1
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Drvenica IT, Stančić AZ, Maslovarić IS, Trivanović DI, Ilić VL. Extracellular Hemoglobin: Modulation of Cellular Functions and Pathophysiological Effects. Biomolecules 2022; 12:1708. [PMID: 36421721 PMCID: PMC9688122 DOI: 10.3390/biom12111708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Hemoglobin is essential for maintaining cellular bioenergetic homeostasis through its ability to bind and transport oxygen to the tissues. Besides its ability to transport oxygen, hemoglobin within erythrocytes plays an important role in cellular signaling and modulation of the inflammatory response either directly by binding gas molecules (NO, CO, and CO2) or indirectly by acting as their source. Once hemoglobin reaches the extracellular environment, it acquires several secondary functions affecting surrounding cells and tissues. By modulating the cell functions, this macromolecule becomes involved in the etiology and pathophysiology of various diseases. The up-to-date results disclose the impact of extracellular hemoglobin on (i) redox status, (ii) inflammatory state of cells, (iii) proliferation and chemotaxis, (iv) mitochondrial dynamic, (v) chemoresistance and (vi) differentiation. This review pays special attention to applied biomedical research and the use of non-vertebrate and vertebrate extracellular hemoglobin as a promising candidate for hemoglobin-based oxygen carriers, as well as cell culture medium additive. Although recent experimental settings have some limitations, they provide additional insight into the modulatory activity of extracellular hemoglobin in various cellular microenvironments, such as stem or tumor cells niches.
Collapse
Affiliation(s)
- Ivana T. Drvenica
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Ana Z. Stančić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Irina S. Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Drenka I. Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Vesna Lj. Ilić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| |
Collapse
|
3
|
Mi J, Ye Q, Min Y. Advances in Nanotechnology Development to Overcome Current Roadblocks in CAR-T Therapy for Solid Tumors. Front Immunol 2022; 13:849759. [PMID: 35401561 PMCID: PMC8983935 DOI: 10.3389/fimmu.2022.849759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy for the treatment of hematologic tumors has achieved remarkable success, with five CAR-T therapies approved by the United States Food and Drug Administration. However, the efficacy of CAR-T therapy against solid tumors is not satisfactory. There are three existing hurdles in CAR-T cells for solid tumors. First, the lack of a universal CAR to recognize antigens at the site of solid tumors and the compact tumor structure make it difficult for CAR-T cells to locate in solid tumors. Second, soluble inhibitors and suppressive immune cells in the tumor microenvironment can inhibit or even inactivate T cells. Third, low survival and proliferation rates of CAR-T cells in vivo significantly influence the therapeutic effect. As an emerging method, nanotechnology has a great potential to enhance cell proliferation, activate T cells, and restarting the immune response. In this review, we discuss how nanotechnology can modify CAR-T cells through variable methods to improve the therapeutic effect of solid tumors.
Collapse
Affiliation(s)
- Juan Mi
- Department of Pathology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qing Ye
- Department of Pathology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China.,Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Mouré A, Bekir S, Bacou E, Pruvost Q, Haurogné K, Allard M, De Beaurepaire L, Bosch S, Riochet D, Gauthier O, Blancho G, Soulillou JP, Poncelet D, Mignot G, Courcoux P, Jegou D, Bach JM, Mosser M. Optimization of an O 2-balanced bioartificial pancreas for type 1 diabetes using statistical design of experiment. Sci Rep 2022; 12:4681. [PMID: 35304495 PMCID: PMC8933496 DOI: 10.1038/s41598-022-07887-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
A bioartificial pancreas (BAP) encapsulating high pancreatic islets concentration is a promising alternative for type 1 diabetes therapy. However, the main limitation of this approach is O2 supply, especially until graft neovascularization. Here, we described a methodology to design an optimal O2-balanced BAP using statistical design of experiment (DoE). A full factorial DoE was first performed to screen two O2-technologies on their ability to preserve pseudo-islet viability and function under hypoxia and normoxia. Then, response surface methodology was used to define the optimal O2-carrier and islet seeding concentrations to maximize the number of viable pseudo-islets in the BAP containing an O2-generator under hypoxia. Monitoring of viability, function and maturation of neonatal pig islets for 15 days in vitro demonstrated the efficiency of the optimal O2-balanced BAP. The findings should allow the design of a more realistic BAP for humans with high islets concentration by maintaining the O2 balance in the device.
