1
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
2
|
Rundle CH, Gomez GA, Pourteymoor S, Mohan S. Sequential application of small molecule therapy enhances chondrogenesis and angiogenesis in murine segmental defect bone repair. J Orthop Res 2023; 41:1471-1481. [PMID: 36448182 PMCID: PMC10506518 DOI: 10.1002/jor.25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The increasing incidence of physiologic/pathologic conditions that impair the otherwise routine healing of endochondral bone fractures and the occurrence of severe bone injuries necessitate novel approaches to enhance clinically challenging bone fracture repair. To promote the healing of nonunion fractures, we tested an approach that used two small molecules to sequentially enhance cartilage development and conversion to the bone in the callus of a murine femoral segmental defect nonunion model of bone injury. Systemic injections of smoothened agonist 21k (SAG21k) were used to stimulate chondrogenesis through the activation of the sonic hedgehog (SHH) pathway early in bone repair, while injections of the prolyl hydroxylase domain (PHD)2 inhibitor, IOX2, were used to stimulate hypoxia signaling-mediated endochondral bone formation. The expression of SHH pathway genes and Phd2 target genes was increased in chondrocyte cell lines in response to SAG21k and IOX2 treatment, respectively. The segmental defect responded to sequential systemic administration of these small molecules with increased chondrocyte expression of PTCH1, GLI1, and SOX9 in response to SAG and increased expression of hypoxia-induced factor-1α and vascular endothelial growth factor-A in the defect tissues in response to IOX2. At 6 weeks postsurgery, the combined SAG-IOX2 therapy produced increased bone formation in the defect with the bony union over the injury. Clinical significance: This therapeutic approach was successful in promoting cartilage and bone formation within a critical-size segmental defect and established the utility of a sequential small molecule therapy for the enhancement of fracture callus development in clinically challenging bone injuries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
3
|
Lee CS, Fan J, Hwang HS, Kim S, Chen C, Kang M, Aghaloo T, James AW, Lee M. Bone-Targeting Exosome Mimetics Engineered by Bioorthogonal Surface Functionalization for Bone Tissue Engineering. NANO LETTERS 2023; 23:1202-1210. [PMID: 36762874 PMCID: PMC10106420 DOI: 10.1021/acs.nanolett.2c04159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles have received a great interest as safe biocarriers in biomedical engineering. There is a need to develop more efficient delivery strategies to improve localized therapeutic efficacy and minimize off-target adverse effects. Here, exosome mimetics (EMs) are reported for bone targeting involving the introduction of hydroxyapatite-binding moieties through bioorthogonal functionalization. Bone-binding ability of the engineered EMs is verified with hydroxyapatite-coated scaffolds and an ex vivo bone-binding assay. The EM-bound construct provided a biocompatible substrate for cell adhesion, proliferation, and osteogenic differentiation. Particularly, the incorporation of Smoothened agonist (SAG) into EMs greatly increased the osteogenic capacity through the activation of hedgehog signaling. Furthermore, the scaffold integrated with EM/SAG significantly improved in vivo reossification. Lastly, biodistribution studies confirmed the accumulation of systemically administered EMs in bone tissue. This facile engineering strategy could be a versatile tool to promote bone regeneration, offering a promising nanomedicine approach to the sophisticated treatment of bone diseases.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Hee Sook Hwang
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Minjee Kang
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Aaron W. James
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
4
|
McColl LF, Chen X, Solga MD, Schlegel K, Haughey SP, Lobo PI, Fread K, Zunder E, Cha R, Park S, Christophel JJ, Cui Q, Dighe AS. BMP-6 promotes type 2 immune response during enhancement of rat mandibular bone defect healing. Front Immunol 2023; 14:1064238. [PMID: 36845161 PMCID: PMC9950738 DOI: 10.3389/fimmu.2023.1064238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Bone morphogenetic proteins (BMPs) are used as key therapeutic agents for the treatment of difficult fractures. While their effects on osteoprogenitors are known, little is known about their effects on the immune system. Methods We used permutations of BMP-6 (B), vascular endothelial growth factor (V), and Hedgehog signaling pathway activator smoothened agonist (S), to treat a rat mandibular defect and investigated healing outcomes at week 8, in correlation with the cellular landscape of the immune cells in the fracture callus at week 2. Results Maximum recruitment of immune cells to the fracture callus is known to occur at week 2. While the control, S, V, and