1
|
Zhang Y, Qiao N, Liu L, Shang H, Wei D, Ji Z, Wang R, Ding Y. Advances in the study of polysaccharide-based hydrogel wound dressings. Int J Biol Macromol 2025; 307:142134. [PMID: 40090647 DOI: 10.1016/j.ijbiomac.2025.142134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Due to the complexity of wound healing, the rapid promotion of wound healing has been a major unresolved challenge for the medical community. If a suitable wound dressing is not found, it can easily induce wound infection and slow down the wound repair process. Hydrogels have been recognized as the best alternative to traditional wound dressings due to their unique water-retention properties as well as their drug-carrying properties. We first outlined the entire process of wound healing, while introducing the biological activities of ten different natural polysaccharides and their mechanisms for promoting wound healing. Subsequently, we summarized the advantages and limitations of various polysaccharides in use and proposed corresponding solutions. In addition, wound dressings for a wide range of wounds, including diabetes, burns, and radiation, have also been reviewed, providing a comprehensive understanding of the applications of these hydrogels in different wound types. This paper provides an important reference for the biomedical application and clinical research of natural polysaccharide-based hydrogel in wound dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ning Qiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Lihua Liu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Hongzhou Shang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Dingxiang Wei
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zechao Ji
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ruize Wang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yajie Ding
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
2
|
Datta D, Bandi SP, Colaco V, Dhas N, Saha SS, Hussain SZ, Singh S. Cellulose-Based Nanofibers Infused with Biotherapeutics for Enhanced Wound-Healing Applications. ACS POLYMERS AU 2025; 5:80-104. [PMID: 40226346 PMCID: PMC11986729 DOI: 10.1021/acspolymersau.4c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025]
Abstract
Nanofibers fabricated from various materials such as polymers, carbon, and semiconductors have been widely used for wound healing and tissue engineering applications due to their excellent nontoxic, biocompatible, and biodegradable properties. Nanofibers with a diameter in the nanometer range possess a larger surface area per unit mass permitting easier addition of surface functionalities and release of biotherapeutics incorporated compared with conventional polymeric microfibers. Henceforth, nanofibers are a choice for fabricating scaffolds for the management of wound healing. Nanofibrous scaffolds have emerged as a promising method for fabricating wound dressings since they mimic the fibrous dermal extracellular matrix milieu that offers structural support for wound healing and functional signals for guiding tissue regeneration. Cellulose-based nanofibers have gained significant attention among researchers in the fabrication of on-site biodegradable scaffolds fortified with biotherapeutics in the management of wound healing. Cellulose is a linear, stereoregular insoluble polymer built from repeated units of d-glucopyranose linked with 1,4-β glycoside bonds with a complex and multilevel supramolecular architecture. Cellulose is a choice and has been used by various researchers due to its solubility in many solvents and its capacity for self-assembly into nanofibers, facilitating the mimicry of the natural extracellular matrix fibrous architecture and promoting substantial water retention. It is also abundant and demonstrates low immunogenicity in humans due to its nonanimal origins. To this end, cellulose-based nanofibers have been studied for protein delivery, antibacterial activity, and biosensor applications, among others. Taken together, this review delves into an update on cellulose-based nanofibers fused with bioactive compounds that have not been explored considerably in the past few years.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Suprio Shantanu Saha
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna-9203, Khulna, Bangladesh
| | - Syed Zubair Hussain
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna-9203, Khulna, Bangladesh
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Zhao Y, Li R, Liu Y, Song L, Gao Z, Li Z, Peng X, Wang P. An injectable, self-healable, antibacterial, and pro-healing oxidized pullulan polysaccharide/carboxymethyl chitosan hydrogel for early protection of open abdominal wounds. Int J Biol Macromol 2023; 250:126282. [PMID: 37572809 DOI: 10.1016/j.ijbiomac.2023.126282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Open abdomen (OA) is an effective method for treating critical abdominal conditions such as severe abdominal infections. The temporary abdominal closure (TAC) technique is often used to temporarily restore the physiological environment of the abdominal cavity and maintain the homeostatic balance of the abdominal cavity. However, most of the common TAC materials available today lack bio-responsiveness, tend to abrade the intestinal canal, and lead to delayed tissue healing of the wound. Hydrogels could mimic the extracellular matrix and have shown significant potential in life science fields such as tissue regeneration, wound repair, and controlled drug release. In this study, a composite hydrogel scaffold was constructed by the Schiff base reaction of oxidized pullulan polysaccharide with carboxymethyl chitosan. The hydrogel exhibited excellent self-healing, cellular biocompatibility, and antibacterial and anti-inflammatory abilities, and in experiments it reduced secondary damage caused by friction between tissue and patch, thereby preventing serious complications such as intestinal fistula, promoted M1-M2 polarization of macrophages, reduced the inflammatory response, regulated the inflammatory microenvironment in vivo, promoted angiogenesis and granulation tissue regeneration, and accelerated wound healing. Therefore, our hydrogel provides a new strategy for material-assisted wound protection during OA and has potential clinical applications.