Collapse
Affiliation(s)
- Anne Mouré
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | - Sawsen Bekir
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | - Elodie Bacou
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | | | | | - Marie Allard
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | | | - Steffi Bosch
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | - David Riochet
- SSR Pédiatriques ESEAN-APF France Handicap, Nantes University Hospital, Nantes, France
| | - Olivier Gauthier
- Oniris, Nantes Université, INSERM, RMeS, UMR 1229, F-44000, Nantes, France
| | - Gilles Blancho
- CRTI, UMR 1064, INSERM, Nantes Université, 44000, Nantes, France
- ITUN, CHU Nantes, 44000, Nantes, France
| | - Jean-Paul Soulillou
- CRTI, UMR 1064, INSERM, Nantes Université, 44000, Nantes, France
- ITUN, CHU Nantes, 44000, Nantes, France
| | - Denis Poncelet
- GEPEA, UMR CNRS 6144 FR, Nantes Université, 44000, Nantes, France
| | | | | | | | | | | |
Collapse
|
5
|
Ferenz K, Karaman O, Shah SB. Artificial red blood cells. NANOTECHNOLOGY FOR HEMATOLOGY, BLOOD TRANSFUSION, AND ARTIFICIAL BLOOD 2022:397-427. [DOI: 10.1016/b978-0-12-823971-1.00018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Eng Regen Med 2021; 19:263-280. [PMID: 34596839 DOI: 10.1007/s13770-021-00369-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has become the new paradigm of cancer treatment. The introduction and discovery of various therapeutic agents have also accelerated the application of immunotherapy in clinical trials. However, despite the significant potency and demonstrated advantages of cancer immunotherapy, its clinical application to patients faces several safety and efficacy issues, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome-related issues. In addressing these problems, biomaterials traditionally used for tissue engineering and drug delivery are attracting attention. Among them, hydrogels can be easily injected into tumors with drugs, and they can minimize side effects by retaining immune therapeutics at the tumor site for a long time. This article reviews the status of functional hydrogels for effective cancer immunotherapy. First, we describe the basic mechanisms of cancer immunotherapy and the advantages of using hydrogels to apply these mechanisms. Next, we summarize recent advances in the development of functional hydrogels designed to locally release various immunotherapeutic agents, including cytokines, cancer immune vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells. Finally, we briefly discuss the current problems and possible prospects of hydrogels for effective cancer immunotherapy.
Collapse
|
7
|
Goswami D, Domingo‐Lopez DA, Ward NA, Millman JR, Duffy GP, Dolan EB, Roche ET. Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100820. [PMID: 34155834 PMCID: PMC8373111 DOI: 10.1002/advs.202100820] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.
Collapse
Affiliation(s)
- Debkalpa Goswami
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Daniel A. Domingo‐Lopez
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Niamh A. Ward
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism & Lipid ResearchWashington University School of MedicineSt. LouisMO63110USA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMO63110USA
| | - Garry P. Duffy
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 PN40Ireland
- CÚRAM, Centre for Research in Medical DevicesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Eimear B. Dolan
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
8
|
Luo Z, Liu Z, Liang Z, Pan J, Xu J, Dong J, Bai Y, Deng H, Wei S. Injectable Porous Microchips with Oxygen Reservoirs and an Immune-Niche Enhance the Efficacy of CAR T Cell Therapy in Solid Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56712-56722. [PMID: 33306365 DOI: 10.1021/acsami.0c15239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising new class of hematological malignancy treatment. However, CAR T cells are rarely effective in solid tumor therapy mainly because of the poor trafficking of injected CAR T cells to the tumor site and their limited infiltration and survival in the immunosuppressive and hypoxic tumor microenvironment (TME). Here, we built an injectable immune-microchip (i-G/MC) system to intratumorally deliver CAR T cells and enhance their therapeutic efficacy in solid tumors. In the i-G/MC, oxygen carriers (Hemo) are released to disrupt the TME, and then, CAR T cells migrate from IL-15-laden i-G/MCs into the tumor stroma. The results indicate that Hemo and IL-15 synergistically enhanced CAR T cell survival and expansion under hypoxic conditions, promoting the potency and memory of CAR T cells. This i-G/MC not only serves as a cell carrier but also builds an immune-niche, enhancing the efficacy of CAR T cells.
Collapse
Affiliation(s)
- Zuyuan Luo
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Zhen Liu
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Zhen Liang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Jijia Pan
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Jun Xu
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Jiebin Dong
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Yun Bai
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Hongkui Deng
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Shicheng Wei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
9
|
Ghoneim MA, Refaie AF, Elbassiouny BL, Gabr MM, Zakaria MM. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Rev Rep 2020; 16:1156-1172. [PMID: 32880857 PMCID: PMC7667138 DOI: 10.1007/s12015-020-10036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.