VS groups remained as nonunions at week 8; all BMP-6 containing groups - B, BV, BS and BVS, showed near-complete to complete healing. This healing pattern was strongly associated with significantly higher ratios of CD4 T (CD45+CD3+CD4+) to putative CD8 T cells (CD45+CD3+CD4-), in groups treated with any permutation of BMP-6. Although, the numbers of putative M1 macrophages (CD45+CD3-CD11b/c+CD38high) were significantly lower in BMP-6 containing groups in comparison with S and VS groups, percentages of putative - Th1 cells or M1 macrophages (CD45+CD4+IFN-γ+) and putative - NK, NKT or cytotoxic CD8T cells (CD45+CD4-IFN-γ+) were similar in control and all treatment groups. Further interrogation revealed that the BMP-6 treatment promoted type 2 immune response by significantly increasing the numbers of CD45+CD3-CD11b/c+CD38low putative M2 macrophages, putative - Th2 cells or M2 macrophages (CD45+CD4+IL-4+) cells and putative - mast cells, eosinophils or basophils (CD45+CD4-IL-4+ cells). CD45- non-haematopoietic fractions of cells which encompass all known osteoprogenitor stem cells populations, were similar in control and treatment groups. Discussion This study uncovers previously unidentified regulatory functions of BMP-6 and shows that BMP-6 enhances fracture healing by not only acting on osteoprogenitor stem cells but also by promoting type 2 immune response.
Collapse
Affiliation(s)
- Logan F. McColl
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Xizhao Chen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, United States
| | - Kailo Schlegel
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sean P. Haughey
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Peter I. Lobo
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Kristen Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eli Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ryan Cha
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Stephen Park
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - J. Jared Christophel
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Quanjun Cui
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Abhijit S. Dighe
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States,*Correspondence: Abhijit S. Dighe,
| |
Collapse
|
5
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif 2021; 55:e13162. [PMID: 34918401 PMCID: PMC8780935 DOI: 10.1111/cpr.13162] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bone formation is a complex regeneration process that was regulated by many signalling pathways, such as Wnt, Notch, BMP and Hedgehog (Hh). All of these signalling have been demonstrated to participate in the bone repair process. In particular, one promising signalling pathway involved in bone formation and homeostasis is the Hh pathway. According to present knowledge, Hh signalling plays a vital role in the development of various tissues and organs in the embryo. In adults, the dysregulation of Hh signalling has been verified to be involved in bone‐related diseases in terms of osteoarthritis, osteoporosis and bone fracture; and during the repair processes, Hh signalling could be reactivated and further modulate bone formation. In this chapter, we summarize our current understanding on the function of Hh signalling in bone formation and homeostasis. Additionally, the current therapeutic strategies targeting this cascade to coordinate and mediate the osteogenesis process have been reviewed.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
8
|
The Effects of Photobiomodulation on Bone Defect Repairing in a Diabetic Rat Model. Int J Mol Sci 2021; 22:ijms222011026. [PMID: 34681687 PMCID: PMC8541159 DOI: 10.3390/ijms222011026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to examine the prospective therapeutic effects of photobiomodulation on the healing of bone defects in diabetic mellitus (DM) using rat models to provide basic knowledge of photobiomodulation therapy (PBMT) during bone defect repair. For in vitro study, an Alizzarin red stain assay was used to evaluate the effect of PBMT on osteogenic differentiation. For in vivo study, micro-computed tomography (microCT) scan, H&E and IHC stain analysis were used to investigate the effect of PBMT on the healing of the experimental calvarial defect (3 mm in diameter) of a diabetic rat model. For in vitro study, the high glucose groups showed lower osteogenic differentiation in both irradiated and non-irradiated with PBMT when compared to the control groups. With the PBMT, all groups (control, osmotic control and high glucose) showed higher osteogenic differentiation when compared to the non-irradiated groups. For in vivo study, the hyperglycemic group showed significantly lower bone regeneration when compared to the control group. With the PBMT, the volume of bone regeneration was increasing and back to the similar level of the control group. The treatment of PBMT in 660 nm could improve the bone defect healing on a diabetic rat calvarial defect model.
