. Int J Mol Sci 2024; 25:4992. [PMID: 38732209 PMCID: PMC11084893 DOI: 10.3390/ijms25094992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
- 59th Medical Wing Science and Technology, JBSA-Lackland, TX 78236, USA;
| | - Neda Ghousifam
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Lucy Shaffer
- 59th Medical Wing Science and Technology, JBSA-Lackland, TX 78236, USA;
| | - Sean Brocklehurst
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Mark Van Dyke
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85712, USA;
| | - Robert Christy
- Military Health Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Shanmugasundaram Natesan
- Extremity Trauma and Amputation Center of Excellence (EACE), Defense Health Agency, San Diego, CA 92134, USA;
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
3
|
Wang Z, Geng S, Zhang J, Yang H, Shi S, Zhao L, Luo X, Cao Z. Methods for the characterisation of dermal uptake: Progress and perspectives for organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 183:108400. [PMID: 38142534 DOI: 10.1016/j.envint.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Organophosphate esters (OPEs) are a group of pollutants that are widely detected in the environment at high concentrations. They can adversely affect human health through multiple routes of exposure, including dermal uptake. Although attention has been paid to achieving an accurate and complete quantification of the dermal uptake of OPEs, existing evaluation methods and parameters have obvious weaknesses. This study reviewed two main categories of methodologies, namely the relative absorption (RA) model and the permeability coefficient (PC) model, which are widely used to assess the dermal uptake of OPEs. Although the PC model is more accurate and is increasingly used, the most important parameter in this model, the permeability coefficient (Kp), has been poorly characterised for OPEs, resulting in considerable errors in the estimation of the dermal uptake of OPEs. Thus, the detailed in vitro methods for the determination of Kp are summarised and sorted. Furthermore, the commonly used skin membranes are identified and the factors affecting Kp and corresponding mechanisms are discussed. In addition, the experimental conditions, conclusions, and available data on Kp values of the OPEs are thoroughly summarised. Finally, the corresponding knowledge gaps are proposed, and a more accurate and sophisticated experimental system and unknown Kp values for OPEs are suggested.
Collapse
Affiliation(s)
- Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shuxiang Geng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hengkang Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
Jahn M, Lang V, Diehl S, Back R, Kaufmann R, Fauth T, Buerger C. Different immortalized keratinocyte cell lines display distinct capabilities to differentiate and reconstitute an epidermis in vitro. Exp Dermatol 2024; 33:e14985. [PMID: 38043130 DOI: 10.1111/exd.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/05/2023]
Abstract
Dermatological research relies on the availability of suitable models that most accurately reflect the in vivo situation. Primary keratinocytes obtained from skin reduction surgeries are not only limited by availability but have a short lifespan and show donor-specific variations, which hamper the understanding of general mechanisms. The spontaneously immortalized keratinocyte cell line HaCaT displays chromosomal aberrations and is known to differentiate in an abnormal manner. To overcome these issues, we validated different engineered immortalized cell lines created from primary human keratinocytes (NHK) as model systems to study epidermal function. Cell lines either immortalized by the expression of SV40 large T antigen and hTERT (NHK-SV/TERT) or by transduction with HPV E6/E7 (NHK-E6/E7) were analysed for their growth and differentiation behaviour using 2D and 3D culture systems and compared to primary keratinocytes. Both cell lines displayed a robust proliferative behaviour but were still sensitive to contact inhibition. NHK-E6/E7 could be driven into differentiation by Ca2+ switch, while NHK-SV/TERT needed withdrawal from any proliferative signal to initiate a delayed onset of differentiation. In 3D epidermal models both cell lines were able to reconstitute a stratified epidermis and functional epidermal barrier. However, only NHK-E6/E7 showed a degree of epidermal maturation and stratification that was comparable to primary keratinocytes.
Collapse
Affiliation(s)
- Magdalena Jahn
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Victoria Lang
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sandra Diehl
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Roland Kaufmann
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Theil AF, Pines A, Kalayci T, Heredia‐Genestar JM, Raams A, Rietveld MH, Sridharan S, Tanis SEJ, Mulder KW, Büyükbabani N, Karaman B, Uyguner ZO, Kayserili H, Hoeijmakers JHJ, Lans H, Demmers JAA, Pothof J, Altunoglu U, El Ghalbzouri A, Vermeulen W. Trichothiodystrophy-associated MPLKIP maintains DBR1 levels for proper lariat debranching and ectodermal differentiation. EMBO Mol Med 2023; 15:e17973. [PMID: 37800682 PMCID: PMC10630875 DOI: 10.15252/emmm.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Alex Pines
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Tuğba Kalayci
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Anja Raams
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Marion H Rietveld
- Department of DermatologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Sriram Sridharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Sabine EJ Tanis
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Klaas W Mulder
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Nesimi Büyükbabani
- Department of Pathology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University HospitalIstanbulTurkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Pediatric Basic Sciences, Child Health InstituteIstanbul UniversityIstanbulTurkey
| | - Zehra O Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | - Jan HJ Hoeijmakers
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
- Institute for Genome Stability in Aging and Disease, CECAD ForschungszentrumUniversity Hospital of CologneKölnGermany
- Princess Máxima Center for Pediatric OncologyONCODE InstituteUtrechtThe Netherlands
| | - Hannes Lans
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | - Joris Pothof
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | | | - Wim Vermeulen
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
6
|
Rachinskaya OA, Melnikova EV, Merkulov VA. FEATURES OF QUALITY CONTROL STRATEGY FOR DRUGS BASED ON VIABLE SKIN CELLS. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-515-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aim of the study was to research the international experience in quality assurance of the products based on skin cells in order to identify the features of the quality control strategy in the development, production, as well as during an expert quality assessment as a part of the state registration procedure in the Russian Federation.Materials and methods. The article provides an analysis of the materials presented in the assessment reports of the USA and Japanese regulatory authorities, as well as on the official websites of manufacturers, in review and scientific papers on the study of the structure and properties of tissue-engineered skin analogs.Results. The manufacture of products containing human skin cells is associated with such risks as the possibility of contamination of the preparation with infective agents transmitted by materials of the animal origin, feeder cells, donor cells, or during the manufacturing process; a small amount of biopsy materials; a complexity of a three-dimensional product structure when combining cells with a scaffold; continuity of the manufacture process and a short product expiry date. The raw materials and reagents control, the creation of cell banks, using animal feeder cells only from qualified cell banks, an in-process control and release testing in accordance with the requirements of the finished product specification, make it possible to obtain a preparation with a reproducible quality. The specification should contain information about the identity, safety and potency of the product. For each preparation, the choice of approaches for assessing the quality is individual and depends on its composition and mode of action.Conclusion. The features of the quality control strategy for the drugs based on human skin cells, consist in the implementation of control measures in order to obtain a proper quality of cellular (viability, sterility, identity, potency, et al) and non-cellular (physico-chemical scaffold properties) components or the whole graft (bioburden, barrier properties). The approaches and methods for determining the potency should be selected individually for each product and reflect the number, viability and identity of cells, a proliferative activity and secretable ability of the cellular component.