Collapse
Affiliation(s)
- Yeying Zhao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Ruojing Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Yangyang Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Lei Song
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Zhao Gao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Ze Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China; School of Medicine, Nanjing University, Nanjing 210008, PR China.
| | - Xingang Peng
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China.
| | - Peige Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China.
| |
Collapse
|
4
|
Hao PC, Burnouf T, Chiang CW, Jheng PR, Szunerits S, Yang JC, Chuang EY. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnology 2023; 21:318. [PMID: 37667248 PMCID: PMC10478311 DOI: 10.1186/s12951-023-02068-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Impaired wound healing is a significant complication of diabetes. Platelet-derived extracellular vesicles (pEVs), rich in growth factors and cytokines, show promise as a powerful biotherapy to modulate cellular proliferation, angiogenesis, immunomodulation, and inflammation. For practical home-based wound therapy, however, pEVs should be incorporated into wound bandages with careful attention to delivery strategies. In this work, a gelatin-alginate hydrogel (GelAlg) loaded with reduced graphene oxide (rGO) was fabricated, and its potential as a diabetic wound dressing was investigated. The GelAlg@rGO-pEV gel exhibited excellent mechanical stability and biocompatibility in vitro, with promising macrophage polarization and reactive oxygen species (ROS)-scavenging capability. In vitro cell migration experiments were complemented by in vivo investigations using a streptozotocin-induced diabetic rat wound model. When exposed to near-infrared light at 2 W cm- 2, the GelAlg@rGO-pEV hydrogel effectively decreased the expression of inflammatory biomarkers, regulated immune response, promoted angiogenesis, and enhanced diabetic wound healing. Interestingly, the GelAlg@rGO-pEV hydrogel also increased the expression of heat shock proteins involved in cellular protective pathways. These findings suggest that the engineered GelAlg@rGO-pEV hydrogel has the potential to serve as a wound dressing that can modulate immune responses, inflammation, angiogenesis, and follicle regeneration in diabetic wounds, potentially leading to accelerated healing of chronic wounds.
Collapse
Affiliation(s)
- Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F- 59000, France
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110-52, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Zhang W, Huang X. Stem cell-based drug delivery strategy for skin regeneration and wound healing: potential clinical applications. Inflamm Regen 2023; 43:33. [PMID: 37391780 DOI: 10.1186/s41232-023-00287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Stem cell-based therapy is widely accepted to be a promising strategy in tissue regenerative medicine. Nevertheless, there are several obstacles to applying stem cells in skin regeneration and wound healing, which includes determining the optimum source, the processing and administration methods of stem cells, and the survival and functions of stem cells in wound sites. Owing to the limitations of applying stem cells directly, this review aims to discuss several stem cell-based drug delivery strategies in skin regeneration and wound healing and their potential clinical applications. We introduced diverse types of stem cells and their roles in wound repair. Moreover, the stem cell-based drug delivery systems including stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, stem cell as drug carriers, scaffold-free stem cell sheets, and stem cell-laden scaffolds were further investigated in the field of skin regeneration and wound healing. More importantly, stem cell membrane-coating nanotechnology confers great advantages compared to other drug delivery systems in a broad field of biomedical contexts. Taken together, the stem cell-based drug delivery strategy holds great promise for treating skin regeneration and wound healing.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Elangwe CN, Morozkina SN, Olekhnovich RO, Polyakova VO, Krasichkov A, Yablonskiy PK, Uspenskaya MV. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int J Mol Sci 2023; 24:ijms24054962. [PMID: 36902394 PMCID: PMC10003054 DOI: 10.3390/ijms24054962] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is a complex process of overlapping phases with the primary aim of the creation of new tissues and restoring their anatomical functions. Wound dressings are fabricated to protect the wound and accelerate the healing process. Biomaterials used to design dressing of wounds could be natural or synthetic as well as the combination of both materials. Polysaccharide polymers have been used to fabricate wound dressings. The applications of biopolymers, such as chitin, gelatin, pullulan, and chitosan, have greatly expanded in the biomedical field due to their non-toxic, antibacterial, biocompatible, hemostatic, and nonimmunogenic properties. Most of these polymers have been used in the form of foams, films, sponges, and fibers in drug carrier devices, skin tissue scaffolds, and wound dressings. Currently, special focus has been directed towards the fabrication of wound dressings based on synthesized hydrogels using natural polymers. The high-water retention capacity of hydrogels makes them potent candidates for wound dressings as they provide a moist environment in the wound and remove excess wound fluid, thereby accelerating wound healing. The incorporation of pullulan with different, naturally occurring polymers, such as chitosan, in wound dressings is currently attracting much attention due to the antimicrobial, antioxidant and nonimmunogenic properties. Despite the valuable properties of pullulan, it also has some limitations, such as poor mechanical properties and high cost. However, these properties are improved by blending it with different polymers. Additionally, more investigations are required to obtain pullulan derivatives with suitable properties in high quality wound dressings and tissue engineering applications. This review summarizes the properties and wound dressing applications of naturally occurring pullulan, then examines it in combination with other biocompatible polymers, such chitosan and gelatin, and discusses the facile approaches for oxidative modification of pullulan.