Collapse
|
9
|
Lee CS, Hsu GCY, Sono T, Lee M, James AW. Development of a Biomaterial Scaffold Integrated with Osteoinductive Oxysterol Liposomes to Enhance Hedgehog Signaling and Bone Repair. Mol Pharm 2021; 18:1677-1689. [PMID: 33760625 DOI: 10.1021/acs.molpharmaceut.0c01136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone repair requires the tightly regulated control of multiple intrinsic and extrinsic cell types and signaling pathways. One of the positive regulatory signaling pathways in membranous and endochondral bone healing is the Hedgehog (Hh) signaling family. Here, a novel therapeutic liposomal delivery vector was developed by self-assembly of an Hh-activating cholesterol analog with an emulsifier, along with the addition of Smoothened agonist (SAG) as a drug cargo, for the enhancement of Hh signaling in bone regeneration. The drug-loaded nanoparticulate agonists of Hh signaling were immobilized onto trabecular bone-mimetic apatite-coated 3D scaffolds using bioinspired polydopamine adhesives to ensure favorable microenvironments for cell growth and local therapeutic delivery. Results showed that SAG-loaded liposomes induced a significant and dose-dependent increase in Hh-mediated osteogenic differentiation, as evidenced by in vitro analysis of bone marrow stromal cells, and in vivo calvarial bone healing, as evidenced using all radiographic parameters and histomorphometric analyses. Moreover, favorable outcomes were achieved in comparison to standards of care, including collagen sponge-delivered rBMP2 or allograft bone. In summary, this study demonstrates using a nanoparticle packaged Hh small molecule as a widely applicable bone graft substitute for robust bone repair.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
| | - Ginny Ching-Yun Hsu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Sono
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Aaron W James
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Orthopaedic Hospital Research Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
11
|
Fan J, Lee CS, Kim S, Zhang X, Pi-Anfruns J, Guo M, Chen C, Rahnama M, Li J, Wu BM, Aghaloo TL, Lee M. Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials 2021; 264:120445. [PMID: 33069136 PMCID: PMC7655726 DOI: 10.1016/j.biomaterials.2020.120445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant lineage commitment of mesenchymal stem cells (MSCs) in marrow contributes to abnormal bone formation due to reduced osteogenic and increased adipogenic potency. While several major transcriptional factors associated with lineage differentiation have been found during the last few decades, the molecular switch for MSC fate determination and its role in skeletal regeneration remains largely unknown, limiting creation of effective therapeutic approaches. Tribbles homolog 3 (Trb3), a member of tribbles family pseudokinases, is known to exert diverse roles in cellular differentiation. Here, we investigated the reciprocal role of Trb3 in the regulation of osteogenic and adipogenic differentiation of MSCs in the context of bone formation, and examined the mechanisms by which Trb3 controls the adipo-osteogenic balance. Trb3 promoted osteoblastic commitment of MSCs at the expense of adipocyte differentiation. Mechanistically, Trb3 regulated cell-fate choice of MSCs through BMP/Smad and Wnt/β-catenin signals. Importantly, in vivo local delivery of Trb3 using a novel gelatin-conjugated caffeic acid-coated apatite/PLGA (GelCA-PLGA) scaffold stimulated robust bone regeneration and inhibited fat-filled cyst formation in rodent non-healing mandibular defect models. These findings demonstrate Trb3-based therapeutic strategies that favor osteoblastogenesis over adipogenesis for improved skeletal regeneration and future treatment of bone-loss disease. The distinctive approach implementing a scaffold-mediated local gene transfer may further broaden the translational use of targeting specific therapeutic gene related to lineage commitment for clinical bone treatment.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Xiao Zhang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Joan Pi-Anfruns
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Mian Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Matthew Rahnama