Collapse
Affiliation(s)
| | - E. V. Melnikova
- Scientific Centre for Expert Evaluation of Medicinal Products
| | - V. A. Merkulov
- Scientific Centre for Expert Evaluation of Medicinal Products
| |
Collapse
|
7
|
Helder RWJ, Rousel J, Boiten WA, Gooris GS, Nadaban A, El Ghalbzouri A, Bouwstra JA. The effect of PPAR isoform (de)activation on the lipid composition in full-thickness skin models. Exp Dermatol 2022; 32:469-478. [PMID: 36541108 DOI: 10.1111/exd.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Human skin equivalents (HSEs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). Although HSEs resemble NHS very closely, the barrier located in the stratum corneum (SC) is impaired. This is caused by an altered lipid composition in the SC of HSEs compared with NHS. One of the most pronounced changes in this lipid composition is a high level of monounsaturation. One key enzyme in this change is stearoyl-CoA desaturase-1 (SCD1), which catalyses the monounsaturation of lipids. In order to normalize the lipid composition, we aimed to target a group of nuclear receptors that are important regulators in the lipid synthesis. This group of receptors are known as the peroxisome proliferating activating receptors (PPARs). By (de)activating each isoform (PPAR-α, PPAR-δ and PPAR-γ), the PPAR isoforms may have normalizing effects on the lipid composition. In addition, another PPAR-α agonist Wy14643 was included as this supplement demonstrated normalizing effects in the lipid composition in a more recent study. After PPAR (ant)agonists supplementation, the mRNA of downstream targets, lipid synthesis genes and lipid composition were investigated. The PPAR downstream targets were activated, indicating that the supplements reached the keratinocytes to trigger their effect. However, minimal impact was observed on the lipid composition after PPAR isoform (de) activation. Only the highest concentration Wy14643 resulted in strong, but negative effects on CER composition. Although the novel tested modifications did not result in an improvement, more insight is gained on the nuclear receptors PPARs and their effects on the lipid barrier in full-thickness skin models.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Jannik Rousel
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Walter A Boiten
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Andreea Nadaban
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | | | - Joke A Bouwstra
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
8
|
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022; 12:biom12121828. [PMID: 36551256 PMCID: PMC9775308 DOI: 10.3390/biom12121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
Collapse
|
9
|
The survival of epidemic and sporadic MRSA on human skin mimics is determined by both host and bacterial factors. Epidemiol Infect 2022; 150:e203. [PMID: 36382385 PMCID: PMC9987022 DOI: 10.1017/s0950268822001765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial survival on, and interactions with, human skin may explain the epidemiological success of MRSA strains. We evaluated the bacterial counts for 27 epidemic and 31 sporadic MRSA strains on 3D epidermal models based on N/TERT cells (NEMs) after 1, 2 and 8 days. In addition, the expression of antimicrobial peptides (hBD-2, RNase 7), inflammatory cytokines (IL-1β, IL-6) and chemokine IL-8 by NEMs was assessed using immunoassays and the expression of 43 S. aureus virulence factors was determined by a multiplex competitive Luminex assay. To explore donor variation, bacterial counts for five epidemic and seven sporadic MRSA strains were determined on 3D primary keratinocyte models (LEMs) from three human donors. Bacterial survival was comparable on NEMs between the two groups, but on LEMs, sporadic strains showed significantly lower survival numbers compared to epidemic strains. Both groups triggered the expression of immune factors. Upon interaction with NEMs, only the epidemic MRSA strains expressed pore-forming toxins, including alpha-hemolysin (Hla), gamma-hemolysin (HlgB), Panton-Valentine leucocidin (LukS) and LukED. Together, these data indicate that the outcome of the interaction between MRSA and human skin mimics, depends on the unique combination of bacterial strain and host factors.