Collapse
Affiliation(s)
- Collins N. Elangwe
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Correspondence:
| | - Svetlana N. Morozkina
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Roman O. Olekhnovich
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| | - Victoria O. Polyakova
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 Saint-Petersburg, Russia
| | - Piotr K. Yablonskiy
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Mayya V. Uspenskaya
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Mulder PPG, Raktoe RS, Vlig M, Elgersma A, Middelkoop E, Boekema BKHL. Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. J Funct Biomater 2023; 14:29. [PMID: 36662076 PMCID: PMC9864292 DOI: 10.3390/jfb14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Healing of burn injury is a complex process that often leads to the development of functional and aesthetic complications. To study skin regeneration in more detail, organotypic skin models, such as full skin equivalents (FSEs) generated from dermal matrices, can be used. Here, FSEs were generated using de-epidermalized dermis (DED) and collagen matrices MatriDerm® and Mucomaix®. Our aim was to validate the MatriDerm- and Mucomaix-based FSEs for the use as in vitro models of wound healing. Therefore, we first characterized the FSEs in terms of skin development and cell proliferation. Proper dermal and epidermal morphogenesis was established in all FSEs and was comparable to ex vivo human skin models. Extension of culture time improved the organization of the epidermal layers and the basement membrane in MatriDerm-based FSE but resulted in rapid degradation of the Mucomaix-based FSE. After applying a standardized burn injury to the models, re-epithelization occurred in the DED- and MatriDerm-based FSEs at 2 weeks after injury, similar to ex vivo human skin. High levels of pro-inflammatory cytokines were present in the culture media of all models, but no significant differences were observed between models. We anticipate that these animal-free in vitro models can facilitate research on skin regeneration and can be used to test therapeutic interventions in a preclinical setting to improve wound healing.
Collapse
Affiliation(s)
- Patrick P. G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rajiv S. Raktoe
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Bouke K. H. L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Assani KD, Nosoudi N, Ramirez-Vick JE, Singh SP. M1 to M2 induction in macrophages using a retinoic acid-releasing mesenchymal stem cell scaffold. Biomed Mater Eng 2023; 34:143-157. [PMID: 35871316 DOI: 10.3233/bme-221410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Modulation of macrophage polarization is required for effective tissue repair and regenerative therapies. Therapeutic modulation of macrophages from an inflammatory M1 to a fibrotic M2 phenotype could help in diseases, such as chronic wounds, which are stalled in a prolonged and heightened inflammatory stage within the wound healing process. OBJECTIVE This study evaluates the efficiency of a pullulan/gelatin nanofiber scaffold loaded with retinoic acid (RA) and adipose-derived mesenchymal stem cells (ASCs) to modulate M1 to M2 anti-inflammatory transition. METHODS Scaffolds were fabricated by electrospinning, and crosslinked using ethylene glycol diglycidyl ether (EGDE). Exposure of RA and/or ASCs to cultured macrophages have been shown to promote M1 to M2 transition. Pullulan was chosen as a scaffold material due to its ability to quench reactive oxygen species, key signaling molecules that play an important role in the progression of inflammation, as well as for its excellent mechanical properties. Gelatin was chosen as an additional scaffold component due to the presence of cell-binding motifs and its biocompatibility. Scaffold compositions examined were 75:25 and 50:50, pullulan:gelatin. The scaffolds were crosslinked in 1:70 and 1:50 EGDE:EtOH. The scaffold composition was determined via FTIR. For the present study, the 75:25 pullulan:gelatin crosslinked with 1:70 EGDE:EtOH, forming nanofibers 328 ± 47.9 nm (mean ± SD) in diameter, was chosen as the scaffold composition due to its lower degradation and release rate, which allows a sustained delivery of RA. RESULTS The scaffold composition degraded to approximately 80% after 14 days, with approximately 38% of the drug released after 7 days. THP-1 monocytic cells were induced into a M1 macrophage phenotype through stimulation with lipopolysaccharide (LPS) and gamma interferon (IFN-γ). These M1 macrophages were the exposed to scaffolds loaded with RA and ASCs, to induce differentiation to an M2 phenotype. CONCLUSION Gene expression quantitation by qPCR showed a reduction of M1 biomarkers, tumor necrosis factor alpha (TNFα) and interleukin 1β (IL1β), and an increase of M2 biomarker CCL22 after 2 days of exposure, suggesting successful M1 to M2 transition.