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Perivascular Fibro-Adipogenic Progenitor Tracing during Post-Traumatic Osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1909-1920. [PMID: 32533926 DOI: 10.1016/j.ajpath.2020.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Perivascular mural cells surround capillaries and microvessels and have diverse regenerative or fibrotic functions after tissue injury. Subsynovial fibrosis is a well-known pathologic feature of osteoarthritis, yet transgenic animals for use in visualizing perivascular cell contribution to fibrosis during arthritic changes have not been developed. Here, inducible Pdgfra-CreERT2 reporter mice were subjected to joint-destabilization surgery to induce arthritic changes, and cell lineage was traced over an 8-week period with a focus on the joint-associated fat pad. Results showed that, at baseline, inducible Pdgfra reporter activity highlighted adventitial and, to a lesser extent, pericytic cells within the infrapatellar fat pad. Joint-destabilization surgery was associated with marked fibrosis of the infrapatellar fat pad, accompanied by an expansion of perivascular Pdgfra-expressing cellular descendants, many of which adopted α-smooth muscle actin expression. Gene expression analysis of microdissected infrapatellar fat pad confirmed enrichment in membrane-bound green fluorescent protein/Pdgfra-expressing cells, along with a gene signature that corresponded with injury-associated fibro-adipogenic progenitors. Our results highlight dynamic changes in joint-associated perivascular fibro-adipogenic progenitors during osteoarthritis.
Collapse
|
13
|
Lee CS, Kim S, Fan J, Hwang HS, Aghaloo T, Lee M. Smoothened agonist sterosome immobilized hybrid scaffold for bone regeneration. SCIENCE ADVANCES 2020; 6:eaaz7822. [PMID: 32494652 PMCID: PMC7176430 DOI: 10.1126/sciadv.aaz7822] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 05/24/2023]
Abstract
Biomaterial delivery of bioactive agents and manipulation of stem cell fate are an attractive approach to promote tissue regeneration. Here, smoothened agonist sterosome is developed using small-molecule activators [20S-hydroxycholesterol (OHC) and purmorphamine (PUR)] of the smoothened protein in the hedgehog pathway as carrier and cargo. Sterosome presents inherent osteoinductive property even without drug loading. Sterosome is covalently immobilized onto three-dimensional scaffolds via a bioinspired polydopamine intermediate to fabricate a hybrid scaffold for bone regeneration. Sterosome-immobilized hybrid scaffold not only provides a favorable substrate for cell adhesion and proliferation but also delivers bioactive agents in a sustained and spatially targeted manner. Furthermore, this scaffold significantly improves osteogenic differentiation of bone marrow stem cells through OHC/PUR-mediated synergistic activation of the hedgehog pathway and also enhances bone repair in a mouse calvarial defect model. This system serves as a versatile biomaterial platform for many applications, including therapeutic delivery and endogenous regenerative medicine.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Hee Sook Hwang
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Fabrication of Dentin-Pulp-Like Organoids Using Dental-Pulp Stem Cells. Cells 2020; 9:cells9030642. [PMID: 32155898 PMCID: PMC7140482 DOI: 10.3390/cells9030642] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
We developed a novel dentin-pulp-like organoid. It has both stem-cell and odontoblast characteristics using a mesenchymal cell lineage of human dental-pulp stem cells (hDPSCs). The mixture of hDPSCs and Matrigel was transferred into the maintenance medium (MM) and divided into four different groups according to how long they were maintained in the odontogenic differentiation medium (ODM). All organoids were harvested at 21 days and analyzed to find the optimal differentiation condition. To assess the re-fabrication of dentin-pulp-like organoid, after dissociation of the organoids, it was successfully regenerated. Additionally, its biological activity was confirmed by analyzing changes of relevant gene expression and performing a histology analysis after adding Biodentine® into the ODM. The organoid was cultured for 11 days in the ODM (ODM 11) had the most features of both stem cells and differentiated cells (odontoblasts) as confirmed by relevant gene expression and histology analyses. Micro-computed tomography and an electron microscope also showed mineralization and odontoblastic differentiation. Finally, ODM 11 demonstrated a biologically active response to Biodentine® treatment. In conclusion, for the first time, we report the fabrication of a dentin-pulp-like organoid using mesenchymal stem cells. This organoid has potential as a future therapeutic strategy for tooth regeneration.