Collapse
|
10
|
Zuniga K, Ghousifam N, Sansalone J, Senecal K, Van Dyke M, Rylander MN. Keratin Promotes Differentiation of Keratinocytes Seeded on Collagen/Keratin Hydrogels. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100559. [PMID: 36290526 PMCID: PMC9598618 DOI: 10.3390/bioengineering9100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Keratinocytes undergo a complex process of differentiation to form the stratified stratum corneum layer of the skin. In most biomimetic skin models, a 3D hydrogel fabricated out of collagen type I is used to mimic human skin. However, native skin also contains keratin, which makes up 90% of the epidermis and is produced by the keratinocytes present. We hypothesized that the addition of keratin (KTN) in our collagen hydrogel may aid in the process of keratinocyte differentiation compared to a pure collagen hydrogel. Keratinocytes were seeded on top of a 100% collagen or 50/50 C/KTN hydrogel cultured in either calcium-free (Ca-free) or calcium+ (Ca+) media. Our study demonstrates that the addition of keratin and calcium in the media increased lysosomal activity by measuring the glucocerebrosidase (GBA) activity and lysosomal distribution length, an indication of greater keratinocyte differentiation. We also found that the presence of KTN in the hydrogel also increased the expression of involucrin, a differentiation marker, compared to a pure collagen hydrogel. We demonstrate that a combination (i.e., containing both collagen and kerateine or “C/KTN”) hydrogel was able to increase keratinocyte differentiation compared to a pure collagen hydrogel, and the addition of calcium further increased the differentiation of keratinocytes. This multi-protein hydrogel shows promise in future models or treatments to increase keratinocyte differentiation into the stratum corneum.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Correspondence:
| | - Neda Ghousifam
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - John Sansalone
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kris Senecal
- Natick Soldier Center, U.S. Army Soldier & Biological Chemical Command, Natick, MA 01760, USA
| | - Mark Van Dyke
- College of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
11
|
Lim JH, Kim DH, Noh KH, Jung CR, Kang HM. The proliferative and multipotent epidermal progenitor cells for human skin reconstruction in vitro and in vivo. Cell Prolif 2022; 55:e13284. [PMID: 35723171 PMCID: PMC9436902 DOI: 10.1111/cpr.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The skin exhibits tremendous regenerative potential, as different types of progenitor and stem cells regulate skin homeostasis and damage. However, in vitro primary keratinocytes present with several drawbacks, such as high donor variability, short lifespan, and limited donor tissue availability. Therefore, more stable primary keratinocytes are needed to generate multiple uniform in vitro and in vivo skin models. RESULTS We identified epidermal progenitor cells from primary keratinocytes using Integrin beta 1 (ITGB1) an epidermal stem cell marker markedly decreased after senescence in vitro. Epidermal progenitor cells exhibited unlimited proliferation and the potential for multipotent differentiation capacity. Moreover, they could completely differentiate to form an organotypic skin model including conversed mesenchymal cells in the dermis and could mimic the morphologic and biochemical processes of human epidermis. We also discovered that proliferation and the multipotent differentiation capacity of these cells relied on ITGB1 expression. Eventually, we examined the in vitro and in vivo wound healing capacity of these epidermal progenitor cells. CONCLUSIONS Overall, the findings suggest that these stable and reproducible cells can differentiate into multiple lineages, including human skin models. They are a potentially powerful tool for studying skin regeneration, skin diseases, and are an alternative for in vivo experiments.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae Hun Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
13
|
Moran MC, Pandya RP, Leffler KA, Yoshida T, Beck LA, Brewer MG. Characterization of Human Keratinocyte Cell Lines for Barrier Studies. JID INNOVATIONS 2021; 1:100018. [PMID: 34909717 PMCID: PMC8659750 DOI: 10.1016/j.xjidi.2021.100018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023] Open
Abstract
Epidermal cell models are critical for studying skin biology. The gold standard used by the scientific community has historically been primary cell cultures from discarded tissue, typically from neonates (foreskin). Although directly applicable to humans, this system suffers from multiple issues, including substantial donor-to-donor variability and a finite number of divisions in culture. As such, we have identified a faithful alternative called N/TERT2G cells. These cells show many of the characteristics of primary cells, including barrier formation, differentiation kinetics and/or protein expression, and pathogenesis. From our observations, N/TERT2G cells can serve as a reproducible and genetically manipulatable platform in studying skin biology.
Collapse
Affiliation(s)
- Mary C Moran
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Radha P Pandya
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kimberly A Leffler
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Phang SJ, Arumugam B, Kuppusamy UR, Fauzi MB, Looi ML. A review of diabetic wound models-Novel insights into diabetic foot ulcer. J Tissue Eng Regen Med 2021; 15:1051-1068. [PMID: 34551455 DOI: 10.1002/term.3246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. Many research investigations have been conducted with the aims to uncover the diabetic wound healing mechanisms, develop novel therapeutics, and screen bioactive wound dressings in order to improve the current management of DFU. These would have not been possible without the utilization of an appropriate wound model, especially in a diabetic wound context. This review focuses on the different in vitro research models used in DFU investigations such as the 2D scratch wound assay, 3D skin model, and 3D angiogenesis model as well as their limitations. The current efforts and challenges to apply the 2D and 3D in vitro models in a hyperglycemic context to provide insights into DFU modeling will be reviewed. Perspectives of utilizing 3D bioprinting and skin-on-the-chip model as a diabetic wound model in the future will also be highlighted. By leveraging knowledge from past experiences and current research, an improved experimental model for DFU is anticipated to be established in near future.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bavani Arumugam
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Khurana P, Kolundzic N, Flohr C, Ilic D. Human pluripotent stem cells: An alternative for 3D in vitro modelling of skin disease. Exp Dermatol 2021; 30:1572-1587. [PMID: 33864704 DOI: 10.1111/exd.14358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023]
Abstract
To effectively study the skin and its pathology, various platforms have been used to date, with in vitro 3D skin models being considered the future gold standard. These models have generally been engineered from primary cell lines. However, their short life span leading to the use of various donors, imposes issues with genetic variation. Human pluripotent stem cell (hPSC)-technology holds great prospects as an alternative to the use of primary cell lines to study the pathophysiology of human skin diseases. This is due to their potential to generate an unlimited number of genetically identical skin models that closely mimic the complexity of in vivo human skin. During the past decade, researchers have therefore started to use human embryonic and induced pluripotent stem cells (hESC/iPSC) to derive skin resident-like cells and components. These have subsequently been used to engineer hPSC-derived 3D skin models. In this review, we focus on the advantages, recent developments, and future perspectives in using hPSCs as an alternative cell source for modelling human skin diseases in vitro.
Collapse
Affiliation(s)
- Preeti Khurana
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| | - Nikola Kolundzic
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| | - Carsten Flohr
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| |
Collapse
|
16
|
Enjalbert F, Dewan P, Caley MP, Jones EM, Morse MA, Kelsell DP, Enright AJ, O'Toole EA. 3D model of harlequin ichthyosis reveals inflammatory therapeutic targets. J Clin Invest 2021; 130:4798-4810. [PMID: 32544098 PMCID: PMC7456239 DOI: 10.1172/jci132987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/10/2020] [Indexed: 02/04/2023] Open
Abstract
The biology of harlequin ichthyosis (HI), a devastating skin disorder caused by loss-of-function mutations in the gene ABCA12, is poorly understood, and to date, no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI that could lead to the identification of new treatments for improving patients' quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12 using HI patient skin samples and an engineered CRISPR/Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin, whereas the innate immune inhibitor IL-37 was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) as being upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor 1400W or the JAK inhibitor tofacitinib dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.
