1
|
Anderson JM. A reflection on Arnold Caplan, the father of MSC. Best Pract Res Clin Haematol 2024; 37:101597. [PMID: 40074515 DOI: 10.1016/j.beha.2025.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
Arnold Caplan was the father of MSC, mesenchymal stem cells. His pioneering efforts have led to significant advances in the utilization of mesenchymal stem cells for the treatment of a wide variety of clinical diseases. This reflection provides some insight into Arnold's commitment to education and research regarding mesenchymal stem cells. Moreover, he was a good friend. Arnold will be missed.
Collapse
Affiliation(s)
- James M Anderson
- Departments of Pathology, Biomedical Engineering, and Macromolecular Science, Case Western Reserve University, USA.
| |
Collapse
|
2
|
Graham J, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. ACS Synth Biol 2024; 13:3413-3429. [PMID: 39375864 PMCID: PMC11494708 DOI: 10.1021/acssynbio.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Joshua
P. Graham
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yu Zhang
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lifang He
- Department
of Computer Science and Engineering, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| | | |
Collapse
|
3
|
Graham JP, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601587. [PMID: 39005295 PMCID: PMC11244939 DOI: 10.1101/2024.07.01.601587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, achieving reliable therapeutic effects with improved safety and efficacy requires informed target gene selection. This depends on a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) that regulate cell phenotype and function. Machine learning models have been previously used for GRN reconstruction using RNA-seq data, but current techniques are limited to single cell types and focus mainly on transcription factors. This restriction overlooks many potential CRISPR target genes, such as those encoding extracellular matrix components, growth factors, and signaling molecules, thus limiting the applicability of these models for CRISPR strategies. To address these limitations, we have developed CRISPR-GEM, a multi-layer perceptron (MLP)-based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts towards a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Josh P Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Lifang He
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
4
|
Marom R, Song IW, Busse EC, Washington ME, Berrier AS, Rossi VC, Ortinau L, Jeong Y, Jiang MM, Dawson BC, Adeyeye M, Leynes C, Lietman CD, Stroup BM, Batkovskyte D, Jain M, Chen Y, Cela R, Castellon A, Tran AA, Lorenzo I, Meyers DN, Huang S, Turner A, Shenava V, Wallace M, Orwoll E, Park D, Ambrose CG, Nagamani SC, Heaney JD, Lee BH. The IFITM5 mutation in osteogenesis imperfecta type V is associated with an ERK/SOX9-dependent osteoprogenitor differentiation defect. J Clin Invest 2024; 134:e170369. [PMID: 38885336 PMCID: PMC11290974 DOI: 10.1172/jci170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5). Here, we generated a conditional Rosa26-knockin mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in patients with OI type V. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with an increase in the skeletal progenitor cell population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 had decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupted early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Emily C. Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian C. Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary Adeyeye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, UT Health Houston MD Anderson Cancer Center, Houston, Texas, USA
| | - Carolina Leynes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Caressa D. Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dominyka Batkovskyte
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - D. Nicole Meyers
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, and Huffington Department of Education, Innovation, and Technology, Advanced Technology Cores, and
| | - Alicia Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Vinitha Shenava
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Maegen Wallace
- Orthopaedic Surgery, University of Nebraska Medical Center, Children’s Hospital and Medical Center, Omaha, Nebraska, USA
| | - Eric Orwoll
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, Oregon, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine G. Ambrose
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Sandesh C.S. Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
6
|
Zujur D, Al-Akashi Z, Nakamura A, Zhao C, Takahashi K, Aritomi S, Theoputra W, Kamiya D, Nakayama K, Ikeya M. Enhanced chondrogenic differentiation of iPS cell-derived mesenchymal stem/stromal cells via neural crest cell induction for hyaline cartilage repair. Front Cell Dev Biol 2023; 11:1140717. [PMID: 37234772 PMCID: PMC10206169 DOI: 10.3389/fcell.2023.1140717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: To date, there is no effective long-lasting treatment for cartilage tissue repair. Primary chondrocytes and mesenchymal stem/stromal cells are the most commonly used cell sources in regenerative medicine. However, both cell types have limitations, such as dedifferentiation, donor morbidity, and limited expansion. Here, we report a stepwise differentiation method to generate matrix-rich cartilage spheroids from induced pluripotent stem cell-derived mesenchymal stem/stromal cells (iMSCs) via the induction of neural crest cells under xeno-free conditions. Methods: The genes and signaling pathways regulating the chondrogenic susceptibility of iMSCs generated under different conditions were studied. Enhanced chondrogenic differentiation was achieved using a combination of growth factors and small-molecule inducers. Results: We demonstrated that the use of a thienoindazole derivative, TD-198946, synergistically improves chondrogenesis in iMSCs. The proposed strategy produced controlled-size spheroids and increased cartilage extracellular matrix production with no signs of dedifferentiation, fibrotic cartilage formation, or hypertrophy in vivo. Conclusion: These findings provide a novel cell source for stem cell-based cartilage repair. Furthermore, since chondrogenic spheroids have the potential to fuse within a few days, they can be used as building blocks for biofabrication of larger cartilage tissues using technologies such as the Kenzan Bioprinting method.