Collapse
|
15
|
Miller MQ, McColl LF, Arul MR, Nip J, Madhu V, Beck G, Mathur K, Sahadeo V, Kerrigan JR, Park SS, Christophel JJ, Dighe AS, Kumbar SG, Cui Q. Assessment of Hedgehog Signaling Pathway Activation for Craniofacial Bone Regeneration in a Critical-Sized Rat Mandibular Defect. JAMA FACIAL PLAST SU 2020; 21:110-117. [PMID: 30520953 DOI: 10.1001/jamafacial.2018.1508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Osseous craniofacial defects are currently reconstructed with bone grafting, rigid fixation, free tissue transfer, and/or recombinant human bone morphogenetic protein 2. Although these treatment options often have good outcomes, they are associated with substantial morbidity, and many patients are not candidates for free tissue transfer. Objective To assess whether polysaccharide-based scaffold (PS) constructs that are cross-linked with smoothened agonist (SAG), vascular endothelial growth factor (VEGF), and bone morphogenetic protein 6 (BMP-6) would substantially increase bone regeneration. Design, Setting, and Participants This animal model study was conducted at the University of Virginia School of Medicine Cui Laboratory from March 1, 2017, to June 30, 2017. Thirty-three 10-week-old female Lewis rats were acquired for the study. Bilateral nonsegmental critical-sized defects were created in the angle of rat mandibles. The defects were either left untreated or filled with 1 of the 9 PSs. The rats were killed after 8 weeks, and bone regeneration was evaluated using microcomputed tomographic imaging and mechanical testing. Analysis of variance testing was used to compare the treatment groups. Main Outcomes and Measures Blinded analysis and computer analysis of the microcomputed tomographic images were used to assess bone regeneration. Results In the 33 female Lewis rats, minimal healing was observed in the untreated mandibles. Addition of SAG was associated with increases in bone regeneration and bone density in all treatment groups, and maximum bone healing was seen in the group with BMP-6, VEGF, and SAG cross-linked to PS. For each of the 5 no scaffold group vs BMP-6, VEGF, and SAG cross-linked to PS group comparisons, mean defect bone regeneration was 4.14% (95% CI, 0.94%-7.33%) vs 66.19% (95% CI, 54.47%-77.90%); mean bone volume, 14.52 mm3 (95% CI, 13.07-15.97 mm3) vs 20.87 mm3 (95% CI, 14.73- 27.01 mm3); mean bone surface, 68.97 mm2 (95% CI, 60.08-77.85 mm2) vs 96.77 mm2 (95% CI, 76.11-117.43 mm2); mean ratio of bone volume to total volume, 0.11 (95% CI, 0.10-0.11) vs 0.15 (95% CI, 0.10-0.19); and mean connectivity density 0.03 (95% CI, 0.02-0.05) vs 0.32 (95% CI, 0.25-0.38). On mechanical testing, mandibles with untreated defects broke with less force than control mandibles in which no defect was made, although this force did not reach statistical significance. No significant difference in force to fracture was observed among the treatment groups. Conclusions and Relevance In this rat model study, activation of the hedgehog signaling pathway using smoothened agonist was associated with increased craniofacial bone regeneration compared with growth factors alone, including US Food and Drug Administration-approved recombinant human bone morphogenetic protein 2. Pharmaceuticals that target this pathway may offer a new reconstructive option for bony craniofacial defects as well as nonunion and delayed healing fractures. Level of Evidence NA.