Collapse
Affiliation(s)
- Kaivon D Assani
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Nasim Nosoudi
- Department of Biomedical Engineering, College of Engineering and Computer Sciences, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez-Vick
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr. K. S. Krishanan Marg, New Delhi, India
| |
Collapse
|
10
|
Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel) 2022; 14:polym14153135. [PMID: 35956650 PMCID: PMC9371176 DOI: 10.3390/polym14153135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings. Presented on the commercial market, hydrogel wound dressings are not found among proposals for specific cases and have a number of disadvantages—toxicity, allergenicity, and mechanical instability. Bilayer dressings are attracting great attention, which can be combined with multifunctional properties, high criteria for an ideal wound dressing (antimicrobial properties, adhesion and hemostasis, anti-inflammatory and antioxidant effects), drug delivery, self-healing, stimulus manifestation, and conductivity, depending on the preparation and purpose. In addition, advances in stem cell biology and biomaterials have enabled the design of hydrogel materials for skin tissue engineering. To improve the heterogeneity of the cell environment, it is possible to use two-layer functional gradient hydrogels. This review summarizes the methods and application advantages of bilayer dressings in wound treatment and skin tissue regeneration. Bilayered hydrogels based on natural as well as synthetic polymers are presented. The results of the in vitro and in vivo experiments and drug release are also discussed.
Collapse
|
11
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
12
|
Ustürk S, Altundag EM, Yilmaz E. Pullulan/
polyHEMA
cryogels: Synthesis, physicochemical properties, and cell viability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Selma Ustürk
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Mersin10 Turkey
| | - Ergul Mutlu Altundag
- Department of Medical Biochemistry, Faculty of Medicine Eastern Mediterranean University Mersin10 Turkey
| | - Elvan Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Mersin10 Turkey
| |
Collapse
|
13
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Yang MY, Liu BS, Huang HY, Yang YC, Chang KB, Kuo PY, Deng YH, Tang CM, Hsieh HH, Hung HS. Engineered Pullulan-Collagen-Gold Nano Composite Improves Mesenchymal Stem Cells Neural Differentiation and Inflammatory Regulation. Cells 2021; 10:cells10123276. [PMID: 34943784 PMCID: PMC8699622 DOI: 10.3390/cells10123276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue repair engineering supported by nanoparticles and stem cells has been demonstrated as being an efficient strategy for promoting the healing potential during the regeneration of damaged tissues. In the current study, we prepared various nanomaterials including pure Pul, pure Col, Pul–Col, Pul–Au, Pul–Col–Au, and Col–Au to investigate their physicochemical properties, biocompatibility, biological functions, differentiation capacities, and anti-inflammatory abilities through in vitro and in vivo assessments. The physicochemical properties were characterized by SEM, DLS assay, contact angle measurements, UV-Vis spectra, FTIR spectra, SERS, and XPS analysis. The biocompatibility results demonstrated Pul–Col–Au enhanced cell viability, promoted anti-oxidative ability for MSCs and HSFs, and inhibited monocyte and platelet activation. Pul–Col–Au also induced the lowest cell apoptosis and facilitated the MMP activities. Moreover, we evaluated the efficacy of Pul–Col–Au in the enhancement of neuronal differentiation capacities for MSCs. Our animal models elucidated better biocompatibility, as well as the promotion of endothelialization after implanting Pul–Col–Au for a period of one month. The above evidence indicates the excellent biocompatibility, enhancement of neuronal differentiation, and anti-inflammatory capacities, suggesting that the combination of pullulan, collagen, and Au nanoparticles can be potential nanocomposites for neuronal repair, as well as skin tissue regeneration in any further clinical treatments.
Collapse
Affiliation(s)
- Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate, Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan;
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Pei-Yeh Kuo
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - You-Hao Deng
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407024, Taiwan;
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7827); Fax: +886-4-22333641
| |
Collapse
|
15
|
Saha R, Patkar S, Maniar D, Pillai MM, Tayalia P. A bilayered skin substitute developed using an eggshell membrane crosslinked gelatin-chitosan cryogel. Biomater Sci 2021; 9:7921-7933. [PMID: 34698739 DOI: 10.1039/d1bm01194d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercially available allografts and xenografts pose problems such as high cost, risk of infection transmission and immune rejection of grafts. Thus, bioengineered skin substitutes fabricated from natural biomaterials or synthetic polymers are currently the focus of skin tissue engineering. In this study, eggshell membrane (ESM) powder was used to crosslink a gelatin-chitosan cryogel thereby replacing glutaraldehyde, a known cytotoxic chemical crosslinker. The resultant ESM-crosslinked macroporous cryogel with a pore size ranging between 10 and 350 μm has improved flexibility, biodegradability and biocompatibility compared to a glutaraldehyde-crosslinked cryogel. For healing of large and deep wounds, bilayered scaffolds which exhibit key aspects of skin physiology are being explored. Hence, we fabricated a bilayered substitute by coupling the ESM-crosslinked cryogel (dermal equivalent) to a non-porous, physically-crosslinked gelatin-chitosan film (epidermal equivalent). The epidermal layer provides the requisite barrier properties while the dermal layer facilitates cell attachment and migration for optimal wound healing. Further, chitosan confers antibacterial properties to the cryogel with almost 50% reduction in bacterial viability. Animal studies confirm that the developed bilayered skin substitute is non-allergic, aids wound healing by improving re-epithelialization within 14 days and supports the formation of skin appendages. This system presents a new and alternative treatment option for burn and chronic wounds.