Collapse
Affiliation(s)
- Florence Enjalbert
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew P Caley
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Eleri M Jones
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mary A Morse
- Adaptive Immunity Research Unit, GlaxoSmithKline Medicine's Research Centre, Stevenage, United Kingdom
| | - David P Kelsell
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anton J Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A O'Toole
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Royal London Hospital, Barts Health NHS Trust ERN-Skin, London, United Kingdom
| |
Collapse
|
17
|
Helder RWJ, Rousel J, Boiten WA, Gooris GS, Nadaban A, El Ghalbzouri A, Bouwstra JA. Improved organotypic skin model with reduced quantity of monounsaturated ceramides by inhibiting stearoyl-CoA desaturase-1. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158885. [PMID: 33444760 DOI: 10.1016/j.bbalip.2021.158885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
Full thickness models (FTM) are 3D in vitro skin cultures that resemble the native human skin (NHS) to a great extent. However, the barrier function of these skin models is reduced. The skin barrier is located in the stratum corneum (SC) and consists of corneocytes embedded in a lipid matrix. In this matrix, deviations in the composition of the FTMs lipid matrix may contribute to the impaired skin barrier when compared to NHS. One of the most abundant changes in lipid composition is an increase in monounsaturated lipids for which stearoyl-CoA desaturase-1 (SCD-1) is responsible. To improve the SC lipid composition, we reduced SCD-1 activity during the generation of the FTMs. These FTMs were subsequently assessed on all major aspects, including epidermal homeostasis, lipid composition, lipid organization, and barrier functionality. We demonstrate that SCD-1 inhibition was successful and resulted in FTMs that better mimic the lipid composition of FTMs to NHS by a significant reduction in monounsaturated lipids. In conclusion, this study demonstrates an effective approach to normalize SC monounsaturated lipid concentration and may be a valuable tool in further optimizing the FTMs in future studies.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Jannik Rousel
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Walter A Boiten
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Gerrit S Gooris
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Andreea Nadaban
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | | | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
18
|
How Qualification of 3D Disease Models Cuts the Gordian Knot in Preclinical Drug Development. Handb Exp Pharmacol 2020. [PMID: 32894342 DOI: 10.1007/164_2020_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Preclinical research struggles with its predictive power for drug effects in patients. The clinical success of preclinically approved drug candidates ranges between 3% and 33%. Regardless of the approach, novel disease models and test methods need to prove their relevance and reliability for predicting drug effects in patients, which is usually achieved by method validation. Nevertheless, validating all models appears unrealistic due to the variety of diseases. Thus, novel concepts are needed to increase the quality of preclinical research.Herein, we introduce qualification as a minimal standard to establish the relevance of preclinical models and test methods. Qualification starts with prioritizing and translating scientific requirements into technical parameters by quality function deployment. Qualified models use authenticated cells, which resemble the corresponding cells in humans in morphology and drug target expression. Moreover, disease models differ from normal models in the expression of relevant biomarkers. As a result, qualified test methods can discriminate effects of treatment standards and the effects of weakly effective or ineffective substances. Observer-blind readout, adequate data documentation, dropout inclusion, and a priori power studies are as crucial as realistic dosage regimens for qualified approaches. Here, we showcase the implementation of qualification. Adjusting the level of model complexity and qualification to three defined phases of preclinical research assures the optimal level of certainty at each step.In conclusion, qualification strengthens the researchers' impact by defining basic requirements that novel approaches must fulfill while still allowing for scientific creativity. Qualification helps to improve the predictive power of preclinical research. Applied to human cell-based models, qualification reduces animal testing, since only effective drug candidates are subjected to final animal testing and subsequently to clinical trials.
Collapse
|
19
|
Organotypic 3D Skin Models: Human Epidermal Equivalent Cultures from Primary Keratinocytes and Immortalized Keratinocyte Cell Lines. Methods Mol Biol 2020; 2154:45-61. [PMID: 32314207 DOI: 10.1007/978-1-0716-0648-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The three-dimensional culturing of human keratinocytes at the air-liquid interface yields a fully stratified epidermis including a functional stratum corneum and thus enables the study on epidermal structure and function in the context of biomedical, toxicological and pharmaceutical sciences. Here we provide a step-by-step detailed protocol for the isolation of human primary keratinocytes and the development of human epidermal equivalents generated from primary keratinocytes or immortalized keratinocytes (N/TERT-1; N/TERT-2G), including widely accepted procedures for the analysis of barrier function, tissue morphology, cell proliferation, and gene expression.
Collapse
|
20
|
Helder RWJ, Boiten WA, van Dijk R, Gooris GS, El Ghalbzouri A, Bouwstra JA. The effects of LXR agonist T0901317 and LXR antagonist GSK2033 on morphogenesis and lipid properties in full thickness skin models. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158546. [PMID: 31678517 DOI: 10.1016/j.bbalip.2019.158546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022]
Abstract
Full thickness models (FTMs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). However, their stratum corneum (SC) lipid composition differs from NHS causing a reduced skin barrier. The most pronounced differences in lipid composition are a reduction in lipid chain length and increased monounsaturated lipids. The liver-X-receptor (LXR) activates the monounsaturated lipid synthesis via stearoyl-CoA desaturase-1 (SCD-1). Therefore, the aim was to improve the SC lipid synthesis of FTMs by LXR deactivation. This was achieved by supplementing culture medium with LXR antagonist GSK2033. LXR agonist T0901317 was added for comparison. Subsequently, epidermal morphogenesis, lipid composition, lipid organization and the barrier functionality of these FTMs were assessed. We demonstrate that LXR deactivation resulted in a lipid composition with increased overall chain lengths and reduced levels of monounsaturation, whereas LXR activation increased the amount of monounsaturated lipids and led to a reduction in the overall chain length. However, these changes did not affect the barrier functionality. In conclusion, LXR deactivation led to the development of FTMs with improved lipid properties, which mimic the lipid composition of NHS more closely. These novel findings may contribute to design interventions to normalize SC lipid composition of atopic dermatitis patients.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Walter A Boiten
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Rianne van Dijk
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Gerrit S Gooris
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | | | - Joke A Bouwstra
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
21
|
Lukács B, Bajza Á, Kocsis D, Csorba A, Antal I, Iván K, Laki AJ, Erdő F. Skin-on-a-Chip Device for Ex Vivo Monitoring of Transdermal Delivery of Drugs-Design, Fabrication, and Testing. Pharmaceutics 2019; 11:pharmaceutics11090445. [PMID: 31480652 PMCID: PMC6781558 DOI: 10.3390/pharmaceutics11090445] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
To develop proper drug formulations and to optimize the delivery of their active ingredients through the dermal barrier, the Franz diffusion cell system is the most widely used in vitro/ex vivo technique. However, different providers and manufacturers make various types of this equipment (horizontal, vertical, static, flow-through, smaller and larger chambers, etc.) with high variability and not fully comparable and consistent data. Furthermore, a high amount of test drug formulations and large size of diffusion skin surface and membranes are important requirements for the application of these methods. The aim of our study was to develop a novel Microfluidic Diffusion Chamber device and compare it with the traditional techniques. Here the design, fabrication, and a pilot testing of a microfluidic skin-on-a chip device are described. Based on this chip, further developments can also be implemented for industrial purposes to assist the characterization and optimization of drug formulations, dermal pharmacokinetics, and pharmacodynamic studies. The advantages of our device, beside the low costs, are the small drug and skin consumption, low sample volumes, dynamic arrangement with continuous flow mimicking the dermal circulation, as well as rapid and reproducible results.