Collapse
|
10
|
Savla C, Munoz C, Hickey R, Belicak M, Gilbert C, Cabrales P, Palmer AF. Purification of Lumbricus terrestris Mega-Hemoglobin for Diverse Oxygen Therapeutic Applications. ACS Biomater Sci Eng 2020; 6:4957-4968. [PMID: 33313397 DOI: 10.1021/acsbiomaterials.0c01146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxygen therapeutics are being developed for a variety of applications in transfusion medicine. In order to reduce the side-effects (vasoconstriction, systemic hypertension, and oxidative tissue injury) associated with previous generations of oxygen therapeutics, new strategies are focused on increasing the molecular diameter of hemoglobin obtained from mammalian sources via polymerization and encapsulation. Another approach towards oxygen therapeutic design has centered on using naturally occurring large molecular diameter hemoglobins (i.e. erythrocruorins) derived from annelid sources. Therefore, the goal of this study was to purify erythrocruorin from the terrestrial worm Lumbricus terrestris for diverse oxygen therapeutic applications. Tangential flow filtration (TFF) was used as a scalable protein purification platform to obtain a >99% pure LtEc product, which was confirmed by size exclusion high performance liquid chromatography and SDS-PAGE analysis. In vitro characterization concluded that the ultra-pure LtEc product had oxygen equilibrium properties similar to human red blood cells, and a lower rate of auto-oxidation compared to human hemoglobin, both of which should enable efficient oxygen transport under physiological conditions. In vivo evaluation concluded that the ultra-pure product had positive effects on the microcirculation sustaining functional capillary density compared to a less pure product (~86% purity). In summary, we purified an LtEc product with favorable biophysical properties that performed well in an animal model using a reliable and scalable purification platform to eliminate undesirable proteins.
Collapse
Affiliation(s)
- Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Carlos Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Maria Belicak
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Christopher Gilbert
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
|
13
|
Abstract
PURPOSE The preservation of transplantable tissue is directly tied to and limited by the ischemia time. Micro/nanobubbles (MNBs) are miniature gaseous voids that allow for the oxygenation of tissue given their high oxygen-carrying capacity. One of the current limitations of islet cell transplantation for type 1 diabetes is poor islet survival, caused by hypoxia, after harvesting the cells from pancreata. As such, the purpose of this study was to elucidate whether MNBs, when added to standard culture medium, improve islet cell survival postharvest. MATERIALS AND METHODS Islet cells were harvested from Sprague-Dawley rat pancreas tissue via a standard collagenase digestion and gradient purification. To create the MNB solution, a shear-based generation system was used to produce both air- and oxygen-filled MNBs in standard Connaught Medical Research Laboratories (CMRL) medium. Four groups, consisting of 500 islet equivalents, were cultured with either the standard CMRL medium, macrobubble-CMRL, MNB (air)-CMRL, or MNB (O2)-CMRL, and they were incubated at 37°C. Each treatment solution was replenished 24 hours postincubation, and after 48 hours of culture, dithizone staining was used to determine the islet cell counts, and the viability was assessed using Calcein AM/propidium iodide staining. RESULTS Islet cells that were preserved in macrobubble-CMRL, MNB (air)-CMRL, and MNB (O2)-CMRL conditions showed an increased survival compared with those cultured with standard CMRL. The islet cells cultured in the MNB (air)-CMRL condition demonstrated the greatest cell survival compared with all other groups, including the pure oxygen-carrying MNBs. None of the MNB treatments significantly altered the viability of the islet cells compared to the control condition. CONCLUSIONS The addition of MNBs to culture medium offers an innovative approach for the oxygenation of transplantable tissue, such as islet cells. This study demonstrated that MNBs filled with air provided the most optimal addition to the islet cell culture medium for improving islet cell survival amongst the treatment groups we tested. Given these findings, we hypothesize that MNBs may also improve the oxygenation and survival of a variety of other tissues, including fat grafts from lipoaspirate, chronic wounds, and solid organs.