Collapse
Affiliation(s)
- Denise Zujur
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ziadoon Al-Akashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Anna Nakamura
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Chengzhu Zhao
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Kazuma Takahashi
- Research Institute for Bioscience Product and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Japan
| | - Shizuka Aritomi
- Research Institute for Bioscience Product and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Japan
| | - William Theoputra
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Kamiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
7
|
DIA mass spectrometry characterizes urinary proteomics in neonatal and adult donkeys. Sci Rep 2022; 12:22590. [PMID: 36585464 PMCID: PMC9803668 DOI: 10.1038/s41598-022-27245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Health monitoring is critical for newborn animals due to their vulnerability to diseases. Urine can be not only a useful and non-invasive tool (free-catch samples) to reflect the physiological status of animals but also to help monitor the progression of diseases. Proteomics involves the study of the whole complement of proteins and peptides, including structure, quantities, functions, variations and interactions. In this study, urinary proteomics of neonatal donkeys were characterized and compared to the profiles of adult donkeys to provide a reference database for healthy neonatal donkeys. The urine samples were collected from male neonatal donkeys on their sixth to tenth days of life (group N) and male adult donkeys aging 4-6 years old (group A). Library-free data-independent acquisition (direct DIA) mass spectrometry-based proteomics were applied to analyze the urinary protein profiles. Total 2179 urinary proteins were identified, and 411 proteins were differentially expressed (P < 0.05) between the two groups. 104 proteins were exclusively expressed in group N including alpha fetoprotein (AFP), peptidase-mitochondrial processing data unit (PMPCB), and upper zone of growth plate and cartilage matrix associated (UCMA), which might be used to monitor the health status of neonatal donkeys. In functional analysis, some differentially expressed proteins were identified related to immune system pathways, which might provide more insight in the immature immunity of neonatal donkeys. To the best of our knowledge, this is the first time to report donkey urinary proteome and our results might provide reference for urinary biomarker discovery used to monitor and evaluate health status of neonatal donkeys.
Collapse
|
8
|
Yu Y, Wang J, Li Y, Chen Y, Cui W. Cartilaginous Organoids: Advances, Applications, and Perspectives. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuhao Yu
- Department of Orthopedic Surgery School of Medicine Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University 600 Yishan Road Shanghai 201306 P.R. China
| | - Juan Wang
- Department of Orthopedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopedics Ruijin Hospital School of Medicine Shanghai Jiao Tong University 197 Ruijin 2nd Road Shanghai 200025 P.R. China
| | - Yamin Li
- Department of Orthopedic Surgery School of Medicine Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University 600 Yishan Road Shanghai 201306 P.R. China
| | - Yunsu Chen
- Department of Orthopedic Surgery School of Medicine Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University 600 Yishan Road Shanghai 201306 P.R. China
| | - Wenguo Cui
- Department of Orthopedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopedics Ruijin Hospital School of Medicine Shanghai Jiao Tong University 197 Ruijin 2nd Road Shanghai 200025 P.R. China
| |
Collapse
|
9
|
Vail DJ, Somoza RA, Caplan AI. MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage. Tissue Eng Part A 2022; 28:254-269. [PMID: 34328786 PMCID: PMC8971999 DOI: 10.1089/ten.tea.2021.0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of a clinically useful engineered cartilage is an outstanding and unmet clinical need. High-throughput RNA sequencing provides a means of characterizing the molecular phenotype of populations of cells and can be leveraged to better understand differences among source cells, derivative engineered tissues, and target phenotypes. In this study, small RNA sequencing is utilized to comprehensively characterize the microRNA transcriptomes (miRNomes) of native human neonatal articular cartilage and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) differentiating into cartilage organoids, contrasting the microRNA regulation of engineered cartilage with that of a promising target phenotype. Five dominant microRNAs are upregulated during cartilage organoid differentiation and disproportionately regulate transcription factors: miR-148a-3p, miR-140-3p, miR-27b-3p, miR-140-5p, and miR-181a-5p. Two microRNAs that dominate the miRNomes of hBM-MSCs, miR-21-5p and miR-143-3p, persist throughout the differentiation process and may limit the ability of these cells to differentiate into an engineered cartilage resembling target native articular cartilage. By using predictive bioinformatics tools and antagomir inhibition, these persistent microRNAs are shown to destabilize the mRNA of genes with known or potential roles in cartilage biology including FGF18, TGFBR2, TET1, STOX2, ARAP2, N4BP2L1, LHX9, NFIA, and RPS6KA5. These results shed light on the extent to which only a few microRNAs contribute to the complex regulatory environment of hBM-MSCs for engineered tissues. Impact statement MicroRNAs are emerging as important controlling elements in the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). By using a robust bioinformatic approach and further validation in vitro, here we provide a comprehensive characterization of the microRNA transcriptomes (miRNomes) of a commonly studied and clinically promising source of multipotent cells (hBM-MSCs), a gold standard model of in vitro chondrogenesis (hBM-MSC-derived cartilage organoids), and an attractive in vivo target phenotype for clinically useful engineered cartilage (neonatal articular cartilage). These analyses highlighted a specific set of microRNAs involved in the chondrogenic program that could be manipulated to acquire a more robust articular cartilage-like phenotype. This characterization provides researchers in the cartilage tissue engineering field a useful atlas with which to contextualize microRNA involvement in complex differentiation pathways.