Collapse
Affiliation(s)
- Bence Lukács
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Ágnes Bajza
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Attila Csorba
- Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre u. 7, H-1092 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - András József Laki
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47. H-1094 Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary.
| |
Collapse
|
22
|
Unravelling effects of relative humidity on lipid barrier formation in human skin equivalents. Arch Dermatol Res 2019; 311:679-689. [PMID: 31321505 PMCID: PMC6787114 DOI: 10.1007/s00403-019-01948-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
Relative humidity (RH) levels vary continuously in vivo, although during in vitro generation of three-dimensional human skin equivalents (HSEs) these remain high (90-95%) to prevent evaporation of the cell-culture medium. However, skin functionality is directly influenced by environmental RH. As the barrier formation in HSEs is different, there is a need to better understand the role of cell-culture conditions during the generation of HSEs. In this study, we aim to investigate the effects of RH on epidermal morphogenesis and lipid barrier formation in HSEs. Therefore, two types of HSEs were developed at 90% or at 60% RH. Assessments were performed to determine epidermal morphogenesis by immunohistochemical analyses, ceramide composition by lipidomic analysis, and lipid organization by Fourier transform infrared spectroscopy and small-angle X-ray diffraction. We show that reduction of RH mainly affected the uppermost viable epidermal layers in the HSEs, including an enlargement of the granular cells and induction of epidermal cell activation. Neither the composition nor the organization of the lipids in the intercorneocyte space were substantially altered at reduced RH. In addition, lipid processing from glucosylceramides to ceramides was not affected by reduced RH in HSEs as shown by enzyme expression, enzyme activity, and substrate-to-product ratio. Our results demonstrate that RH directly influences epidermal morphogenesis, albeit the in vitro lipid barrier formation is comparable at 90% and 60% RH.
Collapse
|
23
|
Human skin equivalents cultured under hypoxia display enhanced epidermal morphogenesis and lipid barrier formation. Sci Rep 2019; 9:7811. [PMID: 31127151 PMCID: PMC6534609 DOI: 10.1038/s41598-019-44204-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Human skin equivalents (HSEs) are three-dimensional cell models mimicking characteristics of native human skin (NHS) in many aspects. However, a limitation of HSEs is the altered in vitro morphogenesis and barrier formation. Differences between in vitro and in vivo skin could have been induced by suboptimal cell culture conditions, of which the level of oxygen in vitro (20%) is much higher than in vivo (0.5-8%). Our aim is to study how external oxygen levels affect epidermal morphogenesis and barrier formation in HSEs. In the present study, fibroblast and keratinocyte monocultures, and HSEs were generated under 20% (normoxia) and 3% (hypoxia) oxygen level. In all cultures under hypoxia, expression of hypoxia-inducible factor target genes was increased. Characterization of HSEs generated under hypoxia using immunohistochemical analyses of morphogenesis biomarkers revealed a reduction in epidermal thickness, reduced proliferation, similar early differentiation, and an attenuated terminal differentiation program compared to normoxia, better mimicking NHS. The stratum corneum ceramide composition was studied with liquid chromatography coupled to mass spectrometry. Under hypoxia, HSEs exhibited a ceramide composition that more closely resembles that of NHS. Consequently, the lipid organization was improved. In conclusion, epidermal morphogenesis and barrier formation in HSEs reconstructed under hypoxia better mimics that of NHS.