Collapse
Affiliation(s)
- Matthew Q Miller
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville.,Department of Otolaryngology, University of Virginia, Charlottesville
| | - Logan F McColl
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville.,Department of Otolaryngology, University of Virginia, Charlottesville
| | - Michael R Arul
- Department of Orthopaedic Surgery, University of Connecticut, Farmington
| | - Jonathan Nip
- Department of Orthopaedic Surgery, University of Connecticut, Farmington.,Department of Biomedical Engineering, University of Connecticut, Farmington.,Department of Materials Science and Engineering, University of Connecticut, Farmington
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Gina Beck
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Kishan Mathur
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville
| | - Vashaana Sahadeo
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Jason R Kerrigan
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville.,Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville
| | - Stephen S Park
- Department of Otolaryngology, University of Virginia, Charlottesville
| | | | - Abhijit S Dighe
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, University of Connecticut, Farmington.,Department of Biomedical Engineering, University of Connecticut, Farmington.,Department of Materials Science and Engineering, University of Connecticut, Farmington
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| |
Collapse
|
16
|
Meyers CA, Xu J, Zhang L, Chang L, Wang Y, Asatrian G, Ding C, Yan N, Zou E, Broderick K, Lee M, Peault B, James AW. Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Eng Part A 2019; 25:1658-1666. [PMID: 31020920 DOI: 10.1089/ten.tea.2019.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human perivascular stem/stromal cells (PSC) are a multipotent mesenchymal progenitor cell population defined by their perivascular residence. PSC are increasingly studied for their application in skeletal regenerative medicine. PSC from subcutaneous white adipose tissue are most commonly isolated via fluorescence-activated cell sorting (FACS), and defined as a bipartite population of CD146+CD34-CD31-CD45- pericytes and CD34+CD146-CD31-CD45- adventitial cells. FACS poses several challenges for clinical translation, including requirements for facilities, equipment, and personnel. The purpose of this study is to identify if magnetic-activated cell sorting (MACS) is a feasible method to derive PSC, and to determine if MACS-derived PSC are comparable to our previous experience with FACS-derived PSC. In brief, CD146+ pericytes and CD34+ adventitial cells were enriched from human lipoaspirate using a multistep column approach. Next, cell identity and purity were analyzed by flow cytometry. In vitro multilineage differentiation studies were performed with MACS-defined PSC subsets. Finally, in vivo application was performed in nonhealing calvarial bone defects in Scid mice. Results showed that human CD146+ pericytes and CD34+ adventitial cells may be enriched by MACS, with defined purity, anticipated cell surface marker expression, and capacity for multilineage differentiation. In vivo, MACS-derived PSC induce ossification of bone defects. These data document the feasibility of a MACS approach for the enrichment and application of PSC in the field of tissue engineering and regenerative medicine. Impact Statement Our findings suggest that perivascular stem/stromal cells, and in particular adventitial cells, may be isolated by magnetic-activated cell sorting and applied as an uncultured autologous stem cell therapy in a same-day setting for bone defect repair.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Leititia Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Greg Asatrian
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, California
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
17
|
Wang Y, Xu J, Chang L, Meyers CA, Zhang L, Broderick K, Lee M, Peault B, James AW. Relative contributions of adipose-resident CD146 + pericytes and CD34 + adventitial progenitor cells in bone tissue engineering. NPJ Regen Med 2019; 4:1. [PMID: 30622740 PMCID: PMC6323123 DOI: 10.1038/s41536-018-0063-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Pericytes and other perivascular stem/stromal cells are of growing interest in the field of tissue engineering. A portion of perivascular cells are well recognized to have MSC (mesenchymal stem cell) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair. Here, we investigate the differential but overlapping roles of two perivascular cell subsets in paracrine induction of bone repair. CD146+CD34-CD31-CD45-pericytes and CD34+CD146-CD31-CD45-adventitial cells were derived from human adipose tissue and applied alone or in combination to calvarial bone defects in mice. In vitro, osteogenic differentiation and tubulogenesis assays were performed using either fluorescence activated cell sorting-derived CD146+ pericytes or CD34+ adventitial cells. Results showed that CD146+ pericytes induced increased cord formation in vitro and angiogenesis in vivo in comparison with patient-matched CD34+ adventitial cells. In contrast, CD34+ adventitial cells demonstrated heightened paracrine-induced osteogenesis in vitro. When applied in a critical-size calvarial defect model in NOD/SCID mice, the combination treatment of CD146+ pericytes with CD34+ adventitial cells led to greater re-ossification than either cell type alone. In summary, adipose-derived CD146+ pericytes and CD34+ adventitial cells display functionally distinct yet overlapping and complementary roles in bone defect repair. Consequently, CD146+ pericytes and CD34+ adventitial cells may demonstrate synergistic bone healing when applied as a combination cellular therapy.