Collapse
Affiliation(s)
- Daniel J. Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Address correspondence to: Daniel J. Vail, PhD, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Biomedical Research Building, Room 647C, Cleveland, OH 44106, USA
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Razwinani M, Motaung KS. The influence of friedelin, resinone, tingenone and betulin of compounds on chondrogenic differentiation of porcine adipose-derived mesenchymal stem cells (pADMSCs). Biochimie 2022; 196:234-242. [PMID: 35121053 DOI: 10.1016/j.biochi.2022.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
The study investigated the influence of friedelin, resinone, tingenone and betulin plant-based secondary metabolite compounds on cellular proliferation, extracellular matrix (ECM) components synthesis, expression of chondrogenic markers and maturation of differentiated chondrocytes (cell proliferation and hypertrophy) in porcine adipose-derived mesenchymal stem cells (pADMSCs) undergoing chondrogenic differentiation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Cyquant assays were used to determine cell proliferation, viability, and total cellular DNA, DMMB (Dimethyl methylene blue) was used for glycosaminoglycan (GAG) synthesis, RT-qPCR for gene expression and histology combined with immunohistochemistry for cartilage ECM proteoglycan deposition. The MTT results showed that friedelin at 37 μM, resinone at 36 μM and betulin at 18 μM with cell viability of above 100% compared to control. Tingenone at 37 μM showed cell viability of about 76%. These concentrations were considered the most effective with no toxicity effect on the cells and were further analysed with TGF-β3 (10 ng/mL) as a positive control. The results showed a high synthesis of DNA with friedelin on day 14. There was up-regulation of SOX 9, Col II and Col X with friedelin and resinone at day 14 with the significance of p < 0.01. Pellet from friedelin, resinone and tingenone showed more staining of the matrix for Safranin-O and Toluidine blue at day 14. Immunohistostaining of collagen type X (COL-10) showed more stain intensity at friedelin and resinone on day 21. These results provided new knowledge on the potential use of natural isolated secondary metabolites compounds as inducers for chondrogenic and bone differentiation.
Collapse
Affiliation(s)
- Mapula Razwinani
- Durban University of Technology, Technology Transfer and Innovation, Steve Biko Campus, Durban, South Africa
| | - Keolebogile Shirley Motaung
- Durban University of Technology, Technology Transfer and Innovation, Steve Biko Campus, Durban, South Africa.
| |
Collapse
|
11
|
Wang K, Esbensen Q, Karlsen T, Eftang C, Owesen C, Aroen A, Jakobsen R. Low-Input RNA-Sequencing in Patients with Cartilage Lesions, Osteoarthritis, and Healthy Cartilage. Cartilage 2021; 13:550S-562S. [PMID: 34775802 PMCID: PMC8808811 DOI: 10.1177/19476035211057245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To analyze and compare cartilage samples from 3 groups of patients utilizing low-input RNA-sequencing. DESIGN Cartilage biopsies were collected from patients in 3 groups (n = 48): Cartilage lesion (CL) patients had at least ICRS grade 2, osteoarthritis (OA) samples were taken from patients undergoing knee replacement, and healthy cartilage (HC) was taken from ACL-reconstruction patients without CLs. RNA was isolated using an optimized protocol. RNA samples were assessed for quality and sequenced with a low-input SmartSeq2 protocol. RESULTS RNA isolation yielded 48 samples with sufficient quality for sequencing. After quality control, 13 samples in the OA group, 9 in the HC group, and 9 in the CL group were included in the analysis. There was a high degree of co-clustering between the HC and CL groups with only 6 genes significantly up- or downregulated. OA and the combined HC/CL group clustered significantly separate from each other, yielding 659 significantly upregulated and 1,369 downregulated genes. GO-term analysis revealed that genes matched to cartilage and connective tissue development terms. CONCLUSION The gene expression profiles from the 3 groups suggest that there are no major differences in gene expression between cartilage from knees with a cartilage injury and knees without an apparent cartilage injury. OA cartilage, as expected, showed markedly different gene expression from the other 2 groups. The gene expression profiles resulting from this low-input RNA-sequencing study offer opportunities to discover new pathways not previously recognized that may be explored in future studies.