Collapse
|
24
|
Mieremet A, van Dijk R, Boiten W, Gooris G, Bouwstra JA, El Ghalbzouri A. Characterization of human skin equivalents developed at body's core and surface temperatures. J Tissue Eng Regen Med 2019; 13:1122-1133. [PMID: 30945465 PMCID: PMC6767576 DOI: 10.1002/term.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Human skin equivalents (HSEs) are in vitro developed three‐dimensional models resembling native human skin (NHS) to a high extent. However, the epidermal lipid biosynthesis, barrier lipid composition, and organization are altered, leading to an elevated diffusion rate of therapeutic molecules. The altered lipid barrier formation in HSEs may be induced by standardized culture conditions, including a culture temperature of 37°C, which is dissimilar to skin surface temperature. Therefore, we aim to determine the influence of culture temperature during the generation of full thickness models (FTMs) on epidermal morphogenesis and lipid barrier formation. For this purpose, FTMs were developed at conventional core temperature (37°C) or lower temperatures (35°C and 33°C) and evaluated over a time period of 4 weeks. The stratum corneum (SC) lipid composition was analysed using advanced liquid chromatography coupled to mass spectrometry analysis. Our results show that SC layers accumulated at a similar rate irrespective of culture temperature. At reduced culture temperature, an increased epidermal thickness, a disorganization of the lower epidermal cell layers, a delayed early differentiation, and an enlargement of granular cells were detected. Interestingly, melanogenesis was reduced at lower temperature. The ceramide subclass profile, chain length distribution, and level of unsaturated ceramides were similar in FTMs generated at 37°C and 35°C but changed when generated at 33°C, reducing the resemblance to NHS. Herein, we report that culture temperature affects epidermal morphogenesis substantially and to a lesser extent the lipid barrier formation, highlighting the importance of optimized external parameters during reconstruction of skin.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rianne van Dijk
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Walter Boiten
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Gert Gooris
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Dancik Y, Sriram G, Rout B, Zou Y, Bigliardi-Qi M, Bigliardi PL. Physical and compositional analysis of differently cultured 3D human skin equivalents by confocal Raman spectroscopy. Analyst 2019; 143:1065-1076. [PMID: 29368763 DOI: 10.1039/c7an01675a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional skin equivalents are increasingly gaining acceptance as non-animal based experimental models of human skin. They are particularly suited to studying differences in physical and compositional properties of normal and diseased skin and their impact on the skin's barrier function. Typically, a culture protocol yielding a model of normal skin is modified to create a model simulating a pathology. Skin layer thicknesses and lipid/protein contents are compared using methods that are invasive, precluding further experiments on the same replicates, and which may be prone to artefacts. We show here that confocal Raman spectroscopy (CRS) is a valuable method for non-invasive discrimination of skin equivalents grown under different culture conditions. Using 3D full-thickness skin equivalents developed in-house, we measure significant differences in stratum corneum and viable epidermis apparent thicknesses resulting from a 7-day difference in the cultures' air-lift phase and from supplementation of the culture medium with interleukin 4. Furthermore, stratum corneum thicknesses obtained by CRS are up to 2.6-fold higher than values measured from histological photomicrographs. Regarding composition, CRS reveals the differential effects of the culture protocol modifications on ceramide, cholesterol and protein composition as a function of depth in the stratum corneum.
Collapse
Affiliation(s)
- Y Dancik
- Experimental Dermatology Laboratory, Institute of Medical Biology, A*STAR, 8a Biomedical Grove, #06-06, Singapore 138648.
| | | | | | | | | | | |
Collapse
|
26
|
Sriram G, Bigliardi PL, Bigliardi-Qi M. Full-Thickness Human Skin Equivalent Models of Atopic Dermatitis. Methods Mol Biol 2019; 1879:367-383. [PMID: 29790095 DOI: 10.1007/7651_2018_163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease caused by complex multifactorial etiology. In the recent years, there have been significant advances in tissue engineering and the generation of in vitro skin models representative of healthy and diseased states. This chapter describes the methodology for the fabrication of in vitro human skin equivalent (HSE) from human keratinocytes and fibroblasts using a fibrin-based dermal matrix and serum-free culture conditions. Modification of the culture conditions with the supplementation of Th2 cytokines such as interleukin-4 induces the development of atopic dermatitis-like skin model. The chapter also describes the histological and immunohistochemical tools for characterization of the HSE model. The reconstruction of tissue-engineered HSE models that recapitulate the essential features of atopic dermatitis provides powerful tools for deeper understanding of the underlying pathological mechanisms on epidermal level, identification and testing of novel treatment options, and safety and toxicological evaluation in a pathophysiologically relevant system.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| | | | - Mei Bigliardi-Qi
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Wagner T, Gschwandtner M, Strajeriu A, Elbe-Bürger A, Grillari J, Grillari-Voglauer R, Greiner G, Golabi B, Tschachler E, Mildner M. Establishment of keratinocyte cell lines from human hair follicles. Sci Rep 2018; 8:13434. [PMID: 30194332 PMCID: PMC6128885 DOI: 10.1038/s41598-018-31829-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
The advent of organotypic skin models advanced the understanding of complex mechanisms of keratinocyte differentiation. However, these models are limited by both availability of primary keratinocytes and donor variability. Keratinocytes derived from cultured hair follicles and interfollicular epidermis were immortalized by ectopic expression of SV40 and hTERT. The generated keratinocyte cell lines differentiated into stratified epidermis with well-defined stratum granulosum and stratum corneum in organotypic human skin models. They behaved comparable to primary keratinocytes regarding the expression of differentiation-associated proteins, cell junction components and proteins associated with cornification and formed a barrier against biotin diffusion. Mechanistically, we found that SV40 large T-antigen expression, accompanied by a strong p53 accumulation, was only detectable in the basal layer of the in vitro reconstructed epidermis. Inhibition of DNA-methylation resulted in expression of SV40 large T-antigen also in the suprabasal epidermal layers and led to incomplete differentiation of keratinocyte cell lines. Our study demonstrates the generation of keratinocyte cell lines which are able to fully differentiate in an organotypic skin model. Since hair follicles, as source for keratinocytes, can be obtained by minimally invasive procedures, our approach enables the generation of cell lines also from individuals not available for skin biopsies.
Collapse
Affiliation(s)
- Tanja Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Johannes Grillari
- Evercyte, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Regina Grillari-Voglauer
- Evercyte, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Rademacher F, Simanski M, Gläser R, Harder J. Skin microbiota and human 3D skin models. Exp Dermatol 2018; 27:489-494. [PMID: 29464787 DOI: 10.1111/exd.13517] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 12/17/2022]
Abstract
Although the role of the microbiota in skin homeostasis is still emerging, there is growing evidence that an intact microbiota supports the skin barrier. The increasing number of research efforts that are trying to shed more light on the human skin-microbiota interaction requires the use of suitable experimental models. Three-dimensional (3D) skin equivalents have been established as a valuable tool in dermatological research because they contain a fully differentiated epidermal barrier that reflects the morphological and molecular characteristics of normal human epidermis. In this review, we provide an overview of current 3D skin models and illustrate the potential of 3D skin models to study the human skin-microbiota interplay.