Collapse
Affiliation(s)
- Rituparna Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Shivali Patkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Drishti Maniar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
16
|
Stan D, Tanase C, Avram M, Apetrei R, Mincu NB, Mateescu AL, Stan D. Wound healing applications of creams and "smart" hydrogels. Exp Dermatol 2021; 30:1218-1232. [PMID: 34009648 PMCID: PMC8453519 DOI: 10.1111/exd.14396] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/28/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
Although superficial wounds are often easy to treat for healthy individuals, there are some more severe types of wounds (burns, ulcers, diabetic wounds, etc.) that are a challenge for clinicians. A good therapeutic result is based on the delivery of a treatment at the right time, for the right patient. Our goal was to sum up useful knowledge regarding wound healing and wound treatments, based on creams and hydrogels with various active ingredients. We concluded that both preparations have application in preventing infections and promoting healing, but their efficacy is clearly conditioned by the type, depth, severity of the wound and patient profile. However, due to their superior versatility and capability of maintaining the integrity and functionality of the active ingredient, as well as it is controlled release at site, hydrogels are more suited for incorporating different active ingredients. New wound healing devices can combine smart hydrogel dressings with physical therapies to deliver a more efficient treatment to patients if the indications are appropriate.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Cristiana Tanase
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania.,Biochemistry - Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
17
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
18
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI. Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing. Int J Biol Macromol 2020; 159:497-509. [DOI: 10.1016/j.ijbiomac.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
|
20
|
Electrospinning Live Cells Using Gelatin and Pullulan. Bioengineering (Basel) 2020; 7:bioengineering7010021. [PMID: 32098366 PMCID: PMC7148470 DOI: 10.3390/bioengineering7010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Electrospinning is a scaffold production method that utilizes electric force to draw a polymer solution into nanometer-sized fibers. By optimizing the polymer and electrospinning parameters, a scaffold is created with the desired thickness, alignment, and pore size. Traditionally, cells and biological constitutes are implanted into the matrix of the three-dimensional scaffold following electrospinning. Our design simultaneously introduces cells into the scaffold during the electrospinning process at 8 kV. In this study, we achieved 90% viability of adipose tissue-derived stem cells through electrospinning.
Collapse
|
21
|
Sheikholeslam M, Wright MEE, Cheng N, Oh HH, Wang Y, Datu AK, Santerre JP, Amini-Nik S, Jeschke MG. Electrospun Polyurethane–Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomater Sci Eng 2019; 6:505-516. [DOI: 10.1021/acsbiomaterials.9b00861] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammadali Sheikholeslam
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Isfahan 81746-73461, Iran
| | | | - Nan Cheng
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Hwan Hee Oh
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Yanran Wang
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Andrea K. Datu
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | | - Saeid Amini-Nik
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
22
|
Cheng N, Jeschke MG, Sheikholeslam M, Datu AK, Oh HH, Amini-Nik S. Promotion of dermal regeneration using pullulan/gelatin porous skin substitute. J Tissue Eng Regen Med 2019; 13:1965-1977. [PMID: 31350941 PMCID: PMC7020691 DOI: 10.1002/term.2946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
Abstract
Tissue-engineered dermal substitutes represent a promising approach to improve wound healing and provide more sufficient regeneration, compared with current clinical standards on care of large wounds, early excision, and grafting of autografts. However, inadequate regenerative capacity, impaired regeneration/degradation profile, and high cost of current commercial tissue-engineered dermal regeneration templates hinder their utilization, and the development of an efficient and cost-effective tissue-engineered dermal substitute remains a challenge. Inspired from our previously reported data on a pullulan/gelatin scaffold, here we present a new generation of a porous pullulan/gelatin scaffold (PG2) served as a dermal substitute with enhanced chemical and structural characteristics. PG2 shows excellent biocompatibility (viability, migration, and proliferation), assessed by in vitro incorporation of human dermal fibroblasts in comparison with the Integra® dermal regeneration template (Control). When applied on a mouse full-thickness excisional wound, PG2 shows rapid scaffold degradation, more granulation tissue, more collagen deposition, and more cellularity in comparison with Control at 20 days post surgery. The faster degradation is likely due to the enhanced recruitment of inflammatory macrophages to the scaffold from the wound bed, and that leads to earlier maturation of granulation tissue with less myofibroblastic cells. Collectively, our data reveal PG2's characteristics as an applicable dermal substitute with excellent dermal regeneration, which may attenuate scar formation.
Collapse
Affiliation(s)
- Nan Cheng
- Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | | | - Andrea-Kaye Datu
- Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Hwan Hee Oh
- Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M. Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1874-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annu Rev Biomed Eng 2019; 21:145-169. [DOI: 10.1146/annurev-bioeng-060418-052422] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic skin wounds are the leading cause of nontraumatic foot amputations worldwide and present a significant risk of morbidity and mortality due to the lack of efficient therapies. The intrinsic characteristics of hydrogels allow them to benefit cutaneous healing essentially by supporting a moist environment. This property has long been explored in wound management to aid in autolytic debridement. However, chronic wounds require additional therapeutic features that can be provided by a combination of hydrogels with biochemical mediators or cells, promoting faster and better healing. We survey hydrogel-based approaches with potential to improve the healing of chronic wounds by reviewing their effects as observed in preclinical models. Topics covered include strategies to ablate infection and resolve inflammation, the delivery of bioactive agents to accelerate healing, and tissue engineering approaches for skin regeneration. The article concludes by considering the relevance of treating chronic skin wounds using hydrogel-based strategies.