Collapse
Affiliation(s)
- Katherine Wang
- Faculty of Medicine, University of
Oslo, Oslo, Norway,Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Katherine Wang, Faculty of Medicine,
University of Oslo, P.O. Box 1072 Blindern, 0316 Oslo, Norway.
| | - Q.Y. Esbensen
- Department of Clinical Molecular
Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway,Department of Clinical Molecular
Biology, University of Oslo, Oslo, Norway
| | - T.A. Karlsen
- Norwegian Center for Stem Cell
Research, Department of Immunology and Transfusion Medicine, Oslo University
Hospital, Rikshospitalet, Oslo, Norway
| | - C.N. Eftang
- Department of Pathology, Akershus
University Hospital, Lørenskog, Norway
| | - C. Owesen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway
| | - A. Aroen
- Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Oslo, Norway
| | - R.B. Jakobsen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Department of Health Management and
Health Economics, Institute of Health and Society, Faculty of Medicine, University
of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Maumus M, Fonteneau G, Ruiz M, Assou S, Boukhaddaoui H, Pastoureau P, De Ceuninck F, Jorgensen C, Noel D. Neuromedin B promotes chondrocyte differentiation of mesenchymal stromal cells via calcineurin and calcium signaling. Cell Biosci 2021; 11:183. [PMID: 34663442 PMCID: PMC8525028 DOI: 10.1186/s13578-021-00695-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
Background Articular cartilage is a complex tissue with poor healing capacities. Current approaches for cartilage repair based on mesenchymal stromal cells (MSCs) are often disappointing because of the lack of relevant differentiation factors that could drive MSC differentiation towards a stable mature chondrocyte phenotype. Results We used a large-scale transcriptomic approach to identify genes that are modulated at early stages of chondrogenic differentiation using the reference cartilage micropellet model. We identified several modulated genes and selected neuromedin B (NMB) as one of the early and transiently modulated genes. We found that the timely regulated increase of NMB was specific for chondrogenesis and not observed during osteogenesis or adipogenesis. Furthermore, NMB expression levels correlated with the differentiation capacity of MSCs and its inhibition resulted in impaired chondrogenic differentiation indicating that NMB is required for chondrogenesis. We further showed that NMB activated the calcineurin activity through a Ca2+-dependent signaling pathway. Conclusion NMB is a newly described chondroinductive bioactive factor that upregulates the key chondrogenic transcription factor Sox9 through the modulation of Ca2+ signaling pathway and calcineurin activity. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00695-1.
Collapse
Affiliation(s)
- Marie Maumus
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | - Maxime Ruiz
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Hassan Boukhaddaoui
- INM, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Philippe Pastoureau
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Frédéric De Ceuninck
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noel
- IRMB, Univ Montpellier, INSERM, Montpellier, France. .,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Extracellular Vesicles from Mesenchymal Stem Cells as Potential Treatments for Osteoarthritis. Cells 2021; 10:cells10061287. [PMID: 34067325 PMCID: PMC8224601 DOI: 10.3390/cells10061287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disorder of the joint and its prevalence and severity is increasing owing to ageing of the population. Osteoarthritis is characterized by the degradation of articular cartilage and remodeling of the underlying bone. There is little understanding of the cellular and molecular processes involved in pathophysiology of OA. Currently the treatment for OA is limited to painkillers and anti-inflammatory drugs, which only treat the symptoms. Some patients may also undergo surgical procedures to replace the damaged joints. Extracellular vesicles (EV) play an important role in intercellular communications and their concentration is elevated in the joints of OA patients, although their mechanism is unclear. Extracellular vesicles are naturally released by cells and they carry their origin cell information to be delivered to target cells. On the other hand, mesenchymal stem cells (MSCs) are highly proliferative and have a great potential in cartilage regeneration. In this review, we provide an overview of the current OA treatments and their limitations. We also discuss the role of EV in OA pathophysiology. Finally, we highlight the therapeutic potential of MSC-derived EV in OA and their challenges.