Collapse
|
14
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
15
|
Mouré A, Bacou E, Bosch S, Jegou D, Salama A, Riochet D, Gauthier O, Blancho G, Soulillou J, Poncelet D, Olmos E, Bach J, Mosser M. Extracellular hemoglobin combined with an O
2
‐generating material overcomes O
2
limitation in the bioartificial pancreas. Biotechnol Bioeng 2019; 116:1176-1189. [DOI: 10.1002/bit.26913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Anne Mouré
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Elodie Bacou
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Steffi Bosch
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Dominique Jegou
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Apolline Salama
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
| | - David Riochet
- Service de Pédiatrie des Maladies ChroniquesCHU de NantesNantes France
| | | | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantes France
| | - Jean‐Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantes France
| | - Denis Poncelet
- Department of Process Engineering for Environment and Food Laboratory (GEPEA)UMR CNRS 6144, OnirisNantes France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés (LRGP)Université de Lorraine, CNRSNancy France
| | - Jean‐Marie Bach
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| |
Collapse
|
16
|
Fathollahipour S, Patil PS, Leipzig ND. Oxygen Regulation in Development: Lessons from Embryogenesis towards Tissue Engineering. Cells Tissues Organs 2018; 205:350-371. [PMID: 30273927 PMCID: PMC6397050 DOI: 10.1159/000493162] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2018] [Indexed: 12/19/2022] Open
Abstract
Oxygen is a vital source of energy necessary to sustain and complete embryonic development. Not only is oxygen the driving force for many cellular functions and metabolism, but it is also involved in regulating stem cell fate, morphogenesis, and organogenesis. Low oxygen levels are the naturally preferred microenvironment for most processes during early development and mainly drive proliferation. Later on, more oxygen and also nutrients are needed for organogenesis and morphogenesis. Therefore, it is critical to maintain oxygen levels within a narrow range as required during development. Modulating oxygen tensions is performed via oxygen homeostasis mainly through the function of hypoxia-inducible factors. Through the function of these factors, oxygen levels are sensed and regulated in different tissues, starting from their embryonic state to adult development. To be able to mimic this process in a tissue engineering setting, it is important to understand the role and levels of oxygen in each developmental stage, from embryonic stem cell differentiation to organogenesis and morphogenesis. Taking lessons from native tissue microenvironments, researchers have explored approaches to control oxygen tensions such as hemoglobin-based, perfluorocarbon-based, and oxygen-generating biomaterials, within synthetic tissue engineering scaffolds and organoids, with the aim of overcoming insufficient or nonuniform oxygen levels and nutrient supply.
Collapse
Affiliation(s)
| | - Pritam S Patil
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, USA
| | - Nic D Leipzig
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio,
| |
Collapse
|
17
|
Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells. Biomaterials 2018; 177:125-138. [PMID: 29886385 DOI: 10.1016/j.biomaterials.2018.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
Autologous cell transplantation holds enormous promise to restore organ and tissue functions in the treatment of various pathologies including endocrine, cardiovascular, and neurological diseases among others. Even though immune rejection is circumvented with autologous transplantation, clinical adoption remains limited due to poor cell retention and survival. Cell transplant success requires homing to vascularized environment, cell engraftment and importantly, maintenance of inherent cell function. To address this need, we developed a three dimensional (3D) printed cell encapsulation device created with polylactic acid (PLA), termed neovascularized implantable cell homing and encapsulation (NICHE). In this paper, we present the development and systematic evaluation of the NICHE in vitro, and the in vivo validation with encapsulated testosterone-secreting Leydig cells in Rag1-/- castrated mice. Enhanced subcutaneous vascularization of NICHE via platelet-rich plasma (PRP) hydrogel coating and filling was demonstrated in vivo via a chorioallantoic membrane (CAM) assay as well as in mice. After establishment of a pre-vascularized bed within the NICHE, transcutaneously transplanted Leydig cells, maintained viability and robust testosterone secretion for the duration of the study. Immunohistochemical analysis revealed extensive Leydig cell colonization in the NICHE. Furthermore, transplanted cells achieved physiologic testosterone levels in castrated mice. The promising results provide a proof of concept for the NICHE as a viable platform technology for autologous cell transplantation for the treatment of a variety of diseases.
Collapse
|
18
|
Yarahmadi A, Khademi F, Mostafavi-Pour Z, Zal F. In-Vitro Analysis of Glucose and Quercetin Effects on m-TOR and Nrf-2 Expression in HepG2 Cell Line (Diabetes and Cancer Connection). Nutr Cancer 2018; 70:770-775. [DOI: 10.1080/01635581.2018.1470654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Amir Yarahmadi
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khademi
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Abstract
Pancreatic islet transplantation is a promising treatment option for individuals with type 1 diabetes; however, maintaining islet function after transplantation remains a large challenge. Multiple factors, including hypoxia associated events, trigger pretransplant and posttransplant loss of islet function. In fact, islets are easily damaged in hypoxic conditions before transplantation including the preparation steps of pancreas procurement, islet isolation, and culture. Furthermore, after transplantation, islets are also exposed to the hypoxic environment of the transplant site until they are vascularized and engrafted. Because islets are exposed to such drastic environmental changes, protective measures are important to maintain islet viability and function. Many studies have demonstrated that the prevention of hypoxia contributes to maintaining islet quality. In this review, we summarize the latest oxygen-related islet physiology, including computational simulation. Furthermore, we review recent advances in oxygen-associated treatment options used as part of the transplant process, including up-to-date oxygen generating biomaterials as well as a classical oxygen inhalation therapy.