Collapse
Affiliation(s)
- Lucília P. da Silva
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M. Correlo
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
25
|
Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146:209-239. [PMID: 30605737 DOI: 10.1016/j.addr.2018.12.014] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous injuries, especially chronic wounds, burns, and skin wound infection, require painstakingly long-term treatment with an immense financial burden to healthcare systems worldwide. However, clinical management of chronic wounds remains unsatisfactory in many cases. Various strategies including growth factor and gene delivery as well as cell therapy have been used to enhance the healing of non-healing wounds. Drug delivery systems across the nano, micro, and macroscales can extend half-life, improve bioavailability, optimize pharmacokinetics, and decrease dosing frequency of drugs and genes. Replacement of the damaged skin tissue with substitutes comprising cell-laden scaffold can also restore the barrier and regulatory functions of skin at the wound site. This review covers comprehensively the advanced treatment strategies to improve the quality of wound healing.
Collapse
|
26
|
Uppuluri VNVA, Shanmugarajan TS. Icariin-Loaded Polyvinyl Alcohol/Agar Hydrogel: Development, Characterization, and In Vivo Evaluation in a Full-Thickness Burn Model. INT J LOW EXTR WOUND 2019; 18:323-335. [PMID: 31140339 DOI: 10.1177/1534734619849982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue regeneration has become a promising strategy for repairing damaged skin tissues. Among the hydrogels for tissue regeneration applications, topical hydrogels have demonstrated great potential for use as 3D-scaffolds in the burn wound healing process. Currently, no report has been published specifically on icariin-loaded polyvinyl alcohol (PVA)/agar hydrogel on full-thickness burn wounds. In the present study, burn tissue regeneration based on biomimetic hydrogel scaffolds was used for repairing damaged extracellular matrix. Furthermore, a skin burn model was developed in rats, and the icariin-loaded PVA/agar hydrogels were implanted into the damaged portions. The regeneration of the damaged tissues with the help of the icariin-loaded hydrogel group exhibited new translucent skin tissues and repaired extracellular matrix, indicating that the hydrogel can enhance the wound healing process. Moreover, characterization studies such as X-ray diffraction, Fourier-transformed infrared spectroscopy, and differential scanning calorimetry reported the extent of compatibility between icariin and its polymers. Results of the field emission scanning electron microscopy images revealed the extent of the spread of icariin within the polymer-based hydrogel. Furthermore, the wound healing potential, confirmed by histopathological and histochemical findings at the end of 21 days, revealed the visual evidence for the biomimetic property of icariin-loaded PVA/agar hydrogel scaffolds with the extracellular matrix for tissue regeneration.
Collapse
Affiliation(s)
| | - T S Shanmugarajan
- Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India
| |
Collapse
|
27
|
Aljghami ME, Jeschke MG, Amini-Nik S. Examining the contribution of surrounding intact skin during cutaneous healing. J Anat 2019; 234:523-531. [PMID: 30786015 DOI: 10.1111/joa.12941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Severe cutaneous wounds expose the body to the external environment, which may lead to impairments in bodily functions and increased risk of infection. There is a need to develop skin substitutes which could effectively promote complete skin regeneration following an injury. Murine models are used to test such skin substitutes, but their healing involves contraction of the dermis not found in human wounds. We have previously described a device called a dome, which comes in two models, that is used to prevent skin contraction in mice. One model provides a physical barrier to minimize contraction, and the other model has additional perforations in the barrier to allow cellular contribution from the surrounding intact skin. Taking advantage of an enhanced version of these two models, we compared granulation tissue formation, the extent of vascularization, and the transition to myofibroblastic phenotype between the models. We enhanced the dome by developing a twist open cap dome and applied the two models of the dome into the excisional wound biopsy in mice. We demonstrate that the dome can be used to prevent skin contraction in mice. The control model prevented skin contraction while barricading the contribution of surrounding intact skin. When not barricaded, the intact skin enhances wound healing by increasing the number of myofibroblasts and neovascularization. Using a novel model of inhibition of skin contraction in rodents, we examined the contribution from the surrounding intact skin to granulation tissue formation, myofibroblastic differentiation, and neovascularization during the course of skin healing in mice.