Collapse
|
14
|
Somoza RA, Welter JF. Isolation of Chondrocytes from Human Cartilage and Cultures in Monolayer and 3D. Methods Mol Biol 2021; 2245:1-12. [PMID: 33315191 DOI: 10.1007/978-1-0716-1119-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chondrocytes are the only cell type in cartilage. The dense cartilage extracellular matrix surrounding the chondrocytes makes isolating these cells a complex and lengthy task that subjects the cells to harsh conditions. Protocols to isolate expand and maintain these cells have been improved over the years, providing ways to obtain viable cells for tissue engineering and clinical applications. Here we describe a method to obtain populations of chondrocytes that are able to expand and maintain a native-like phenotype.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Department of Biology, Skeletal Research Center, Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Robert AW, Marcon BH, Dallagiovanna B, Shigunov P. Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 2020; 8:561. [PMID: 32733882 PMCID: PMC7362937 DOI: 10.3389/fcell.2020.00561] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation. Association of data analysis of mRNAs, microRNAs, circular RNAs and long non-coding RNAs, obtained at different time points over these processes, are important to depict the complexity of differentiation. This review will discuss the results that were highlighted in transcriptome analyses of MSC undergoing adipogenic, osteogenic and chondrogenic differentiation. The focus is to shed light on key molecules, main signaling pathways and biological processes related to different time points of adipogenesis, osteogenesis and chondrogenesis.
Collapse
Affiliation(s)
- Anny W Robert
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | - Bruna H Marcon
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
16
|
Zhou Y, Yang L, Wang H, Chen X, Jiang W, Wang Z, Liu S, Liu Y. Alterations in DNA methylation profiles in cancellous bone of postmenopausal women with osteoporosis. FEBS Open Bio 2020; 10:1516-1531. [PMID: 32496000 PMCID: PMC7396431 DOI: 10.1002/2211-5463.12907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by systemic microarchitecture impairment and bone loss, which ultimately lead to fragility fractures. This disease is most common in older people, especially in postmenopausal women. Cancellous bone is affected by osteoporosis earlier than cortical bone, and DNA methylation microarray analysis of the hip cancellous bone of patients with osteoarthritis revealed differential methylation. In view of the important role of cancellous bone in bone development, we examined genome‐wide DNA methylation profiles in the cancellous bone from patients with postmenopausal osteoporosis versus healthy postmenopausal women using Illumina 850K methylation microarray analysis. Under a threshold of P < 0.05, we obtained a total of 8973 differentially methylated genes, such as SOX6, ACE, SYK and TGFB3. Under a threshold of P < 0.05 and |△β| > 0.2, a total of 17 and 34 key differentially methylated genes were further identified at the promoter region and cytosine‐ phosphate‐ guanine (CpG) islands (such as PRKCZ, GNA11 and COL4A1), respectively. PLEKHA2, PLEKHB1, PNPLA7, SCD, MGST3 and TSNAX were the most common differentially methylated genes at both the promoter region and CpG islands. Five important signaling pathways, including the calcium signaling pathway, the cyclic guanosine phospho‐protein kinase G (cGMP‐PKG) signaling pathway, endocytosis, the Rap1 signaling pathway and the AMPK signaling pathway were identified. Our study may be suitable as a basis for exploring the mechanisms underlying osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Ling Yang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Hong Wang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Xi Chen
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Wei Jiang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Zhicong Wang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Shuping Liu
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Yuehong Liu
- Department of Orthopedics, People's Hospital of Deyang City, China
| |
Collapse
|
17
|
Nossin Y, Farrell E, Koevoet WJLM, Somoza RA, Caplan AI, Brachvogel B, van Osch GJVM. Angiogenic Potential of Tissue Engineered Cartilage From Human Mesenchymal Stem Cells Is Modulated by Indian Hedgehog and Serpin E1. Front Bioeng Biotechnol 2020; 8:327. [PMID: 32363188 PMCID: PMC7180203 DOI: 10.3389/fbioe.2020.00327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
With rising demand for cartilage tissue repair and replacement, the differentiation of mesenchymal stem cells (BMSCs) into cartilage tissue forming cells provides a promising solution. Often, the BMSC-derived cartilage does not remain stable and continues maturing to bone through the process of endochondral ossification in vivo. Similar to the growth plate, invasion of blood vessels is an early hallmark of endochondral ossification and a necessary step for completion of ossification. This invasion originates from preexisting vessels that expand via angiogenesis, induced by secreted factors produced by the cartilage graft. In this study, we aimed to identify factors secreted by chondrogenically differentiated bone marrow-derived human BMSCs to modulate angiogenesis. The secretome of chondrogenic pellets at day 21 of the differentiation program was collected and tested for angiogenic capacity using in vitro endothelial migration and proliferation assays as well as the chick chorioallantoic membrane (CAM) assay. Taken together, these assays confirmed the pro-angiogenic potential of the secretome. Putative secreted angiogenic factors present in this medium were identified by comparative global transcriptome analysis between murine growth plate cartilage, human chondrogenic BMSC pellets and human neonatal articular cartilage. We then verified by PCR eight candidate angiogenesis modulating factors secreted by differentiated BMSCs. Among those, Serpin E1 and Indian Hedgehog (IHH) had a higher level of expression in BMSC-derived cartilage compared to articular chondrocyte derived cartilage. To understand the role of these factors in the pro-angiogenic secretome, we used neutralizing antibodies to functionally block them in the conditioned medium. Here, we observed a 1.4-fold increase of endothelial cell proliferation when blocking IHH and 1.5-fold by Serpin E1 blocking compared to unblocked control conditioned medium. Furthermore, endothelial migration was increased 1.9-fold by Serpin E1 blocking and 2.7-fold by IHH blocking. This suggests that the pro-angiogenic potential of chondrogenically differentiated BMSC secretome could be further augmented through inhibition of specific factors such as IHH and Serpin E1 identified as anti-angiogenic factors.