Collapse
|
20
|
Komatsu H, Rawson J, Barriga A, Gonzalez N, Mendez D, Li J, Omori K, Kandeel F, Mullen Y. Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site. Am J Transplant 2018; 18:832-842. [PMID: 28898528 DOI: 10.1111/ajt.14497] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023]
Abstract
Subcutaneous tissue is a promising site for islet transplantation, due to its large area and accessibility, which allows minimally invasive procedures for transplantation, graft monitoring, and removal of malignancies as needed. However, relative to the conventional intrahepatic transplantation site, the subcutaneous site requires a large number of islets to achieve engraftment success and diabetes reversal, due to hypoxia and low vascularity. We report that the efficiency of subcutaneous islet transplantation in a Lewis rat model is significantly improved by treating recipients with inhaled 50% oxygen, in conjunction with prevascularization of the graft bed by agarose-basic fibroblast growth factor. Administration of 50% oxygen increased oxygen tension in the subcutaneous site to 140 mm Hg, compared to 45 mm Hg under ambient air. In vitro, islets cultured under 140 mm Hg oxygen showed reduced central necrosis and increased insulin release, compared to those maintained in 45 mm Hg oxygen. Six hundred syngeneic islets subcutaneously transplanted into the prevascularized graft bed reversed diabetes when combined with postoperative 50% oxygen inhalation for 3 days, a number comparable to that required for intrahepatic transplantation; in the absence of oxygen treatment, diabetes was not reversed. Thus, we show oxygen inhalation to be a simple and promising approach to successfully establishing subcutaneous islet transplantation.
Collapse
Affiliation(s)
- H Komatsu
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - J Rawson
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - A Barriga
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - N Gonzalez
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - D Mendez
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - J Li
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - K Omori
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - F Kandeel
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Y Mullen
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
21
|
Abstract
Review of emerging advances and persisting challenges in the engineering and translation of islet encapsulation technologies.
Collapse
Affiliation(s)
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering
- Cornell University
- Ithaca
- USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering
- Cornell University
- Ithaca
- USA
| |
Collapse
|
22
|
Oxygen environment and islet size are the primary limiting factors of isolated pancreatic islet survival. PLoS One 2017; 12:e0183780. [PMID: 28832685 PMCID: PMC5568442 DOI: 10.1371/journal.pone.0183780] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/10/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease that destroys insulin-producing beta cells in the pancreas. Pancreatic islet transplantation could be an effective treatment option for type 1 diabetes once several issues are resolved, including donor shortage, prevention of islet necrosis and loss in pre- and post-transplantation, and optimization of immunosuppression. This study seeks to determine the cause of necrotic loss of isolated islets to improve transplant efficiency. METHODOLOGY The oxygen tension inside isolated human islets of different sizes was simulated under varying oxygen environments using a computational in silico model. In vitro human islet viability was also assessed after culturing in different oxygen conditions. Correlation between simulation data and experimentally measured islet viability was examined. Using these in vitro viability data of human islets, the effect of islet diameter and oxygen tension of the culture environment on islet viability was also analyzed using a logistic regression model. PRINCIPAL FINDINGS Computational simulation clearly revealed the oxygen gradient inside the islet structure. We found that oxygen tension in the islet core was greatly lower (hypoxic) than that on the islet surface due to the oxygen consumption by the cells. The hypoxic core was expanded in the larger islets or in lower oxygen cultures. These findings were consistent with results from in vitro islet viability assays that measured central necrosis in the islet core, indicating that hypoxia is one of the major causes of central necrosis. The logistic regression analysis revealed a negative effect of large islet and low oxygen culture on islet survival. CONCLUSIONS/SIGNIFICANCE Hypoxic core conditions, induced by the oxygen gradient inside islets, contribute to the development of central necrosis of human isolated islets. Supplying sufficient oxygen during culture could be an effective and reasonable method to maintain isolated islets viable.
Collapse
|