Collapse
Affiliation(s)
- Makram E Aljghami
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Amini-Nik S, Dolp R, Eylert G, Datu AK, Parousis A, Blakeley C, Jeschke MG. Stem cells derived from burned skin - The future of burn care. EBioMedicine 2018; 37:509-520. [PMID: 30409728 PMCID: PMC6284415 DOI: 10.1016/j.ebiom.2018.10.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thermal injuries affect millions of adults and children worldwide and are associated with high morbidity and mortality. The key determinant for the survival of burns is rapid wound healing. Large wounds exceed intrinsic wound-healing capacities, and the currently available coverage materials are insufficient due to lack of cellularity, availability or immunological rejection. METHODS Using the surgically debrided tissue, we isolated viable cells from burned skin. The isolated cells cultured in tissue culture dishes and characterized. FINDINGS We report here that debrided burned skin, which is routinely excised from patients and otherwise considered medical waste and unconsciously discarded, contains viable, undamaged cells which show characteristics of mesenchymal skin stem cells. Those cells can be extracted, characterized, expanded, and incorporated into created epidermal-dermal substitutes to promote wound healing in immune-compromised mice and Yorkshire pigs without adverse side effects. INTERPRETATION These findings are of paramount importance and provide an ideal cell source for autologous skin regeneration. Furthermore, this study highlights that skin contains progenitor cells resistant to thermal stress. FUND: Canadian Institutes of Health Research # 123336. CFI Leader's Opportunity Fund: Project # 25407 National Institutes of Health 2R01GM087285-05A1. EMHSeed: Fund: 500463, A generous donation from Toronto Hydro. Integra© Life Science Company provided the meshed bilayer Integra© for porcine experiments.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Canada; Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada.
| | - Reinhard Dolp
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Gertraud Eylert
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada
| | | | | | | | - Marc G Jeschke
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
29
|
Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M, Amini-Nik S. Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther 2018; 9:193. [PMID: 30005703 PMCID: PMC6044104 DOI: 10.1186/s13287-018-0921-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Compromised wound healing has become a global public health challenge which presents a significant psychological, financial, and emotional burden on patients and physicians. We recently reported that acellular gelatinous Wharton's jelly of the human umbilical cord enhances skin wound healing in vitro and in vivo in a murine model; however, the key player in the jelly which enhances wound healing is still unknown. METHODS We performed mass spectrometry on acellular gelatinous Wharton's jelly to elucidate the chemical structures of the molecules. Using an ultracentrifugation protocol, we isolated exosomes and treated fibroblasts with these exosomes to assess their proliferation and migration. Mice were subjected to a full-thickness skin biopsy experiment and treated with either control vehicle or vehicle containing exosomes. Isolated exosomes were subjected to further mass spectrometry analysis to determine their cargo. RESULTS Subjecting the acellular gelatinous Wharton's jelly to proteomics approaches, we detected a large amount of proteins that are characteristic of exosomes. Here, we show that the exosomes isolated from the acellular gelatinous Wharton's jelly enhance cell viability and cell migration in vitro and enhance skin wound healing in the punch biopsy wound model in mice. Mass spectrometry analysis revealed that exosomes of Wharton's jelly umbilical cord contain a large amount of alpha-2-macroglobulin, a protein which mimics the effect of acellular gelatinous Wharton's jelly exosomes on wound healing. CONCLUSIONS Exosomes are being enriched in the native niche of the umbilical cord and can enhance wound healing in vivo through their cargo. Exosomes from the acellular gelatinous Wharton's jelly and the cargo protein alpha-2-macroglobulin have tremendous potential as a noncellular, off-the-shelf therapeutic modality for wound healing.
Collapse
Affiliation(s)
- Nazihah Bakhtyar
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
| | - Marc G. Jeschke
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- The University of Toronto, Institute of Medical Science, Toronto, ON Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The University of Toronto, Toronto, ON Canada
| | - Elaine Herer
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- Gynecology and Obstetrics Department, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Mohammadali Sheikholeslam
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The University of Toronto, Toronto, ON Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology (LMP), The University of Toronto, Toronto, ON Canada
| |
Collapse
|
30
|
Sadiq A, Shah A, Jeschke MG, Belo C, Qasim Hayat M, Murad S, Amini-Nik S. The Role of Serotonin during Skin Healing in Post-Thermal Injury. Int J Mol Sci 2018; 19:ijms19041034. [PMID: 29596386 PMCID: PMC5979562 DOI: 10.3390/ijms19041034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Post-burn trauma significantly raises tissue serotonin concentration at the initial stages of injury, which leads us to investigate its possible role in post burn wound healing. Therefore, we planned this study to examine the role of serotonin in wound healing through in vitro and in vivo models of burn injuries. Results from in vitro analysis revealed that serotonin decreased apoptosis and increased cell survival significantly in human fibroblasts and neonatal keratinocytes. Cellular proliferation also increased significantly in both cell types. Moreover, serotonin stimulation significantly accelerated the cell migration, resulting in narrowing of the scratch zone in human neonatal keratinocytes and fibroblasts cultures. Whereas, fluoxetine (a selective serotonin reuptake inhibitor) and ketanserin (serotonin receptor 2A inhibitor) reversed these effects. Scald burn mice model (20% total body surface area) showed that endogenous serotonin improved wound healing process in control group, whereas fluoxetine and ketanserin treatments (disruptors of endogenous serotonin stimulation), resulted in poor reepithelization, bigger wound size and high alpha smooth muscle actin (α-SMA) count. All of these signs refer a prolonged differentiation state, which ultimately exhibits poor wound healing outcomes. Collectively, data showed that the endogenous serotonin pathway contributes to regulating the skin wound healing process. Hence, the results of this study signify the importance of serotonin as a potential therapeutic candidate for enhancing skin healing in burn patients.