Collapse
Affiliation(s)
- Yannick Nossin
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Wendy J L M Koevoet
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States.,Center for Multimodal Evaluation of Engineered-Cartilage, Case Western Reserve University, Cleveland, OH, United States
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States.,Center for Multimodal Evaluation of Engineered-Cartilage, Case Western Reserve University, Cleveland, OH, United States
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Faculty of Medicine, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Gerjo J V M van Osch
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
19
|
Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew Chem Int Ed Engl 2019; 58:17399-17405. [PMID: 31568601 PMCID: PMC6938695 DOI: 10.1002/anie.201910772] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Indexed: 12/18/2022]
Abstract
An accurate, rapid, and cost-effective biosensor for the quantification of disease biomarkers is vital for the development of early-diagnostic point-of-care systems. The recent discovery of the trans-cleavage property of CRISPR type V effectors makes CRISPR a potential high-accuracy bio-recognition tool. Herein, a CRISPR-Cas12a (cpf1) based electrochemical biosensor (E-CRISPR) is reported, which is more cost-effective and portable than optical-transduction-based biosensors. Through optimizing the in vitro trans-cleavage activity of Cas12a, E-CRIPSR was used to detect viral nucleic acids, including human papillomavirus 16 (HPV-16) and parvovirus B19 (PB-19), with a picomolar sensitivity. An aptamer-based E-CRISPR cascade was further designed for the detection of transforming growth factor β1 (TGF-β1) protein in clinical samples. As demonstrated, E-CRISPR could enable the development of portable, accurate, and cost-effective point-of-care diagnostic systems.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University; Cleveland, Ohio, 44106 (USA)
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Liu Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Jean F Welter
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University; Cleveland, Ohio, 44106 (USA)
| |
Collapse
|
20
|
Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC. Exploring the Trans‐Cleavage Activity of CRISPR‐Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910772] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yifan Dai
- Department of Chemical and Biomolecular Engineering, Electronics Design CenterCase Western Reserve University Cleveland OH 44106 USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Liu Wang
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve University Cleveland OH 44106 USA
| | - Jean F. Welter
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Yan Li
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve University Cleveland OH 44106 USA
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design CenterCase Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
21
|
Vail DJ, Somoza RA, Caplan AI, Khalil AM. Transcriptome dynamics of long noncoding RNAs and transcription factors demarcate human neonatal, adult, and human mesenchymal stem cell-derived engineered cartilage. J Tissue Eng Regen Med 2019; 14:29-44. [PMID: 31503387 DOI: 10.1002/term.2961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
Abstract
The engineering of a native-like articular cartilage (AC) is a long-standing objective that could serve the clinical needs of millions of patients suffering from osteoarthritis and cartilage injury. An incomplete understanding of the developmental stages of AC has contributed to limited success in this endeavor. Using next generation RNA sequencing, we have transcriptionally characterized two critical stages of AC development in humans-that is, immature neonatal and mature adult, as well as tissue-engineered cartilage derived from culture expanded human mesenchymal stem cells. We identified key transcription factors (TFs) and long noncoding RNAs (lncRNAs) as candidate drivers of the distinct phenotypes of these tissues. AGTR2, SCGB3A1, TFCP2L1, RORC, and TBX4 stand out as key TFs, whose expression may be capable of reprogramming engineered cartilage into a more expandable and neonatal-like cartilage primed for maturation into biomechanically competent cartilage. We also identified that the transcriptional profiles of many annotated but poorly studied lncRNAs were dramatically different between these cartilages, indicating that lncRNAs may also be playing significant roles in cartilage biology. Key neonatal-specific lncRNAs identified include AC092818.1, AC099560.1, and KC877982. Collectively, our results suggest that tissue-engineered cartilage can be optimized for future clinical applications by the specific expression of TFs and lncRNAs.