Collapse
Affiliation(s)
- Franziska Rademacher
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Simanski
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
29
|
Mieremet A, Rietveld M, van Dijk R, Bouwstra JA, El Ghalbzouri A. Recapitulation of Native Dermal Tissue in a Full-Thickness Human Skin Model Using Human Collagens. Tissue Eng Part A 2017; 24:873-881. [PMID: 29130419 DOI: 10.1089/ten.tea.2017.0326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Full-thickness skin models comprise a three-dimensional dermal equivalent based on an animal-derived collagen matrix that harbors fibroblasts and an epidermal equivalent formed by keratinocytes. The functionality of both equivalents is influenced by many factors, including extracellular matrix composition and resident cell type. Animal-derived collagens differ in amino acid composition and physicochemical properties from human collagens. This composition could alter the functionality of the dermal equivalent and epidermal morphogenesis with the barrier formation in full-thickness models (FTMs). By replacement of animal-derived collagen for human collagen, we generated and characterized the animal material-free human collagen full-thickness models (hC-FTMs) that better mimic native dermal tissue. MATERIALS AND METHODS An isolation procedure to obtain soluble collagen from human abdominal dermis was developed. Both FTMs and hC-FTMs were generated with primary human fibroblasts and keratinocytes. Immunohistochemical analyses with biomarkers for the dermal matrix composition, basement membrane (BM) formation, epidermal proliferation, differentiation, and activation were performed. The stratum corneum (SC) lipid composition was studied with liquid chromatography-mass spectrometry. Lipid lamellar organization was determined by small-angle X-ray diffraction. RESULTS The FTMs and hC-FTMs exhibit many similarities, including the dermal matrix structure, BM formation, epidermal basal layer proliferation, and execution of differentiation programs. The SC contains a similar number of corneocyte layers and the same level of lipids. The ceramide chain length distribution and ceramide subclass profile showed only minor differences. Subsequently, this led to an unaltered lamellar organization. CONCLUSION The animal material-free hC-FTM is generated successfully using collagens isolated from human abdominal dermis. Utilization of human collagens revealed that (epi-)dermal morphogenesis and lipid barrier formation resembled that of original FTMs. The hC-FTMs contain a dermal equivalent that mimics the native stromal tissue to a higher extent. Therefore these in vitro skin models can be used as promising tool for research purposes that contribute to animal-free experimentation.
Collapse
Affiliation(s)
- Arnout Mieremet
- 1 Department of Dermatology, Leiden University Medical Centre , Leiden, The Netherlands
| | - Marion Rietveld
- 1 Department of Dermatology, Leiden University Medical Centre , Leiden, The Netherlands
| | - Rianne van Dijk
- 2 Division of Drug Delivery Technology, LACDR, Leiden University , Leiden, The Netherlands
| | - Joke A Bouwstra
- 2 Division of Drug Delivery Technology, LACDR, Leiden University , Leiden, The Netherlands
| | | |
Collapse
|
30
|
Smits JPH, Niehues H, Rikken G, van Vlijmen-Willems IMJJ, van de Zande GWHJF, Zeeuwen PLJM, Schalkwijk J, van den Bogaard EH. Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Sci Rep 2017; 7:11838. [PMID: 28928444 PMCID: PMC5605545 DOI: 10.1038/s41598-017-12041-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
The strong societal urge to reduce the use of experimental animals, and the biological differences between rodent and human skin, have led to the development of alternative models for healthy and diseased human skin. However, the limited availability of primary keratinocytes to generate such models hampers large-scale implementation of skin models in biomedical, toxicological, and pharmaceutical research. Immortalized cell lines may overcome these issues, however, few immortalized human keratinocyte cell lines are available and most do not form a fully stratified epithelium. In this study we compared two immortalized keratinocyte cell lines (N/TERT1, N/TERT2G) to human primary keratinocytes based on epidermal differentiation, response to inflammatory mediators, and the development of normal and inflammatory human epidermal equivalents (HEEs). Stratum corneum permeability, epidermal morphology, and expression of epidermal differentiation and host defence genes and proteins in N/TERT-HEE cultures was similar to that of primary human keratinocytes. We successfully generated N/TERT-HEEs with psoriasis or atopic dermatitis features and validated these models for drug-screening purposes. We conclude that the N/TERT keratinocyte cell lines are useful substitutes for primary human keratinocytes thereby providing a biologically relevant, unlimited cell source for in vitro studies on epidermal biology, inflammatory skin disease pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hanna Niehues
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Guillaume W H J F van de Zande
- Department of Human Genetics, Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Boekema B, Ulrich MM, Middelkoop E. Models for cutaneous wound healing. Wound Repair Regen 2017; 25:347-348. [DOI: 10.1111/wrr.12545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Bouke Boekema
- Research, Association of Dutch Burn Centers (ADBC), Beverwijk; the Netherlands
| | - Magda M.W. Ulrich
- Research, Association of Dutch Burn Centers (ADBC), Beverwijk; the Netherlands
- Department of Molecular Cell Biology and Immunology; VU University Medical Center, Amsterdam; the Netherlands
| | - Esther Middelkoop
- Research, Association of Dutch Burn Centers (ADBC), Beverwijk; the Netherlands
- Department of Molecular Cell Biology and Immunology; VU University Medical Center, Amsterdam; the Netherlands
| |
Collapse
|
32
|
Mieremet A, Rietveld M, Absalah S, van Smeden J, Bouwstra JA, El Ghalbzouri A. Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices. PLoS One 2017; 12:e0174478. [PMID: 28333992 PMCID: PMC5363943 DOI: 10.1371/journal.pone.0174478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
Full thickness human skin models (FTMs) contain an epidermal and a dermal equivalent. The latter is composed of a collagen dermal matrix which harbours fibroblasts. Current epidermal barrier properties of FTMs do not fully resemble that of native human skin (NHS), which makes these human skin models less suitable for barrier related studies. To further enhance the resemblance of NHS for epidermal morphogenesis and barrier formation, we modulated the collagen dermal matrix with the biocompatible polymer chitosan. Herein, we report that these collagen-chitosan FTMs (CC-FTMs) possess a well-organized epidermis and maintain both the early and late differentiation programs as in FTMs. Distinctively, the epidermal cell activation is reduced in CC-FTMs to levels observed in NHS. Dermal-epidermal interactions are functional in both FTM types, based on the formation of the basement membrane. Evaluation of the barrier structure by the organization of the extracellular lipid matrix of the stratum corneum revealed an elongated repeat distance of the long periodicity phase. The ceramide composition exhibited a higher resemblance of the NHS, based on the carbon chain-length distribution and subclass profile. The inside-out barrier functionality indicated by the transepidermal water loss is significantly improved in the CC-FTMs. The expression of epidermal barrier lipid processing enzymes is marginally affected, although more restricted to a single granular layer. The novel CC-FTM resembles the NHS more closely, which makes them a promising tool for epidermal barrier related studies.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Samira Absalah
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Jeroen van Smeden
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Joke A. Bouwstra
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
33
|
Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, Grice JE, Roberts MS. Skin models for the testing of transdermal drugs. Clin Pharmacol 2016; 8:163-176. [PMID: 27799831 PMCID: PMC5076797 DOI: 10.2147/cpaa.s64788] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The assessment of percutaneous permeation of molecules is a key step in the evaluation of dermal or transdermal delivery systems. If the drugs are intended for delivery to humans, the most appropriate setting in which to do the assessment is the in vivo human. However, this may not be possible for ethical, practical, or economic reasons, particularly in the early phases of development. It is thus necessary to find alternative methods using accessible and reproducible surrogates for in vivo human skin. A range of models has been developed, including ex vivo human skin, usually obtained from cadavers or plastic surgery patients, ex vivo animal skin, and artificial or reconstructed skin models. Increasingly, largely driven by regulatory authorities and industry, there is a focus on developing standardized techniques and protocols. With this comes the need to demonstrate that the surrogate models produce results that correlate with those from in vivo human studies and that they can be used to show bioequivalence of different topical products. This review discusses the alternative skin models that have been developed as surrogates for normal and diseased skin and examines the concepts of using model systems for in vitro–in vivo correlation and the demonstration of bioequivalence.