Collapse
Grants
- G1000816 Medical Research Council
- K08 AR068316 NIAMS NIH HHS
- R01 AR070773 NIAMS NIH HHS
- R21 DE027922 NIDCR NIH HHS
- The present work was supported by the NIH/NIAMS (R01 AR070773, K08 AR068316), NIH/NIDCR (R21 DE027922), USAMRAA (W81XWH-18-1-0121, W81XWH-18-1-0336, W81XWH-18-10613), American Cancer Society (Research Scholar Grant, RSG-18-027-01-CSM), the Orthopaedic Research and Education Foundation with funding provided by the Musculoskeletal Transplant Foundation, the Maryland Stem Cell Research Foundation, and the Musculoskeletal Transplant Foundation.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Lei Zhang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, 90095 CA USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, 90095 Los Angeles, CA USA
- Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, 90095 Los Angeles, CA USA
| |
Collapse
|
18
|
McKenzie JA, Maschhoff C, Liu X, Migotsky N, Silva MJ, Gardner MJ. Activation of hedgehog signaling by systemic agonist improves fracture healing in aged mice. J Orthop Res 2019; 37:51-59. [PMID: 29663560 PMCID: PMC6226344 DOI: 10.1002/jor.24017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process of many coordinated biological pathways. This system can go awry resulting in nonunion, which leads to significant patient morbidity. The Hedgehog (Hh) signaling pathway is upregulated in fracture healing. We hypothesized that the Hh signaling pathway can be pharmacologically modulated to positively affect fracture healing. Diaphyseal femur fractures were created in elderly mice (18 months, C57BL/6 females), which have a blunted and delayed healing response compared to younger mice, and were stabilized with intramedullary pins. To activate the Hh pathway we targeted the receptor Smoothened using an agonist (Hh-Ag1.5 [Hh-Ag]) and compared this to a vehicle control. Expression of Hh target genes were significantly increased in the fracture callus of the agonist group compared to controls, indicating pathway activation. Expression of osteogenic and chondrogenic-related genes was greatly upregulated in fracture callus versus intact femora, although Hh agonist treatment did not consistently enhance this response. Blindly graded, radiographic callus healing scores were significantly higher in the Hh-Ag groups at post operative day (POD) 14, indicating earlier callus bridging. On microCT, Hh-Ag treatment led to greater callus volume (+40%) and bone volume (+25%) at POD21. By day 14, callus vascularity, as assessed by 3D microCT angiography vessel volume, was 85% greater in the Hh-Ag group. Finally, mechanical strength of the calluses in the Hh-Ag groups was significantly greater than in the control groups at POD21. In conclusion, systemic administration of a Hh agonist appears to improve the osseous and vascular healing responses in a mouse fracture healing-impaired model. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
| | | | - Xiaochen Liu
- Washington University Orthopedics, St. Louis, MO
| | | | | | - Michael J. Gardner
- Washington University Orthopedics, St. Louis, MO,Stanford University Orthopedics, Stanford, CA
| |
Collapse
|
19
|
Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2061-2073. [PMID: 29964218 DOI: 10.1016/j.nano.2018.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Large bone defects constitute a major challenge in bone tissue engineering and usually fail to heal due to the incomplete differentiation of recruited mesenchymal stem cells (MSCs) into osteogenic precursor cells. As previously proposed, metformin (MET) induces differentiation of MSCs into osteoblastic lineages in vitro. We fabricated a Poly (lactic acid) and Polycaprolactone (PLA/PCL) scaffold to deliver metformin loaded gelatin nanocarriers (MET/GNs) to critical-sized calvarial bone defects in a rat model. The scaffolds were evaluated regarding their morphology, porosity, contact angle, degradation rate, blood compatibility, biomechanical, cell viability and their osteogenic differentiation. In animal study, the defects were filled with autograft, scaffolds and a group was left empty. qRT-PCR analyses showed the expression level of osteogenic and angiogenic markers considerably increased in MET/GNs-PLA/PCL. The in vivo results showed that MET/GNs-PLA/PCL improved bone ingrowth, angiogenesis and defect reconstruction. Our results represent the applicability of MET/GNs-PLA/PCL for successful bone regeneration.