Collapse
Affiliation(s)
- Daniel J Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Rodrigo A Somoza
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
22
|
Caplan AI. Tissue Engineering: Then, Now, and the Future. Tissue Eng Part A 2019; 25:515-517. [PMID: 30654728 PMCID: PMC7001383 DOI: 10.1089/ten.tea.2019.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT This "invited submission" concisely reviews the author's involvement in the early era of tissue engineering and summarizes his perspective. He points out the journal was present in this early era and that it functions as a viewing chamber for seeing the last 25 years of progress and that it stands ready to provide viewing of the next 25 years.
Collapse
Affiliation(s)
- Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
23
|
Deng Y, Lei G, Lin Z, Yang Y, Lin H, Tuan RS. Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathway. Biomaterials 2018; 192:569-578. [PMID: 30544046 DOI: 10.1016/j.biomaterials.2018.11.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a promising cell source to regenerate articular cartilage, but current chondroinduction protocols, commonly using transforming growth factor-β (TGFβ), lead to concomitant chondrocytic hypertrophy with ossification risk. Here, we showed that a 14-day culture of MSC-laden hyaluronic acid hydrogel in the presence of TGFβ, followed by 7 days culture in TGFβ-free medium, with the supplement of Wnt/β-catenin inhibitor XAV939 from day 10-21, resulted in significantly reduced hypertrophy phenotype. The stability of the hyaline phenotype of the MSC-derived cartilage, generated with a standard protocol (Control) or the optimized (Optimized) method developed in this study, was further examined through intramuscular implantation in nude mice. After 4 weeks, constructs from the Control group showed obvious mineralization; in contrast, the Optimized group displayed no signs of mineralization, and maintained cartilaginous histology. Further analysis showed that TGFβ treatment time affected p38 expression, while exposure to XAV939 significantly inhibited P-Smad 1/5 level, which together resulted in decreased level of Runx2. These findings suggest a novel treatment regimen to generate hyaline cartilage from human MSCs-loaded scaffolds, which have a minimal risk of eliciting endochondral ossification.
Collapse
Affiliation(s)
- Yuhao Deng
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Guanghua Lei
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zixuan Lin
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yuanheng Yang
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, PA, 15261, USA; The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Huynh NPT, Zhang B, Guilak F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J 2018; 33:358-372. [PMID: 29985644 DOI: 10.1096/fj.201800534r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) provide an attractive cell source for cartilage repair and cell therapy; however, the underlying molecular pathways that drive chondrogenesis of these populations of adult stem cells remain poorly understood. We generated a rich data set of high-throughput RNA sequencing of human MSCs throughout chondrogenesis at 6 different time points. Our data consisted of 18 libraries with 3 individual donors as biologic replicates, with each library possessing a sequencing depth of 100 million reads. Computational analyses with differential gene expression, gene ontology, and weighted gene correlation network analysis identified dynamic changes in multiple biologic pathways and, most importantly, a chondrogenic gene subset, whose functional characterization promises to further harness the potential of MSCs for cartilage tissue engineering. Furthermore, we created a graphic user interface encyclopedia built with the goal of producing an open resource of transcriptomic regulation for additional data mining and pathway analysis of the process of MSC chondrogenesis.-Huynh, N. P. T., Zhang, B., Guilak, F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and.,Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and
| |
Collapse
|
25
|
Zhong Y, Motavalli M, Wang KC, Caplan AI, Welter JF, Baskaran H. Dynamics of Intrinsic Glucose Uptake Kinetics in Human Mesenchymal Stem Cells During Chondrogenesis. Ann Biomed Eng 2018; 46:1896-1910. [PMID: 29948374 DOI: 10.1007/s10439-018-2067-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/04/2018] [Indexed: 01/25/2023]
Abstract
Chondrogenesis of human mesenchymal stem cells (hMSCs) is an important biological process in many applications including cartilage tissue engineering. We investigated the glucose uptake characteristics of aggregates of hMSCs undergoing chondrogenesis over a 3-week period both experimentally and by using a mathematical model. Initial concentrations of glucose in the medium were varied from 1 to 4.5 g/L to mimic limiting conditions and glucose uptake profiles were obtained. A reaction-diffusion mathematical model was implemented and solved to estimate kinetic parameters. Experimental glucose uptake rates increased with culture time for aggregates treated with higher initial glucose concentrations (3 and 4.5 g/L), whereas they decreased or remained constant for those treated with lower initial glucose concentrations (1 and 2 g/L). Lactate production rate increased by as much as 40% for aggregates treated with higher initial glucose concentrations (2, 3 and 4.5 g/L), whereas it remained constant for those treated with 1 g/L initial glucose concentration. The estimated DNA-normalized maximum glucose uptake rate decreased by a factor of 9 from day 0-2 (12.5 mmol/s/g DNA) to day 6-8 (1.5 mmol/s/g DNA), after which it started to increase. On day 18-20, its value (17.5 mmol/s/g DNA) was about 11 times greater than its lowest value. Further, the extracellular matrix levels of aggregates at day 14 and day 21 correlated with their overall glucose uptake and lactate production. The results suggest that during chondrogenesis, for optimal results, cells require increasing amounts of glucose. Our results also suggest that diffusion limitations play an important role in glucose uptake even in the smaller size aggregate model of chondrogenesis. Further, the results indicate that glucose uptake or lactate production can be a tool for predicting the end quality of tissue during the process of chondrogenesis. The estimated kinetic parameters can be used to model glucose requirements in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mostafa Motavalli