Collapse
Affiliation(s)
- Alia Sadiq
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), H-12 Islamabad, Pakistan.
| | - Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.
| | - Cassandra Belo
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), H-12 Islamabad, Pakistan.
| | - Sheeba Murad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), H-12 Islamabad, Pakistan.
- Molecular Immunology Unit, The Institute of Infection and Immunity, St. George's, University of London, London SW17 0RE, UK.
| | - Saeid Amini-Nik
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.
- Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
31
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 2018; 8:2875. [PMID: 29440678 PMCID: PMC5811544 DOI: 10.1038/s41598-018-21174-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.
Collapse
Affiliation(s)
- Evelyn Yun Xi Loh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Najwa Mohamad
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
- Faculty of Pharmacy, Cyberjaya University College of Medical Sciences, 3410, Jalan Teknokrat 3, Cyber 4, Cyberjaya, Selangor, 63000, Malaysia
| | - Mh Busra Fauzi
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Shiow Fern Ng
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
33
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Bakhtyar N, Jeschke MG, Mainville L, Herer E, Amini-Nik S. Acellular Gelatinous Material of Human Umbilical Cord Enhances Wound Healing: A Candidate Remedy for Deficient Wound Healing. Front Physiol 2017; 8:200. [PMID: 28421003 PMCID: PMC5379110 DOI: 10.3389/fphys.2017.00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Impaired wound healing is a severe clinical challenge and research into finding effective wound healing strategies is underway as there is no ideal treatment. Gelatinous material from the umbilical cord called Wharton's jelly is a valuable source of mesenchymal stem cells which have been shown to aid wound healing. While the cellular component of Wharton's jelly has been the subject of extensive research during the last few years, little is known about the de-cellularized jelly material of the umbilical cord. This is important as they are native niche of stem cells. We have isolated Wharton's jelly from umbilical cords and then fractionated acellular gelatinous Wharton's jelly (AGWJ). Here, we show for the first time that AGWJ enhances wound healing in vitro as well as in vivo for wounds in a murine model. In vivo staining of the wounds revealed a smaller wound length in the AGWJ treated wounds in comparison to control treatment by enhancing cell migration and differentiation. AGWJ significantly enhanced fibroblast cell migration in vitro. Aside from cell migration, AGWJ changed the cell morphology of fibroblasts to a more elongated phenotype, characteristic of myofibroblasts, confirmed by upregulation of alpha smooth muscle actin using immunoblotting. AGWJ treatment of wounds led to accelerated differentiation of cells into myofibroblasts, shortening the proliferation phase of wound healing. This data provides support for a novel wound healing remedy using AGWJ. AGWJ being native biological, cost effective and abundantly available globally, makes it a highly promising treatment option for wound dressing and skin regeneration.
Collapse
Affiliation(s)
- Nazihah Bakhtyar
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada
| | - Marc G Jeschke
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of TorontoToronto, ON, Canada
| | - Laurence Mainville
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada
| | - Elaine Herer
- Department of Gynecology and Obstetrics, Sunnybrook Health Sciences Centre, University of TorontoToronto, ON, Canada
| | - Saeid Amini-Nik
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of TorontoToronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
35
|
Jeschke MG, Sadri AR, Belo C, Amini-Nik S. A Surgical Device to Study the Efficacy of Bioengineered Skin Substitutes in Mice Wound Healing Models. Tissue Eng Part C Methods 2017; 23:237-242. [DOI: 10.1089/ten.tec.2016.0545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Marc G. Jeschke
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
- Institute of Medical Science, University of Toronto, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Ali-Reza Sadri
- Institute of Medical Science, University of Toronto, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Belo
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathology, University of Toronto, Canada
| |
Collapse
|
36
|
|
37
|
Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci 2016; 73:3453-72. [PMID: 27154041 PMCID: PMC4982839 DOI: 10.1007/s00018-016-2252-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022]
Abstract
The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Marc G Jeschke
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
38
|
Nicholas MN, Yeung J. Current Status and Future of Skin Substitutes for Chronic Wound Healing. J Cutan Med Surg 2016; 21:23-30. [PMID: 27530398 DOI: 10.1177/1203475416664037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic wounds, including diabetic ulcers, pressure ulcers, venous ulcers, and arterial insufficiency ulcers, are both difficult and expensive to treat. Conventional wound care may sometimes lead to suboptimal wound healing and significant morbidity and mortality for patients. The use of skin substitutes provides an alternative therapy showing superior efficacy and, in some cases, similar cost-effectiveness compared to traditional treatments. This review discusses the different types of currently available commercial skin substitutes for use in chronic wounds as well as the paucity of strong evidence supporting their use. It then delves into the limitations of these skin substitutes and examines the most recent research targeting these limitations.
Collapse
Affiliation(s)
| | - Jensen Yeung
- 2 Department of Dermatology, Women's College Hospital and Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,3 Division of Dermatology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|