Collapse
Affiliation(s)
- Mostafa Shahrezaee
- Department of Orthopedic Surgery, School of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Keshtkari
- Department of Clinical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Kamali
- Department of Orthopedic Surgery, School of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Babak Shekarchi
- Department of Radiology, School of Medicine, AJA University of Medical Science, Tehran, Iran.
| |
Collapse
|
20
|
Abstract
BACKGROUND Nonhealing bone defects represent an immense biomedical burden. Despite recent advances in protein-based bone regeneration, safety concerns over bone morphogenetic protein-2 have prompted the search for alternative factors. Previously, the authors examined the additive/synergistic effects of hedgehog and Nel-like protein-1 (NELL-1) on the osteogenic differentiation of mesenchymal stem cells in vitro. In this study, the authors sought to leverage their previous findings by applying the combination of Smoothened agonist (SAG), hedgehog signal activator, and NELL-1 to an in vivo critical-size bone defect model. METHODS A 4-mm parietal bone defect was created in mixed-gender CD-1 mice. Treatment groups included control (n = 6), SAG (n = 7), NELL-1 (n = 7), and SAG plus NELL-1 (n = 7). A custom fabricated poly(lactic-co-glycolic acid) disk with hydroxyapatite coating was used as an osteoinductive scaffold. RESULTS Results at 4 and 8 weeks showed increased bone formation by micro-computed tomographic analyses with either stimulus alone (SAG or NELL-1), but significantly greater bone formation with both components combined (SAG plus NELL-1). This included greater bone healing scores and increased bone volume and bone thickness. Histologic analyses confirmed a significant increase in new bone formation with the combination therapy SAG plus NELL-1, accompanied by increased defect vascularization. CONCLUSIONS In summary, the authors' results suggest that combining the hedgehog signaling agonist SAG and NELL-1 has potential as a novel therapeutic strategy for the healing of critical-size bone defects. Future directions will include optimization of dosage and delivery strategy for an SAG and NELL-1 combination product.
Collapse
|
21
|
Huang S, Zhang L, Rehman MU, Iqbal MK, Lan Y, Mehmood K, Zhang H, Qiu G, Nabi F, Yao W, Wang M, Li J. High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens. PLoS One 2017; 12:e0173698. [PMID: 28282429 PMCID: PMC5345845 DOI: 10.1371/journal.pone.0173698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/25/2017] [Indexed: 01/21/2023] Open
Abstract
Tibial dyschondroplasia (TD) is one of the most common problems in the poultry industry and leads to lameness by affecting the proximal growth plate of the tibia. However, due to the unique environmental and geographical conditions of Tibet, no case of TD has been reported in Tibetan chickens (TBCs). The present study was designed to investigate the effect of high altitude hypoxia on blood parameters and tibial growth plate development in chickens using the complete blood count, morphology, and histological examination. The results of this study showed an undesirable impact on the overall performance, body weight, and mortality of Arbor Acres chickens (AACs) exposed to a high altitude hypoxic environment. However, AACs raised under hypoxic conditions showed an elevated number of red blood cells (RBCs) and an increase in hemoglobin and hematocrit values on day 14 compared to the hypobaric normoxia group. Notably, the morphology and histology analyses showed that the size of tibial growth plates in AACs was enlarged and that the blood vessel density was also higher after exposure to the hypoxic environment for 14 days, while no such change was observed in TBCs. Altogether, our results revealed that the hypoxic environment has a potentially new role in increasing the blood vessel density of proximal tibial growth plates to strengthen and enhance the size of the growth plates, which may provide new insights for the therapeutic manipulation of hypoxia in poultry TD.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanfang Lan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gang Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi Tibet, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Faculty of Veterinary & Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences Uthal, Balochistan, Pakistan
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi Tibet, People's Republic of China
- * E-mail:
| |
Collapse
|