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kuo-Chen Wang
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnold I Caplan
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jean F Welter
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, 141C, A.W. Smith Building, 2102 Adelbert Road, Cleveland, OH, 44106-7217, USA. .,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
26
|
Sorrell JM, Somoza RA, Caplan AI. Human mesenchymal stem cells induced to differentiate as chondrocytes follow a biphasic pattern of extracellular matrix production. J Orthop Res 2018; 36:1757-1766. [PMID: 29194731 PMCID: PMC5976510 DOI: 10.1002/jor.23820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
Regenerative medicine and tissue engineering studies are actively developing novel means to repair adult articular cartilage defects using biological approaches. One such approach is the harnessing of adult human therapeutic cells such as those referred to as mesenchymal stem cells. Upon exposure to chondrogenic signals, these cells differentiate and initiate the production of a complex and voluminous cartilaginous matrix that is crucial to both the structure and function of cartilage. Furthermore, this complexity requires the time-sensitive activation of a large number of genes to produce the components of this matrix. The current study analyzed the kinetics of matrix production in an aggregate culture model where adult human mesenchymal stem cells were induced to differentiate as chondrocytes. The results indicate the existence of a biphasic mode of differentiation and maturation during which matrix genes and molecules are differentially activated and secreted. These results have important implications for developing novel approaches for the creation of tissue engineered articular cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1757-1766, 2018.
Collapse
Affiliation(s)
- J. Michael Sorrell
- Department of Biology, Skeletal Research Center; Case Western Reserve University; Cleveland Ohio 44106
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal Research Center; Case Western Reserve University; Cleveland Ohio 44106
| | - Arnold I. Caplan
- Department of Biology, Skeletal Research Center; Case Western Reserve University; Cleveland Ohio 44106
| |
Collapse
|
27
|
Kenyon JD, Sergeeva O, Somoza RA, Li M, Caplan AI, Khalil AM, Lee Z. Analysis of -5p and -3p Strands of miR-145 and miR-140 During Mesenchymal Stem Cell Chondrogenic Differentiation. Tissue Eng Part A 2018; 25:80-90. [PMID: 29676203 DOI: 10.1089/ten.tea.2017.0440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The chondrogenic differentiation of mesenchymal stem cells (MSCs) is mediated by transcription factors and small noncoding RNAs such as microRNAs (miRNAs). Each miRNA is initially transcribed as a long transcript, which matures to produce -5p and -3p strands. It is widely believed that the mature and functional miRNA from any given pre-miRNA, usually the -5p strand, is functional, while the opposing -3p strand is degraded. However, recent cartilage literature started to show functional -3p strands for a few miRNAs. This study aimed at examining both -5p and -3p strands of two key miRNAs miR-140 and miR-145, known to be involved in the chondrogenic differentiation of MSCs. The level (copy number) of both -5p and -3p strands of miR-145 and miR-140 along the time line of MSC chondrogenic differentiation was determined by polymerase chain reaction. The gene expression profiles of several genes related to MSC chondrogenesis were compared with these miRNA profiles along the same timeline. While miR-145-3p is declining in step with miR-145-5p in pellet cultures during the process, the -3p strand is only 1-2% of the total miR-145 products. In contrast, the mature -3p and -5p products of miR-140 are found to increase with near-equal molar expression throughout chondrogenic differentiation. Numerous genes are expressed by cartilage progenitor cells during development. One such target gene, Sox9, is a regulatory target of the dominant miR-145-5p, consistent with the data. Further experimental validations are warranted to confirm that ACAN, FOXO1, and RUNX3 as direct targets of miR-145-5p in the context of MSC chondrogenesis. Similarly, TRSP1 and ACAN are worth further validation as direct targets of miR-145-3p. For miR-140, SOX4 shall be further validated as a direct target of miR-140-5p, while KLF4, PTHLH, and WNT5A can be validated as direct targets of miR-140-3p.
Collapse
Affiliation(s)
- Jonathan D Kenyon
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Olga Sergeeva
- 2 Department of Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Rodrigo A Somoza
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Ming Li
- 3 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Ahmad M Khalil
- 4 Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghong Lee
- 2 Department of Radiology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|