Collapse
Affiliation(s)
- Eman Abd
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Shereen A Yousef
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Michael N Pastore
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Krishna Telaprolu
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Yousuf H Mohammed
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Sarika Namjoshi
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Jeffrey E Grice
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Michael S Roberts
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
34
|
Reijnders CMA, van Lier A, Roffel S, Kramer D, Scheper RJ, Gibbs S. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part A 2015; 21:2448-59. [PMID: 26135533 PMCID: PMC4554934 DOI: 10.1089/ten.tea.2015.0139] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Collapse
Affiliation(s)
| | - Amanda van Lier
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Sanne Roffel
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Duco Kramer
- 2 Department of Dermatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Rik J Scheper
- 3 Department of Pathology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands .,4 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
35
|
van Drongelen V, Danso MO, Out JJ, Mulder A, Lavrijsen APM, Bouwstra JA, El Ghalbzouri A. Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell Tissue Res 2015; 361:789-97. [PMID: 25776938 DOI: 10.1007/s00441-015-2162-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/23/2015] [Indexed: 02/05/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder characterised by various epidermal alterations. Filaggrin (FLG) mutations are a major predisposing factor for AD and much research has been focused on the FLG protein. Human skin equivalents (HSEs) might be useful tools for increasing our understanding of FLG in AD and to provide a tool for the screening of new therapies aimed at FLG replacement. Our aim is to establish an explant HSE (Ex-HSE) for AD by using non-lesional skin from AD patients wildtype for FLG or harbouring homozygous FLG mutations. These Ex-HSEs were evaluated as to whether they maintained their in vivo characteristics in vitro and whether FLG mutations affected the expression of various differentiation markers. FLG mutations did not affect the outgrowth from the biopsy for the establishment of Ex-HSEs. FLG expression was present in healthy skin and that of AD patients without FLG mutations and in their Ex-HSEs but was barely present in biopsies from patients with FLG mutations and their corresponding Ex-HSEs. AD Ex-HSEs and AD biopsies shared many similarities, i.e., proliferation and the expression of keratin 10 and loricrin, irrespective of FLG mutations. Neither KLK5 nor Lekti expression was affected by FLG mutations but was altered in the respective Ex-HSEs. Thus, Ex-HSEs established from biopsies taken from AD patients maintain their FLG genotype-phenotype in vitro and the expression of most proteins in vivo and in vitro remains similar. Our method is therefore promising as an alternative to genetic engineering approaches in the study of the role of FLG in AD.
Collapse
Affiliation(s)
- Vincent van Drongelen
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden Academy Centre for Drug Research, Leiden University, Leiden, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
36
|
Polyomavirus-associated Trichodysplasia spinulosa involves hyperproliferation, pRB phosphorylation and upregulation of p16 and p21. PLoS One 2014; 9:e108947. [PMID: 25291363 PMCID: PMC4188587 DOI: 10.1371/journal.pone.0108947] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/26/2014] [Indexed: 01/26/2023] Open
Abstract
Trichodysplasia spinulosa (TS) is a proliferative skin disease observed in severely immunocompromized patients. It is characterized by papule and trichohyalin-rich spicule formation, epidermal acanthosis and distention of dysmorphic hair follicles overpopulated by inner root sheath cells (IRS). TS probably results from active infection with the TS-associated polyomavirus (TSPyV), as indicated by high viral-load, virus protein expression and particle formation. The underlying pathogenic mechanism imposed by TSPyV infection has not been solved yet. By analogy with other polyomaviruses, such as the Merkel cell polyomavirus associated with Merkel cell carcinoma, we hypothesized that TSPyV T-antigen promotes proliferation of infected IRS cells. Therefore, we analyzed TS biopsy sections for markers of cell proliferation (Ki-67) and cell cycle regulation (p16ink4a, p21waf, pRB, phosphorylated pRB), and the putatively transforming TSPyV early large tumor (LT) antigen. Intense Ki-67 staining was detected especially in the margins of TS hair follicles, which colocalized with TSPyV LT-antigen detection. In this area, staining was also noted for pRB and particularly phosphorylated pRB, as well as p16ink4a and p21waf. Healthy control hair follicles did not or hardly stained for these markers. Trichohyalin was particularly detected in the center of TS follicles that stained negative for Ki-67 and TSPyV LT-antigen. In summary, we provide evidence for clustering of TSPyV LT-antigen-expressing and proliferating cells in the follicle margins that overproduce negative cell cycle regulatory proteins. These data are compatible with a scenario of TSPyV T-antigen-mediated cell cycle progression, potentially creating a pool of proliferating cells that enable viral DNA replication and drive papule and spicule formation.
Collapse
|